
VV-NET: Voxel VAE Net with Group Convolutions for Point Cloud Segmentation

Hsien-Yu Meng1,4, Lin Gao2∗, Yu-Kun Lai 3, Dinesh Manocha1

1University of Maryland, College Park
2Beijing Key Laboratory of Mobile Computing and Pervasive Device,

Institute of Computing Technology, Chinese Academy of Sciences
3School of Computer Science & Informatics, Cardiff University

4 Tsinghua University
mengxy19@umd.edu, gaolin@ict.ac.cn, LaiY4@cardiff.ac.uk, dm@cs.umd.edu

Abstract

We present a novel algorithm for point cloud segmenta-
tion. Our approach transforms unstructured point clouds
into regular voxel grids, and further uses a kernel-based
interpolated variational autoencoder (VAE) architecture to
encode the local geometry within each voxel. Traditionally,
the voxel representation only comprises Boolean occupancy
information which fails to capture the sparsely distributed
points within voxels in a compact manner. In order to han-
dle sparse distributions of points, we further employ radial
basis functions (RBF) to compute a local, continuous rep-
resentation within each voxel. Our approach results in a
good volumetric representation that effectively tackles noisy
point cloud datasets and is more robust for learning. More-
over, we further introduce group equivariant CNN to 3D,
by defining the convolution operator on a symmetry group
acting on Z3 and its isomorphic sets. This improves the
expressive capacity without increasing parameters, lead-
ing to more robust segmentation results. We highlight the
performance on standard benchmarks and show that our
approach outperforms state-of-the-art segmentation algo-
rithms on the ShapeNet and S3DIS datasets.

1. Introduction
3D data processing including classification and segmenta-
tion flourishes these days as 3D data can be easily captured
using 3D scanners or depth cameras. It is eminent to deal
with irregular and unordered data formats such as the point
cloud. The processing pipeline must also be robust towards
rotation, scaling, translation and permutation on input data
as mentioned in [3]. However, previous work fails to cap-
ture the internal symmetry within point clouds. We address
these issues in this paper by proposing a novel represen-

∗Corresponding Author

tation that considers both spatial distribution of points and
group symmetry in a unified framework.

In this paper, we address the problem of developing
more effective learning methods using regular data struc-
tures such as voxel-based representations, to retain and ex-
ploit spatial distributions. Typically, each voxel only con-
tains the Boolean occupancy status (i.e. occupied or unoc-
cupied), rather than other detailed point distributions and
therefore can only capture limited details. We address this
problem by investigating alternative representations, which
can effectively encode the distribution of points in a voxel.
Main Results: We present a novel learning method for
point cloud segmentation. The key idea is to effectively en-
code point distributions within each voxel. Directly treating
the point distribution as a 0-1 signal is highly non-smooth,
and cannot be compactly represented as per Mairhuber-
Curtis theorem. We instead transform an unstructured point
cloud to a voxel grid. Moreover, each voxel is further sub-
divided into subvoxels which interpolate sparse point sam-
ples within the voxel by smooth Radial Basis Functions,
which are symmetric around point samples as centers and
positive definite. This smooth signal can then be effectively
compacted, and to achieve this we train a variational auto-
encoder (VAE) [10] to map the point distribution within
each voxel to a compact latent space. Our combination of
RBF and VAE provides an effective approach to represent-
ing point distributions within voxels for deep learning.

A key issue with 3D representations is to ensure that the
result of point cloud segmentation does not change due to
any rotations, scaling or translation with respect to an ex-
ternal coordinate system. In order to capture the intrinsic
symmetry of a point cloud, we use group equivariant con-
volutions [5] and combine the per point feature extracted by
an mlp function similar to [3]. These group convolutions
were originally proposed for 2D images and we generalize
them on Z3 and its isomorphic sets for 3D point cloud pro-
cessing . They help detect the co-occurrence in the feature

1

space, namely the latent space of our pre-trained RBF-VAE
network of voxels, and thereby improve the learning capa-
bility of our approach.

Overall, we present VV-Net, a novel Voxel VAE network
with group convolutions, and apply this for point cloud
segmentation. Our approach is useful for segmenting ob-
jects into parts and 3D scenes into individual semantic ob-
jects. We have evaluated and compared its performance on
standard point-cloud datasets including ShapeNet [28] and
S3DIS [1]. In practice, our method outperforms the state-
of-the-art methods on these datasets by 2.7% and 16.12% in
terms of mean IoU (intersection over union), respectively.
Even when some of the ground truth data from the point
cloud is labeled incorrectly, our approach is also able to
compute a meaningful segmentation, as shown in Figure 4.
The novel contributions of our work include:

• We develop a novel information-rich voxel-based rep-
resentation for point cloud data. Point distribution
within each voxel is captured using a variational auto-
encoder taking RBF at the subvoxel level as input. This
provides both the benefits of regular structure and cap-
turing the detailed distribution for learning algorithms.

• We introduce group convolutions defined on the 3-
dimensional data, which encode the symmetry and in-
crease the expressive capacity of the network without
increasing the number of parameters.

2. Related Work
There have been growing interests in 3D data process-

ing algorithms. In this section, we give a brief overview
of these prior work on point cloud processing and semantic
segmentation.

Deep learning on 3D data: Point cloud is a very general
representation for 3d data, lots of pioneer research works
with deep learning technologies are proposed. PointNet [3]
applies multilayer perceptrons to each point in the input
point cloud and symmetric operations to eliminate the per-
mutation problem. Furthermore, PointNet is robust to rota-
tions on the input point cloud by explicitly adding a trans-
form net to align the input point cloud. In the 3D object
classification and semantic segmentation tasks, PointNet is
regarded as a state-of-the-art approach. Yi et al. [27] clus-
ter the data by their labels in the dataset and then train
a model for hierarchical segmentation. Wang et al. [22]
present a similarity matrix that measures the similarity be-
tween each pair of points in the embedded space to produce
the semantic segmentation map. To capture information at
different scales, a commonly used approach is to capture
the hierarchical information by recursive sampling or recur-
sively applying neural network structures [16]. In particu-

lar, the work [8] applies recurrent neural networks to com-
bine slice pooling layers, and the work [19] uses sparse bi-
lateral convolutional layers as building blocks. Some meth-
ods work on 3D meshes, and strive to extract information
from graph structures generated from a mesh representa-
tion. Yu et al. [29] use a spectral CNN method that en-
ables weight sharing by parameterizing kernels in the spec-
tral domain spanned by graph Laplacian eigenbases. Verma
et al. [21] use graph convolutions proposed in [2] to design
a graph-convolution operator, which aims to establish cor-
respondences between filter weights and graph neighbor-
hoods with arbitrary connectivity. The variational autoen-
coder is also employed in [20] for mesh generation.

Point cloud processing using neighborhood mining: To
address lack of connectivity, some methods use K-nearest
neighbors in the Euclidean space and exploit information
within local regions [23, 13, 12, 18]. In particular, Li
et al. [12] model the spatial distribution of point clouds
by building a self-organizing map and applying Point-
Net [3] to multiple smaller point clouds. Moreover, the
works [23, 11, 12, 13] use graph structures and graph Lapla-
cian to capture the local information in the selected neigh-
borhoods and leverage the spatial information [13]. Remil
et al. [17] utilize the shape priors which are defined as point-
set neighborhoods sampled from shape surfaces. However,
there are many issues that make it challenging to mine the
neighborhood information: First, topology information is
not easy to capture with LiDAR scans, which makes it more
challenging to estimate vertex normals. Second, encoding
K nearest neighborhoods in the Euclidean space may in
some cases simultaneously encode two points that do not
belong to the same object (especially for the circumstance
that two objects are close to each other). In our work, we
do not explicitly encode the K nearest neighborhoods in our
architecture. Instead, we aim to encode the symmetry infor-
mation rather than encoding the neighborhood information.

Point cloud processing using voxels: Some works use
voxels for processing point data (e.g. [22, 30, 14, 15]).
These methods apply neural networks on voxelized data,
and cannot be applied to raw point clouds directly due to
their irregular and unordered data format. However, the res-
olution is limited by data sparsity and computational costs.
For the purpose of 3D detection, Zhou and Tuzel [30] sam-
ple a LiDAR point cloud to reduce the computation over-
head and irregularity of point distribution using farthest
point sampling. In order to further reduce the imbalance
of points between voxels, their method only takes into con-
sideration densely populated voxels. It applies the point-
wise feature learning function mlp on each point and ag-
gregates the features by a symmetric function. In contrast,
our method does not perform sampling to eliminate the im-

split + RBF(·)

Point Cloud Scaled Voxel RBF voxels
(D x W x H)

Subvoxels
(k x k x k, k = 4)

FC
32

FC
16

FC
16 FC

8
FC

8

(0,I)Nε ∈

FC
16

FC
16

FC
32

FC
8

Encoder Decoderlatent layer
l x1

VAE

Latent space representation
(D x W x H x l)Combine

Represent

Reconstriction
(k x k x k, k = 4)

Figure 1. Radial Basis Function interpolated Variational Auto-
Encoder module. For a given point cloud, we divide it into
equally spaced D × H ×W voxels, and for each voxel we fur-
ther divide it into k× k× k subvoxels, where each subvoxel value
is defined by the radial basis function in Equation 3 rather than
Dirac delta function sampled by sinc. The kernel of RBF is set to
φ(||· ||22) according to VAE latent distribution. For a k×k×k sub-
voxel, we infer the latent space representation using a pre-trained
variational auto-encoder. Finally, the point cloud can be presented
as a D × H ×W × l voxel data, where l denotes the dimension
of the latent space.
balanced distribution. Instead we use regular voxels along
with RBF to improve the learning capabilities.

Convolutions defined on groups, equivariance and
transformations: It is known that the power of CNNs
lies in the translation equivariant property, and they exploit
translational symmetries by CNN kernel weight sharing [4].
Recently Cohen and Wellin [5] introduced equivariance
to the combinations of 90◦-rotations and dihedral flips in
CNNs. They extend the theory to a steerable representation
which is composition of elementary feature types although
it requires special treatment for anti-aliasing [6]. Cohen
et al. [4] further introduce the spherical cross-correlation
which satisfies the generalized Fourier transformation al-
though the resulting spherical CNN requires a closed genus-
0 manifold as input so that it can be projected as a spherical
signal. Similarly, Weiler et al. [24] and Worrall et al. [26]
design SO(2) steerable networks, although they are limited
by discrete groups and are computational expensive. All of
these methods are either designed for the 2D image domain
or the spherical surface domain, and none of them work di-
rectly for 3D point data.

3. Voxel VAE Net with Group Convolutions
In this section we describe the overall algorithm and

highlight the various stages of the pipeline. First, we illus-
trate the interpolation of multidimensional scattered sam-
ples, and show the intuitive motivation of VAE equipped
with RBF kernel, which enjoys several advantages: sym-

nx
3

n
x

64

n
x

r sh
ar

ed

m
lp

nx
m

F

F

F

F

F

F
F

Group Convolution

F

Stacked Feature Map

Serialized Feature
Conv3D

1x1x1x16
Conv3D
3x3x3x8

Conv3D
3x3x3x8

Conv3D
3x3x3x4

Conv3D
3x3x3x2

MaxPool3D
2x2x2

pointnet per
point feature

group convoluton
serialized feature

output scores
Latent space representation

(D x W x H x l)

Figure 2. Segmentation Network Architecture. We highlight the
various components of our approach. The input of the network is
a point cloud containing n points and the latent space representa-
tion is illustrated in Figure 1. The output is the per-class score of
each point in the point cloud (for m classes). We use the group
convolutional module to detect the co-occurrence in the feature
space (see Equation 5). We highlight the group p4m for functions
g(mx,my,mz, rx, ry, rz, tx, ty, tz) in Equation 5 in the bottom
left figure (where m∗, r∗ and t∗ refer to mirroring, rotation and
translation). A p4m function has 128 planar patches in our for-
mulation, where each is associated with a rotation rx, ry , rz and
mirroring mx, my , mz . In this figure, we only illustrate 8 planar
patches. Each patch follows the arrow and undergoes a 90◦ rota-
tion. The patches on the outer square are mirror reflection of the
patches on the inner square, and vice-versa. More details are given
in the supplementary material.
metric and positive definite for any choice of data loca-
tions. Our formulation computes a better representation
with an encoder-decoder scheme, instead of using the stan-
dard {0, 1} voxels (occupancy). Empirically, the distribu-
tion of {0,1} voxels is discrete and insufficient to fully cap-
ture point distributions. Moreover, its discontinuous nature
makes it difficult to be learned by a deep neural network.
Second, we describe our mathematical framework based on
group convolutions defined on Z3 and its isomorphic sets
to detect the co-occurrence of features in the latent space.
This increases the expressive capacity of the CNN without
increasing the number of parameters and the number of lay-
ers. Third, we concatenate the n × 64 per-point features
extracted by the mlp function [3] with the serialized fea-
tures extracted by our network, where n is the number of
points, and 64 is the dimension of features extracted using
PointNet. Finally, aftermlp layers, we output the score map
which indicates the probability of a point belonging to the
m classes as in the upper right of Figure 2, where m is the
number of classes in the segmentation task (e.g. 40 in the
ShapeNet part segmentation task and 13 in the S3DIS se-
mantic segmentation task).
3.1. Symbols and Notation

If G is a group acting on set X , and f, g : X → C are
actions on group G , then the convolution is defined as:

(f ∗ g)(u) =

∫
G

f(uv−1)g(v)dµ(v) (1)

where µ is Haar-measure. In this paper, we have X = Z3,
and G is the group of integer transformation, which is iso-
morphic to Z3. Note that this is a special case, and G and
X are usually two different sets.

In our pipeline, the input is a point cloud, represented us-
ing 3D coordinates (x, y, z) in the Euclidean space. We use
the symbols (x̃, ỹ, z̃) to represent the coordinates of voxel
grid. In particular, for a given point cloud with n points
which encompasses 3D space with ranges D̃, H̃ and W̃ in
the Z, Y , X axes, respectively, we divide the entire point
cloud intoD×H×W voxels. Therefore, the sizes of a voxel
in Z, Y and X directions are: vD = D̃/D, vH = H̃/H
and vW = W̃/W . The output of our RBF-VAE scheme
is a (D,H,W, l)-size matrix, where l represents the latent
space dimension of the encoder-decoder setting. We use the
notion of symmetry groups for group equivariant convolu-
tions. Given a group G , we can define a G-CNN by anal-
ogy to standard CNNs , by similarly defining the function
G-convolution on the group G .

3.2. RBF-VAE Scheme

The traditional voxel representation can be deemed as
a 0-1 signal f sampled at each grid point with spacing
vD, vH , vW along each dimension by Whittaker - Shannon
interpolation formula. Applying Fourier transformation to
such signal f involving a combination of Dirac delta func-
tions produces a dense distribution in the frequency domain,
forming a Haar-space (Chebyshev space), which cannot be
effectively compacted, according to Mairhuber-Curtis theo-
rem [25]. Instead of Boolean occupancy information, we
evaluate grid value at p as a linear combination of radial
basis functions:

f(p) =

N∑
j=1

wjφ(||p− vj ||22) (2)

where N is number of data points, wj is a scalar value and
φ(·) is a symmetry function about each data point and is
positive definite according to Bochner theorem. We mea-
sure the point distribution over k × k × k subvoxels by us-
ing a variational auto-encoder, leading to an l-dimensional
latent space for each voxel, which is not only compact but
also captures the spatial distribution of points. Overall,
the voxel representation size for the entire point cloud is
D ×H ×W × l, which is more detailed than the standard
D ×H ×W volumetric representation.

3.2.1 Radial Basis Functions

To map discrete points to a continuous distribution, we use
radial basis functions to estimate their contributions within
each subvoxel:

f(p) = max
v∈V

(
exp
−||p− v||22

2σ2

)
. (3)

Here V represents the set of points, p is the center of the
subvoxel, and σ is a pre-defined parameter, usually is a mul-
tiple of the subvoxel size. In principle all the points in V
may affect the value of f(p), it is the point closest to p that
is dominant. As a result f(p) can be evaluated efficiently.
The formulation here is based on the commonly used Gaus-
sian RBF kernel. Empirically, the kernel used in RBF, i.e.
φ(|| · ||22) has same form as VAE latent variable distribution.
Furthermore, we show the comparison results of different
kernels in Section 4.4.

3.2.2 Variational Auto-Encoder

Our approach uses the approach highlighted in [10] to
model the probabilistic encoder and the probabilistic de-
coder. The encoder aims to map the posterior distri-
bution from datapoint X(Di,Hi,Wi) to the latent vector
Z(Di,Hi,Wi), where (Di, Hi,Wi) represents k× k× k sub-
voxels and is denoted as Ki. And the decoder produces a
plausible corresponding datapoint X̂Ki from a latent vec-
tor ZKi . In our setting, the datapoint XKi is represented
by RBF kernel subvoxels as formulated in Equation 3. The
total loss function of our model can be evaluated as :

Loss =
∑

Ki∈(D,H,W)

EZKi
[logP (X

(i)
Ki
|ZKi)]

−DKL(qφ(ZKi |X
(i)
Ki

)||Pθ(ZKi))

+DKL(qφ(ZKi |X
(i)
Ki

)||Pθ(ZKi |X
(i)
Ki

))

(4)

where we sample ZKi
|XKi

from ZKi
|XKi

∼
N (µZKi

|XKi
,ΣZKi

|XKi
) and sample XKi

|ZKi
from

XKi
|ZKi

∼ N (µXKi
|ZKi

, ΣXKi
|ZKi

), qφ(ZKi
|XKi

)
indicates the encoder network and Pθ(XKi |ZKi) indicates
the decoder network. Note that the latent variable ZKi

only captures the spatial information within a single voxel
by the variational auto-encoder scheme. For a pre-trained
VAE module, we infer each voxel from the fixed-parameter
VAE and compute the final point cloud representation of
size D × H × W × l, where l is the latent space size of
the pre-trained VAE module. The variational auto-encoder
captures point data distribution within a voxel in a more
compact manner. This not only reduces memory footprint,
but also makes our learning algorithm more efficient. The
VAE has significantly better generalizability than AE due
to the prior distribution assumption, and avoids potential
overfitting to the training set.

3.3. Symmetry Group and Equivariant Represen-
tations

In this section, we present our algorithm to compute the
equivariant representations using the symmetry groups. The
goal is to build on the VAE based voxel representation and
detect the co-occurrence in features with filters in the CNN.
The ultimate goal is to enhance the network expressive ca-
pacity without increasing the number of layers or the filter

Table 1. ShapeNet experiment settings to test the performance of each module: Our VAE module is illustrated in Figure 1, and the
group convolutional module is highlighted in Figure 2. We present the parameters used for our approach (group-conv + RBF-VAE) and with
one module disabled, namely only RBF-VAE without group-conv and group-conv with {0, 1} voxels. The input subvoxel (for VAE-based)
or voxel (for non-VAE based) resolutions are fixed to 64× 64× 64.

Experiment input of VAE output of VAE input of group conv
RBF-VAE 64× 64× 64 RBF voxel 16× 16× 16× 8 latent voxel None
group-conv + {0,1} voxel None None 64× 64× 64 {0,1} voxel
(Our)group-conv + RBF-VAE 64× 64× 64 RBF voxel 16× 16× 16× 8 latent voxel 16× 16× 16× 8 latent voxel

Table 2. Results on ShapeNet part segmentation: We highlight the instance average mIoU and mIoU scores for all the categories on point
cloud labeling using prior algorithms and our method. Note that the comparison performances listed below are reported by PointNet [3],
RSN [8], SO-Net [12], SynSpecCNN [29] and SPLATNET [19], respectively. The numbers in bold show the best performances for
different object categories. Furthermore, in our experiments, we highlight the results that outperform the state-of-the-art method. The 3
experiments listed in the bottom correspond to the experiment settings in Table 1. Overall, with both the RBF-VAE module and the group
convolutional module, we outperform the state-of-the-art method by 2.5% in terms of mean IoU. If we replace the RBF-VAE module with
the standard {0,1} voxel VAE module, the training does not converge because the point data is too sparse. Moreover, if we remove the
group convolutional module or the RBF-VAE module from our complete pipeline, mIoU would drop by 1.3% or 1.4% respectively. Note
that the Motor and Car categories are challenging as they each contain 4 or more parts. Nonetheless, our method shows significantly better
performances.

Mean IoU Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table
PointNet [3] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
RSN [8] 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
SO-Net [12] 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6
SyncSpecCNN [29] 84.74 81.55 81.74 81.94 75.16 90.24 74.88 92.97 86.10 84.65 95.61 66.66 92.73 81.61 60.61 82.86 82.13
SPLATNET-3D [19] 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3
RBF-VAE 86.1 82.3 86.6 82.4 81.7 87.7 77.1 91.2 83.7 77.5 94.0 71.0 96.1 86.6 56.1 87.8 89.5
group-conv + {0,1} voxel 86.0 82.1 68.9 83.8 80.9 87.8 81.2 91.2 78.4 77.4 94.5 72.8 98.0 86.0 53.8 83.9 90.0
group-conv + RBF-VAE 87.4 84.2 90.2 72.4 83.9 88.7 75.7 92.6 87.2 79.8 94.9 73.4 94.4 86.4 65.2 87.2 90.4

sizes in the standard CNN. The work [5] illustrates these
issues in the current generation of neural networks, where
the representation spaces have minimal internal structure.
To address this issue, we use symmetry groups and equiv-
ariance CNN to perform efficient data processing. In this
case, G-CNN is defined in the linear G-space, where each
vector in theG-space has a pose, and can be transformed by
an element from a group of transformations G. Particularly,
G-convolution corresponds to an operation that helps a fil-
ter in G-CNN to detect the co-occurrence in features. The
transformation in G-space is structure preserving. We ex-
tend the formulation of G-space presented in [5] which was
defined for 2D images to 3D. In particular, we define and
use p4 and p4m as symmetry groups on Z3. Furthermore,
we show the group equivariant convolution on Z3 and the
underlying CNN is a function on the group. When we ap-
ply 90◦ rotations on a function on p4, the simplified results
of this operation are shown in Figure 2.

3.3.1 Group p4

The group p4 is comprised of all compositions of transla-
tions and rotations by 90◦ about any center of rotation in a
square grid. We can parameterize the group p4 in terms of
rx, ry, rz, tx, ty, tz where r∗ and t∗ are rotations and trans-
lations w.r.t. axis *, respectively. Here ∗ refers to either
X,Y or Z. This can be formulated as g(rx, ry, rz, T) =
Rx ×Ry ×Rz × T , where R∗ is the rotation matrix which
rotates around the axis * by π·r∗

2 , and T is the translation
matrix which translates along theX , Y , Z axes by tx, ty , tz ,

respectively. Here, 0 ≤ rx ≤ 4 , 0 ≤ ry ≤ 4, 0 ≤ rz ≤ 4
and (tx, ty, tz) ∈ Z3. The group operation is performed
using matrix multiplication. As mentioned above, the com-
position of two functions and the inverse function can be
easily formulated in terms of (rx, ry, rz, tx, ty, tz), hence
the operation defines a symmetry group. The group p4 acts
on points in Z3 (voxel coordinates) by multiplying the ma-
trix g(rx, ry, rz, tx, ty, tz) by homogeneous coordinates of
a point.

3.3.2 Group p4m

Here, we extend the group p4 and construct a symmetry
group p4m defined on Z3, which also includes mirroring
(reflection) along axis aligned planes. More formally, we
have the following lemma:

Lemma 3.1 The group p4m is comprised of all composi-
tions of transformations, rotations by 90◦ about any cen-
ter of rotation in the grid, and mirror reflections (i.e.
p4 plus mirroring). As the group p4 formulated above,
we can parameterize the group p4m in terms of integers
(mx,my,mz, rx, ry, rz, tx, ty, tz) asRmx×Rmy×Rmz×
T , where Rmx is formulated as below:

Rmx =


(−1)mx cos (rx

π
2) −(−1)mx sin rx

π
2 0 0

sin (rx
π
2) cos (rx

π
2) 0 0

0 0 1 0
0 0 0 1

 ,
(5)

Table 3. Results of Semantic Segmentation on the S3DIS Dataset: Our underlying metric is Intersection over Union (IoU) calculated
on the points, evaluated on the benchmark [1]. One metric is different between Table 3 and Table 4, IoU in Table 3 and AP0.5 in Table 4,
following the practice of existing papers. We report both metrics while most previous works choose to report one or the other. The numbers
in bold face fonts imply the best performances and we highlight the numbers in our experiments if the results outperform the state-of-the-art
methods. Notice that the full pipeline (last experiment) outperforms only using RBF-VAE by 1.8% and only using group-conv by 6.33%.
Note that the performances of PointNet [3], Engelmann [7] and SPG [11] are reported in [11]. The RSN [8] performance is reported in
their paper.

overall ACC Mean IoU ceiling floor wall beam column window door chair table bookcase sofa board clutter
PointNet ([3]) 78.5 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
Engelmann ([7]) 81.1 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 47.4 58.1 39.0 6.9 30.0 41.9
SPG ([11]) 85.5 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
RSN ([8]) 59.42 51.93 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64
RBF-VAE 85.98 75.40 85.01 95.52 71.58 73.81 60.91 61.54 74.38 65.67 67.59 61.47 26.11 38.72 56.16
group-conv + {0,1} voxel 81.45 68.70 83.27 93.95 59.37 64.35 40.23 54.06 66.48 65.20 63.52 41.48 20.37 16.21 47.41
group-conv + RBF-VAE 87.78 78.22 87.64 95.36 74.80 75.04 68.03 71.33 76.87 72.67 70.08 61.97 33.56 49.81 60.00

Table 4. Results of Semantic Segmentation on the S3DIS Dataset with AP0.5. The metric is average precision (AP(%)) with IoU
threshold 0.5. Note that the complete pipeline (group-conv+RBF-VAE) achieves the best performance, outperforming both state-of-the-art
work and with one of our modules disabled. The result of Armeni [1] is for 3D object detection and IoU is calculated on 3D bounding
boxes, while SGPN and ours are based on point cloud datasets. Note that the comparison performances listed below are reported in
SGPN [22].

Mean IoU(AP0.5) ceiling floor wall beam column window door chair table bookcase sofa board
Armeni ([1]) 49.93 71.61 88.70 72.86 66.67 91.77 25.92 54.11 16.15 46.02 54.71 6.78 3.91
SGPN ([22]) 54.35 79.44 66.29 88.77 77.98 60.71 66.62 56.75 40.77 46.90 47.61 6.38 11.05
RBF-VAE 79.00 88.73 97.43 77.20 79.91 67.27 62.39 81.36 67.08 74.68 55.38 37.08 33.05
group-conv + {0,1}voxel 72.66 88.98 95.32 64.13 67.74 49.21 55.35 74.02 64.34 68.38 29.11 22.58 13.33
group-conv + RBF-VAE 82.17 91.68 96.54 80.38 80.68 71.87 72.94 85.81 73.86 76.76 57.68 43.82 46.35

and m∗ indicates mirroring, mx ∈ {0, 1}, my ∈ {0, 1},
mz ∈ {0, 1}, 0 ≤ rx ≤ 4, 0 ≤ ry ≤ 4, 0 ≤ rz ≤ 4 and
(tx, ty, tz) ∈ Z3. The group p4m is a symmetry group.

As illustrated in the bottom left of Figure 2, there are 128
3D patches that undergo rotation and translation transfor-
mations. The rich transformation structure arises from the
group operation p4m. Our group operation holds the prop-
erty of a symmetry group. For implementation, the group
convolution with 90◦- rotations is employed by copying the
transformed filters with different rotation-flip combinations
(Rmx × Rmy × Rmz). For Rmx we have 4 × 2 combi-
nations (4 choices for 90◦ rotation, and whether reflection
is applied, along the X axis). As illustrated in Figure 2,
patches are stacked to form a 5D tensor (B × (D−KD)×
(H−KH)×(W−KW)×(P ·C)), whereB represents batch
size, D, H , W are the voxel sizes along X , Y , Z axes men-
tioned in Section 3.2. K = (KD,KH ,KW ,KCin ,KCout)
is the kernel size used in the 3D CNN , P is the total patch
number, and Cin and Cout are the numbers of input and
output channels of the 3D CNN. We also developed an ef-
ficient approach to reduce the memory footprint, where 3D
rotation-flip combinations are constructed based on apply-
ing 2D rotation-flip operations along arbitrary axes. Please
refer to the supplementary material for the implementation
details.

4. Implementation and Performance
Our network architecture is shown in Figure 2. The

RBF-VAE module and the segmentation module are trained

separately and the RBF-VAE module is trained firstly.
There are two reasons of training separately: the loss of
RBF-VAE module is voxel-wise and thereby the whole net-
work could benefit little from it; the memory consumption
is saved to 1/8 of its joint training size to make it perform on
the typical Nvidia 1080Ti GPU. Our network is trained with
100 epochs and batch size 24. The inference time of our
network is about 210 ms per frame on the S3DIS dataset.
We have evaluated our segmentation method ’VV-Net’ on
two datasets: ShapeNet [28] and S3DIS [1], respectively.
Moreover, we demonstrate the effectiveness of each mod-
ule used in our approach. First, we highlight the perfor-
mance difference by alternating between the standard {0,1}
voxel VAE module and our novel RBF voxel VAE module.
Second, we evaluate the expressive capacity of the group
convolutional network module. All these results and com-
parisons are highlighted in Table 2, Table 3 and Table 4 with
the parameter settings of our approach for part segmentation
given in Table 1.

4.1. Part segmentation

Part segmentation is a challenging 3D analysis task,
which aims to segment a given 3D scan into meaningful
segments. We evaluate our algorithm and highlight the per-
formance in Table 2 on a large-scale ShapeNet dataset,
which contains 16, 881 shapes from 16 categories, and an-
notated with 50 parts in total. Some examples of the re-
sults of our approach are shown in Figure 3. Figure 4(top)
demonstrates the ground truth of the dataset, and we can no-
tice that each category is labeled with two to five parts. As

described in [3], we also formulate our problem as per-point
multi-label classification. The loss function is cross entropy
function defined as below:

Loss = −ΣLl gl log pl, (6)

where L is the number of labels, g is the probability of
ground truth label and p is the probability of each label. The
evaluation metric is mIoU (mean IoU) on points, following
the formula in [3]: if the union of groundtruth and predic-
tion points is empty, then we count the corresponding label
IoU as 1, since we have 50 parts and 16 shape categories,
we compute the category IoU as the average instance IoU
on the category.

In our experiment, (D,H,W) = (16, 16, 16), k = 4 ,
σ = min(vW , vH , vD) and l = 8, where we capture the
4 × 4 × 4 subvoxels with 8 latent variables inferred from
variational auto-encoder. We highlight the performance of
various combinations of different modules. The results cor-
responding to group-conv + RBF-VAE highlights VV-Net’s
performance based on combining RBF kernel with VAE
scheme and the group convolutional neural network mod-
ule. This version of our algorithm outperforms state-of-the-
art RSN [8] by 2.5% (mIoU) and it is better than RSN in 12
out of 16 categories.

In order to demonstrate the benefits of individual compo-
nents, we perform an ablation study. For fair comparison,
the same 64 × 64 × 64 resolution of subvoxels (for VAE-
based) or voxels (for non-VAE based) is used. The imple-
mentation of group-conv+RBF-VAE (our method) outper-
forms only using RBF-VAE by 1.3% (mIoU) and is better
in 11 out of 16 categories. Our method also outperforms
only using group-conv by 1.4% (mIoU) and is better in 13
out of 16 categories. We also compare RBF-VAE with VAE
on the {0, 1} occupancy grid. Since the point data is sparse,
training on the {0, 1} VAE does not converge. This shows
the necessity and benefits of RBF-VAE.
4.2. Semantic segmentation of scenes

We also evaluate the performance on Stanford 3D se-
mantic parsing dataset [1], which consists of 6 types of
benchmarks. Each point in the data scan is annotated
with one of the semantic labels from 13 categories. In
our experiment, (D,H,W) = (16, 16, 32), k = 4, σ =
5 · min(vW , vH , vD) and l = 8. Table 3 highlights the
results (category IoU, overall accuracy and mean IoU) of
semantic segmentation on the S3DIS dataset. Furthermore,
Table 4 indicates the results of AP (average precision) met-
ric with IoU threshold 0.5. Our implementation of group-
conv + RBF-VAE outperforms state-of-the-art SPG [11] by
16.12% of Mean IoU metric. Our method (group-conv
+ RBF-VAE) also achieves better performance than either
only using group-conv or only using RBF-VAE, as reported
in the bottom rows of Tables 3 and 4. Table 5 compares our

Mean IoU
PointCNN [13] 62.74
PointSIFT [9] 70.23
Our 78.22

Table 5. Results on Semantic Segmentation in S3DIS Dataset:
We compare the results with [13] and [9] using the mean IoU met-
ric.

Figure 3. Part Segmentation Results on ShapeNet: Note that Car
and Motor have lower performance than most other categories in
Table 2. This is partly because there are more parts in these cate-
gories: 4 labels for Car and 5 labels for Motor.

Cap Car Chair Rocket

A

B

Figure 4. Failure Cases of Our Algorithm on ShapeNet Part
Segmentation: The top row shows the ground truth and the bot-
tom row is our segmentation results. Our network predicts the Cap
to be a Table, where dark blue indicates the table top and the light
blue indicates the table legs. In the second column, the dark blue
indicates the top of the car. In the third column, our network seg-
ments the chair armrest while the ground truth does not. In the last
column, our network predicts the Rocket to be an Airplane. Notice
that in the last column, even a human being would find it difficult
to distinguish the Rocket from the Airplane.

method with methods reporting mean IoU and also shows
the superior performance of our method.

4.3. Robustness test

We have also evaluated the performance and robustness
of our method by removing some of the points in the orig-

Missing Data Ratio Accuracy
0% 92.47
75% 92.48
87.5% 91.70

Table 6. Robustness Test on ShapeNet Part Segmentation Task:
In this evaluation, the point clouds are sampled by farthest point
sampling. We test the robustness of our VV-Net network towards
missing points. We report the mean accuracy for different miss-
ing data ratios. Our approach only has 0.77% accuracy loss, even
missing 87.5% of the point cloud data.

Overall Acc mean IoU
Gaussian 87.78 78.22
inverse quadratic 78.82 65.04

Table 7. RBF Kernel Function Comparison on S3DIS Semantic
Segmentation Task: We compare the Gaussian kernel with the
inverse quadratic function.

inal data. In particular, we sample the ShapeNet by far-
thest point sampling and use different missing data ratios.
We evaluate the performance and accuracy of the resulting
datasets. Table 6 shows the result of our robustness test.
This indicates that our approach is not sensitive to missing
samples.

4.4. Comparison of Different RBF Kernels

Our RBF function is used to map the distance to each
point to its influence. We compare the Gaussian kernel in
our method with the inverse quadratic function kernel. With
this kernel, the subvoxel function value at position p is de-
fined as:

f(p) = max
v∈V

(
1

1 + σ2 · ||p− v||22

)
. (7)

Here V represents the set of points, p is the center of the
subvoxel, and σ is a pre-defined parameter, usually a mul-
tiple of the subvoxel size. The results are shown in Table 7
where using Gaussian kernel achieves better performance.

4.5. Ablation study

First, G-CNN is replaced with traditional CNN and the
mean IoU decreases by 7.79%, which indicates that symme-
try information and larger receptive field are useful. More-
over, the importance of RBF-VAE is demonstrated by two
experiments: finer grid representation and pure RBF. We
show that {0,1}-VAE often fails to produce reasonable re-
sults. This is because point clouds are sparse in 3D space.
E.g. in S3DIS, each point cloud contains 4096 points. Over
64 × 64 × 128 subvoxels, the average subvoxel density is
only 0.008. Our original grid size is (64, 64, 128) and it
occupies 16MB without the RBF-VAE scheme. However,
with RBF-VAE it is about 2MB in our benchmarks. The
finer grid partition would dramatically increase the mem-
ory consumption and computational cost. Moreover, it is
not very useful due to the sparse distribution of input point

Table 8. Ablation study on S3DIS dataset. 1st row: original re-
sults; 2nd row: replacing G-CNN with traditional CNN; 3rd row:
replacing RBF-VAE with RBF grids; Fourth row: replacing RBF-
VAE voxels with {0,1} grids. Note that the VAE latent variable
distribution is designed for incorporation with RBF. We also con-
sidered directly applying G-CNN on RBF subvoxels, but that was
not useful due to the compact representation of VAE encoding and
lowers the performance.

Overall Acc mean IoU mean IoU threshold 0.5
Ori.(G-CNN + 16× 16× 32 RBF-VAE) 85.98 75.40 79.00
Trad. CNN + 16× 16× 32 RBF-VAE 80.67 67.61 71.43
G-CNN + 32× 32× 64 RBF 78.15 64.13 68.11
G-CNN + 64× 64× 128 finer grid 82.36 70.00 74.14

Table 9. Ablation Study on VAE. First row: our original results;
second row: The VAE function is replaced with AE function. The
same parameter settings are used (l = 8, k = 4). We observe
better accuracy with our original VAE.

Overall Acc. mean IoU mean IoU threshold 0.5
VAE (original algorithm) 85.98 75.40 79.00
RBF-AE+GCNN (modified algorithm) 82.07 69.60 73.38

clouds. Please refer to Table 8. We replaced our VAE with
AE and highlight the performance of this modified approach
on the S3DIS dataset in Tab. 9. The average reconstruc-
tion losses for both AE and VAE are close on the training
set, while average reconstruction loss for AE is about 2.2×
higher than that for VAE on the test set. The VAE has sig-
nificantly better generalizability than AE due to the prior
distribution assumption and avoids potential overfitting to
the training set.

5. Conclusions, Limitations and Future Work
In this paper we introduced a novel Voxel VAE network

(VV-Net) for robust point segmentation. Our approach uses
a radial basis function based variational auto-encoder and
combines it with group convolutions. We have compared
its performance with state-of-the-art point segmentation al-
gorithms and demonstrate improved accuracy and robust-
ness on well-known datasets. While we observe improved
performance in most categories, occasionally our approach
may not perform well for some input shapes. As in Figure 4,
the network suggests that the Cap is a Table, which may
be caused by the group convolutional module because the
module encodes 90◦ symmetry. As future work, we would
like to further improve the accuracy and evaluate the perfor-
mance on other complex point cloud datasets. The VV-Net
architecture can also be used for other point cloud process-
ing tasks such as normal estimation, which we will investi-
gate in future.

6. Acknowledgements
This work was supported by National Natural Science

Foundation of China (No. 61828204 and No. 61872440),
Beijing Natural Science Foundation (No. L182016), CCF-
Tencent Open Fund and Youth Innovation Promotion Asso-
ciation CAS.

References
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic
parsing of large-scale indoor spaces. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1534–1543, 2016. 2, 6, 7

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203, 2013. 2

[3] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Jul 2017. 1, 2, 3, 5, 6,
7

[4] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max
Welling. Spherical cnns. CoRR, abs/1801.10130, 2018. 3

[5] Taco S. Cohen and Max Welling. Group equivariant convo-
lutional networks, 2016. 1, 3, 5

[6] Taco S Cohen and Max Welling. Steerable cnns. arXiv
preprint arXiv:1612.08498, 2016. 3

[7] Francis Engelmann, Theodora Kontogianni, Alexander Her-
mans, and Bastian Leibe. Exploring spatial context for 3d
semantic segmentation of point clouds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 716–724, 2017. 6

[8] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Re-
current slice networks for 3d segmentation of point clouds.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2626–2635, 2018. 2, 5, 6, 7

[9] Mingyang Jiang, Yiran Wu, and Cewu Lu. Pointsift: A sift-
like network module for 3d point cloud semantic segmenta-
tion. arXiv preprint arXiv:1807.00652, 2018. 7

[10] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. CoRR, abs/1312.6114, 2013. 1, 4

[11] Loı̈c Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. CoRR,
abs/1711.09869, 2017. 2, 6, 7

[12] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-
organizing network for point cloud analysis. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9397–9406, 2018. 2, 5

[13] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen.
Pointcnn. CoRR, abs/1801.07791, 2018. 2, 7

[14] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on, pages 922–928. IEEE, 2015. 2

[15] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view cnns for object classification on 3d data. In
CVPR, pages 5648–5656, 2016. 2

[16] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems, pages 5099–5108, 2017. 2

[17] Oussama Remil, Qian Xie, Xingyu Xie, Kai Xu, and Jun
Wang. Data-driven sparse priors of 3d shapes. In Computer

Graphics Forum, volume 36, pages 63–72. Wiley Online Li-
brary, 2017. 2

[18] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-
ing point cloud local structures by kernel correlation and
graph pooling. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 4, 2018.
2

[19] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2530–2539, 2018. 2, 5

[20] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Vari-
ational autoencoders for deforming 3d mesh models. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 2

[21] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:
Feature-steered graph convolutions for 3d shape analysis. In
CVPR 2018-IEEE Conference on Computer Vision & Pattern
Recognition, 2018. 2

[22] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-
mann. Sgpn: Similarity group proposal network for 3d point
cloud instance segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2569–2578, 2018. 2, 6

[23] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dy-
namic graph CNN for learning on point clouds. CoRR,
abs/1801.07829, 2018. 2

[24] Maurice Weiler, Fred A Hamprecht, and Martin Storath.
Learning steerable filters for rotation equivariant cnns. arXiv
preprint arXiv:1711.07289, 2017. 3

[25] Holger Wendland. Scattered Data Approximation. Cam-
bridge Monographs on Applied and Computational Mathe-
matics. Cambridge University Press, 2004. 4

[26] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-
betov, and Gabriel J Brostow. Harmonic networks: Deep
translation and rotation equivariance. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), vol-
ume 2, 2017. 3

[27] Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G Kim,
Hao Su, and Ersin Yumer. Learning hierarchical shape
segmentation and labeling from online repositories. SIG-
GRAPH,2017, 2017. 2

[28] Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan
Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer,
Leonidas Guibas, et al. A scalable active framework for re-
gion annotation in 3d shape collections. ACM Transactions
on Graphics (TOG), 35(6):210, 2016. 2, 6

[29] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-
speccnn: Synchronized spectral cnn for 3d shape segmenta-
tion. In CVPR, pages 6584–6592, 2017. 2, 5

[30] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. arXiv preprint
arXiv:1711.06396, 2017. 2

