
ARC: Alignment-based Redirection Controller for Redirected
Walking in Complex Environments

Niall L. Williams, Student Member, IEEE, Aniket Bera, Member, IEEE, Dinesh Manocha, Fellow, IEEE

Fig. 1. A user being steered with our alignment-based redirection controller (ARC) in two different environments. In Environment 1,
the virtual environment (VE) is larger than the physical environment (PE), and there is an obstacle in the northeast corner of the VE.
The PE has no obstacles. In Environment 2, the VE is larger than the PE, and both have obstacles in different positions. (A) The
user walks in a straight line forward in the VE. (B) In the PE, the user is steered on a curved path away from the edge of the tracked
space, in order to minimize the differences in proximity to obstacles in PE and VE. (C) The user walks in a straight line forward in the
VE, with obstacles on either side of the path. (D) The user is steered on a path with multiple curves in the physical space. The user
avoids a collision with the obstacle in front of them, and is also steered to minimize the differences in proximity to obstacles in the PE
and VE. We are able to steer the user along smooth, collision-free trajectories in the PE. Our extensive experiments in real-wold and
simulation-based experiments show that in simple and complex environments, our approach results in fewer collisions with obstacles
and lower steering rate than current state-of-the-art algorithms for redirected walking.

Abstract—We present a novel redirected walking controller based on alignment that allows the user to explore large and complex
virtual environments, while minimizing the number of collisions with obstacles in the physical environment. Our alignment-based
redirection controller, ARC, steers the user such that their proximity to obstacles in the physical environment matches the proximity
to obstacles in the virtual environment as closely as possible. To quantify a controller’s performance in complex environments, we
introduce a new metric, Complexity Ratio (CR), to measure the relative environment complexity and characterize the difference in
navigational complexity between the physical and virtual environments. Through extensive simulation-based experiments, we show
that ARC significantly outperforms current state-of-the-art controllers in its ability to steer the user on a collision-free path. We also
show through quantitative and qualitative measures of performance that our controller is robust in complex environments with many
obstacles. Our method is applicable to arbitrary environments and operates without any user input or parameter tweaking, aside from
the layout of the environments. We have implemented our algorithm on the Oculus Quest head-mounted display and evaluated its
performance in environments with varying complexity. Our project website is available at https://gamma.umd.edu/arc/.

Index Terms—Virtual Reality, Locomotion, Redirected Walking, Redirection Controllers, Steering Algorithms, Alignment

1 INTRODUCTION

Exploring virtual environments (VEs) is an integral part of immersive
virtual experiences. Real walking is known to provide benefits to sense
of presence [40] and task performance [29] that other locomotion inter-
faces cannot provide. Using an intuitive locomotion interface like real
walking has benefits to all virtual experiences for which travel is cru-
cial, such as virtual house tours and training applications. Redirected
walking (RDW) is a locomotion interface that allows users to naturally
explore VEs that are larger than or different from the physical tracked
space, while minimizing how often the user collides with obstacles in
the physical environment (PE) [28]. RDW works by slowly transform-
ing the VE with rotations or translations such that these transformations

• Niall L. Williams, Aniket Bera, and Dinesh Manocha are with the University
of Maryland, College Park. E-mail: {niallw | ab | dm}@cs.umd.edu.

Manuscript received 9 Sept. 2020; revised 15 Dec. 2020; accepted 8 Jan 2021.
Date of Publication 22 Mar. 2021; date of current version 7 Apr. 2021. For
information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org. Digital Object Identifier: 10.1109/TVCG.2021.3067781

are imperceptible while still creating a subtle discrepancy between the
user’s physical and virtual trajectories. This discrepancy causes the
user to adjust their physical trajectory to counteract the virtual camera
motion induced by the virtual transformations, in order to stay on their
intended virtual trajectory. RDW is an appealing locomotion interface
because it allows users to explore the VE using real, natural walking.

Although RDW is a good locomotion interface for immersive virtual
experiences, it has two main limitations. First, the amount of redirection
that can be applied to steer the user is dependent on how easily the user
can consciously perceive the virtual transformations induced by RDW.
The amount of redirection applied is controlled by gains, which deter-
mine the magnitude (intensity) of rotations and translations applied to
the VE. The gains that transform the VE the most, while still remaining
imperceptible to the user, are the perceptual threshold gains [32]. The
intensity of a gain corresponds to the amount of deviation between the
user’s physical and virtual paths, and thus the amount that the user is
steered in the PE. Gains with high intensity result in more redirection
of the physical user at the cost of larger VE transformations, which can
be more easily detected and can cause simulator sickness [23].

The second limitation is that the effectiveness of RDW at minimizing

https://gamma.umd.edu/arc/

the number of collisions with physical obstacles depends on the rela-
tive complexity of the physical and virtual environments. Navigation
through an environment becomes more difficult when the environment
is populated with more obstacles because the user has fewer options for
possible collision-free routes that allow them to avoid collisions with
obstacles when making any movements. Thus, the complexity of an
environment can be described in terms of the density of the obstacles
in the environment. For example, the empty VE used by Bachmann
et al. [3] would be considered low complexity, while the maze-like
VE with multiple branching paths used by Nescher et al. [21] would
be considered high complexity. In virtual reality (VR), the user nav-
igates through a virtual and physical environment at the same time.
A movement in one environment is paired with a movement in the
other. Therefore, the navigation problem becomes harder, since all
movements must consider the obstacles in the VE as well as the PE. If
the complexities (density and layout of obstacles) of the PE and VE
are similar, avoiding collisions is easier, since a movement that yields a
particular result (collision or no collision) in one environment is likely
to result in the same outcome in the other environment. However, if the
complexities of the PE and VE are very different, navigation is harder,
because a movement in one environment will likely lead to a movement
in the other environment with a different outcome.

In the context of VR, a redirection controller determines the amount
of redirection to apply, given the user’s position in the physical and
virtual environments [23]. At each frame, the controller decides the
level (intensity) of gains to apply in order to rotate or translate the VE
and alter the user’s physical trajectory. The controller uses heuristics or
optimization in conjunction with information about the PE and/or VE
in order to determine the level of gains to apply. Reactive controllers
make decisions on how to steer the user based on the instantaneous
state of the system, while predictive controllers make decisions based
on predictions about the user’s future trajectory. Reactive controllers
typically do not consider the VE when setting gains, and the VE is
often abstracted away by using an unbounded, empty environment. This
design decision allows reactive controllers to be simpler and remain
relatively effective without requiring much additional information, at
the cost of worse performance than predictive controllers in some
environments. On the other hand, predictive algorithms often use
information from the VE to make predictions about the user’s virtual
trajectory. From these predictions, these algorithms are able to perform
better than reactive algorithms by applying gains that are more suited to
the user’s environments and trajectory [21, 43]. Predictive algorithms
rely on accurate predictions however, so they usually do not perform
well if it is difficult to forecast the user’s movement.

At a high level, alignment can be defined as a state in which the
user’s physical and virtual configurations match. It was first formally
studied by Thomas et al. [37, 39] with the goal of allowing the user to
interact with the PE when they are within some predefined region of
the VE, to enable haptics. Prior to the work of Thomas et al., Zmuda et
al. [43] developed a controller that used a core idea of alignment; their
controller was allowed to place the user near a physical obstacle if its
position relative to the physical user matched the position of a virtual
obstacle relative to the virtual user. Alignment provides a simple way
to consider both the physical and virtual environment when steering
the user, which is important for developing effective controllers.
Main Contributions: In this paper, we present a novel alignment-
based redirection controller (ARC) for locomotion in VR. ARC is a
redirection controller that applies RDW gains to steer the user such that
the user’s proximity to obstacles in the PE matches their proximity to
obstacles in the VE as closely as possible. Our controller is able to steer
users through physical and virtual environments that have different
relative complexities and makes no assumptions about the distribution
of the obstacles in each environment. In these complex environments,
ARC achieves a lower number of collisions with physical obstacles
when compared to current state-of-the-art controllers. Furthermore,
ARC achieves this lower number of collisions while also redirecting
the user using less intense gain than other controllers, which reduces
the likelihood that users experience simulator sickness during locomo-
tion [23]. We conduct extensive experiments in varied environments,

using many different performance metrics, and find that ARC con-
sistently outperforms existing state-of-the-art algorithms. The main
contributions included in this paper are:

• A novel alignment-based redirection controller that can func-
tion in arbitrary environments, without requiring any information
from the application except for a map of the PE and VE and the
obstacles in each environment. Benefits of our algorithm include:

– Significantly fewer collisions in PE/VE pairs with simi-
lar complexities and in PE/VE pairs with very different
complexities.

– A lower steering rate, which helps avoid simulator sickness
and increases the usability of the system for users with high
sensitivity to redirection.

• A novel metric, Complexity Ratio (CR), for measuring and com-
paring the complexity of PE/VE pairs in the context of VR naviga-
tion. Using CR, we can directly assess a controller’s performance
in different environments, which allows us to compare redirection
controllers easily.

• Extensive simulation-based evaluation of ARC compared to cur-
rent state-of-the-art controllers. From our experiments, we con-
clude that alignment is an effective tool for minimizing collisions
with physical obstacles when steering a user with RDW in simple
and complex environments. We also show our controller working
in a proof of concept implementation on the Oculus Quest.

2 BACKGROUND

Redirected walking works by imperceptibly transforming the VE
around a user such that they adjust their physical trajectory to compen-
sate for the VE transformations and remain on their intended virtual
trajectory [28]. The magnitude (or intensity) of the VE transforma-
tions is determined by gains. Razzaque et al. [28] defined three gains,
rotation, translation, and curvature, for rotating or translating the VE
depending on the user’s movement. Rotation gains rotate the VE around
the user as they turn in place, which results in virtual rotations that are
larger or smaller than the corresponding physical rotations, depending
on the direction of the VE rotation relative to the physical rotation.
Translation gains translate the VE forward or backward as the user
walks in a straight line, which results in their virtual displacement
being different from their physical displacement, depending on the di-
rection of the VE translation. Curvature gains steer the user on a curved
physical path by slowly rotating the VE around the user as they walk
on a straight virtual path. The direction in which the user is steered
is determined by the direction that the VE is rotated. Most research
in redirected walking aims to either understand the perceptual limits
of redirection or develop RDW controllers that minimize the number
of collisions a user experiences during locomotion. An overview of
different RDW methods is given in [23].

2.1 Perceptual Thresholds
The amount of redirection that can be applied before users notice
the redirection is determined by perceptual thresholds. Perceptual
thresholds are important to consider since strong redirection can induce
simulator sickness [23] and break the user’s feeling of presence in
a virtual experience [34]. There has been considerable research into
measuring the perceptual thresholds of each RDW gain, but there is no
general consensus when it comes to selecting these thresholds [23].

The first comprehensive study of RDW thresholds was performed
by Steinicke et al. [32]. Many researchers have since expanded on
threshold estimation by reproducing results and measuring thresholds
under different conditions. A study by Grechkin et al. [9] determined
that translation and curvature gains can be applied simultaneously
without altering either gain’s perceptual thresholds. Neth et al. [22]
showed that a user’s curvature gain detection thresholds are dependent
on his or her walking speed. Williams et al. [42] reproduced the results
found by Steinicke et al. [32] and demonstrated that users’ perceptual
thresholds could vary depending on their gender, the field of view,

and the presence of distractors in the VE. Hutton et al. [12] suggest
that perceptual thresholds can differ greatly between different people,
which may explain the different threshold values reported in prior
literature. Thus, a system using some commonly-accepted threshold
values (such as those measured in [32]) may apply appropriate gains
for most users. However, gains could still be too high for some users,
which could induce sickness and make the user uncomfortable. All
this suggests that there are still many open problems with respect to
accurately measuring a person’s perceptual thresholds. A recent review
of studies that measured perceptual thresholds can be found in [16].

2.2 Redirected Walking Controllers
A redirection controller is an algorithm that decides which gains to
apply at each frame in order to minimize the number of collisions the
user incurs in the PE [23]. While a controller’s goal is to minimize the
number of collisions, it is important to note that a controller cannot
guarantee a collision-free trajectory in all circumstances. A controller’s
effectiveness depends on the configuration of the physical and virtual
environments (environment dimensions and size and location of obsta-
cles), the virtual path traveled, and the user’s perceptual thresholds.

Controllers fall into three categories: scripted, reactive, and predic-
tive [23]. Scripted controllers steer the user as they follow a virtual
path pre-determined by the system developers. Scripted controllers are
effective at reducing the number of collisions but impose tight restric-
tions on the VE. These controllers can perform very poorly if the user
deviates from the pre-determined virtual path. Work studying scripted
controllers includes the development of steering algorithms based on
change blindness [35] and overlapping virtual spaces [36].

Reactive controllers steer the user based on information available
from the user’s previous movements and current state. These controllers
are designed to work in a wide variety of PEs and VEs since they do not
make assumptions about the user’s future path. Reactive controllers fall
short at achieving maximal collision avoidance since they do not use all
the information available to the system. Razzaque [28] proposed three
reactive algorithms for RDW: steer-to-center (S2C), steer-to-orbit, and
steer-to-multiple-targets. Steer-to-center constantly redirects the user
towards the center of the physical environment. Steer-to-orbit steers
the user along a circular path that orbits the center of the PE. Steer-
to-multiple-targets steers the user to one of multiple pre-determined
physical goal positions, depending on the user’s position in the PE.
Despite being one of the first controllers ever, S2C has regularly outper-
formed other algorithms in a variety of environments [2, 10]. Addition-
ally, steer-to-orbit performs well when the user walks on long, straight
virtual paths [10]. However, more recent algorithms have performed
as well as, or better than, S2C. Strauss et al. introduced a controller
trained by reinforcement learning that outperformed S2C in simulated
trials and performed as well as S2C in user trials [33]. Chang et al. [6]
and Lee et al. [17] have also recently used reinforcement learning to
train RDW controllers. Thomas et al. [38] and Bachmann et al. [3]
simultaneously introduced controllers based on artificial potential fields
that outperformed S2C in non-convex and multi-user environments.

Predictive controllers make predictions about the user’s intended
virtual path and steer them accordingly. Predictive controllers can be
effective since they tend to use most of the information available to the
system. However, their performance relies partially on the accuracy of
their predictions. Nescher et al. [21] and Zmuda et al. [43] developed
predictive controllers that were outperformed S2C, while Dong et al.
improved upon the potential field-based controllers by incorporating
trajectory prediction into the controller [8].

In addition to determining the gains to apply at each frame, redirec-
tion controllers have a resetter component. When the user gets too close
to a physical obstacle, the system initiates a reset maneuver in order to
reorient the user away from the nearby obstacle. This reset maneuver is
counted as a collision. The specific reset policy employed depends on
the controller, but one popular resetting technique is the 2:1 reset [41],
wherein the magnitude of a user’s physical rotations is doubled, so a
180◦ physical turn yields a 360◦ virtual turn. Another effective reset
technique is distractors, which are elements in the VE that capture
the user’s attention to reorient them [24–26]. Other reset techniques

may be specific to the RDW controller, such as the reset-to-gradient
technique seen in potential field controllers [3, 38].

Evaluation metrics for RDW controllers can depend on the experi-
mental setup. The majority of all studies use the number of collisions
as one performance metric. Other common metrics include the aver-
age virtual distance walked between collisions, the mean steering rate,
and user performance at a virtual task. Since the success of an RDW
controller depends on the environments and the path traveled, it can be
difficult to compare algorithms using only performance metrics. Thus,
it is common for researchers to test not only their new controller but
also the state-of-the-art controllers in the same environments.

2.3 Environment Complexity Metrics
Measuring the effect of environment complexity on task performance is
useful for understanding the interactions between an agent and its envi-
ronment. This measurement enables us to understand and predict how
an agent will perform at a task in an environment, which allows us to
change the environment design or improve our algorithms accordingly.

VR researchers have studied how a user’s ability to complete a task
in an environment depends on the environment’s complexity [4, 5, 27].
While those studies are useful for understanding the interactions be-
tween environment complexity and task performance, they did not
quantify the environment complexity with precise metrics. This makes
it difficult to generalize their results and makes it harder to predict how
users will perform in unstudied environments. Researchers in robot
navigation have developed metrics to quantify environment complex-
ity [1, 7, 30]. These metrics allow researchers to group and classify
environments by complexity and directly compare the performance of
different algorithms in different groups of environments.

3 REDIRECTION BY ALIGNMENT

The concept of alignment in the context of redirected walking was
first formally studied by Thomas et al. [37, 39]. However, Zmuda et
al. [43] used key elements of alignment prior to the work of Thomas et
al. Additionally, Simeone et al. [31] recently introduced a locomotion
technique that is similar to alignment in that it aims to match the VE and
the PE, but it does so by overtly manipulating the VE in real time. In
this section, we define our notion of alignment and provide the details
of our general alignment-based redirection controller.

3.1 Definitions and Background
3.1.1 Alignment
A redirection controller takes as input the current position and orienta-
tion of the user in the PE and the VE. We define the configuration of
the VR system as the user’s position and orientation in the PE and VE.
Alignment is a configuration in which the user’s physical state matches
their virtual state. When this configuration is achieved, we say that
the system (or user) is aligned. In this paper, we are concerned with
steering users on collision-free paths in the PE and VE at the same
time. How close a user is to incurring a collision can be described by
the distance to obstacles around them, i.e. their proximity to obstacles.
Thus, we describe the user’s state in an environment by their proximity
to obstacles in the environment.

We assume that the user travels on a collision-free path in the VE.
We associate a proximity function along each point on this path. This
proximity function tells us how close the point is to obstacles in the
environment. We want to define a proximity function that can be
formulated for paths in the PE and VE, to be used by our redirection
controller to compute collision-free paths to steer the user on.

Let d(p,θ) be the distance to the closest obstacle in the direction
θ originating from a location p = (x,y) in an environment. This dis-
tance can be computed using simple ray-intersection queries. Let
S = {θ1,θ2, ...,θk} be a set of k discrete directions in the range [0,2π).
We define the proximity function, Prox(p), at a point p to be the sum
of distances to obstacles in each direction θi ∈ S:

Prox(p) =
k

∑
i=1

d(p,θi). (1)

Fig. 2. Visualization of the three values from the PE and three values
from the VE that constitute a user’s state.

To compare proximity values Prox(pphys) and Prox(pvirt) for a point
pphys in the PE and a point pvirt in the VE, we cannot simply compute
Prox(pphys)−Prox(pvirt). If we did, it would be possible to get a value
of 0, implying perfect alignment, for positions in which the physical
and virtual user are not actually perfectly aligned. For example, this
can happen when d(pphys,θ)− d(pvirt ,θ) = −1 · (d(pphys,θ +π)−
d(pvirt ,θ +π)) for all θ ∈ [0,2π).

To resolve this problem and have a meaningful notion of what it
means to compare values of Prox(p), we can instead sum the absolute
value of the differences in distance over all θi:

dist(Prox(pphys),Prox(pvirt)) =
k

∑
i=1
|d(pphys,θi)−d(pvirt ,θi)|. (2)

Note that we use the same set of directions S for the PE and the VE.
Computing this difference is too computationally expensive for large
values of k, so in our implementation we approximate this value by
computing the difference in distances in three directions around the
point (k = 3).

Now we can define the physical and virtual states at time t which we
use in our rediretion controller:

qphys
t = {d(pphys,θphys),d(pphys,θphys +90◦),d(pphys,θphys−90◦)},

qvirt
t = {d(pvirt ,θvirt),d(pvirt ,θvirt +90◦),d(pvirt ,θvirt −90◦)}.

(3)
Here, pphys and pvirt are the user’s positions in the physical and virtual
environments, respectively. Similarly, θphys and θvirt are the user’s
headings in the physical and virtual environments, respectively. Given
the user’s physical and virtual states, we define the state of the system
at time t as the union of their physical and virtual states at time t:

Qt = {qphys
t ,qvirt

t }. (4)

This definition of state is illustrated in Fig. 2.
Given Qt , we can measure the alignment of the state, A(Qt) by

computing the discretized version of Equation 2:

A(Qt) = dist(qphys
t ,qvirt

t), (5)

where dist(qphys
t ,qvirt

t) is defined as the sum of the absolute values of
the differences between the distances to obstacles in the PE and VE:

dist(qphys
t ,qvirt

t) = |d(pphys,θphys)−d(pvirt ,θvirt)|
+ |d(pphys,θphys +90◦)−d(pvirt ,θvirt +90◦)|
+ |d(pphys,θphys−90◦)−d(pvirt ,θvirt −90◦)|.

(6)

The more similar a user’s physical and virtual states are, the closer
A(Qt) will be to 0. Conversely, a physical and virtual state that are
very different will yield a larger value for A(Qt). We reiterate that one
can define A(Qt) and dist(qphys

t ,qvirt
t) differently from how we have

defined them. A different definition corresponds to a different notion of
what it means for a system to be aligned. Our controller is concerned
with avoiding collisions in the PE, so proximity to obstacles was an
appropriate way to define A(Qt) and dist(qphys

t ,qvirt
t).

With traditional RDW controllers, the goal of the system is to steer
the user away from obstacles in the PE. With an alignment-based
controller, the goal is to steer the user to a physical state that most

closely matches the virtual state. In general, the VE will differ greatly
from the PE, so it is common that a particular virtual state does not have
a corresponding physical state with which it aligns perfectly. Thus, at
any given instance, an alignment-based redirection controller aims to
minimize the difference between the physical and virtual states and does
not necessarily aim to perfectly align the two. If the global minimum
yields perfect alignment, then an alignment-based controller should
eventually reach this configuration. If it were possible to keep a user
aligned at all times, the user would never encounter collisions while
exploring a VE, and an alignment-based RDW controller could provide
an optimal solution to the problem of RDW.

3.1.2 Environment Complexity
The complexity of an environment is dependent on the task to be
completed in the environment [7]. For the purposes of locomotion,
we define complexity as the ease with which a user can reach a goal
destination without colliding with any obstacles in the environment. As
the environment becomes populated with more obstacles, this becomes
more difficult, and so the complexity of the environment increases.

Let C(p) be the shortest distance between a point p and the closest
obstacle in an environment E. We define the complexity of E as the
average value of C(p) over all points in E:

C(E) =
1
|P| ∑

p∈P
C(p), (7)

where P is the set of all points p in E. When there is a lot of open space
in the environment (low obstacle density), C(E) will be large; C(E)
approaches 0 as the amount of open space in the environment decreases
(high obstacle density).

Since VR locomotion depends on a physical and virtual environment,
we must relate the environments’ complexity measures together. To do
this, we compute the complexity ratio (CR) of the virtual environment
Evirt and physical environment Ephys:

CR =
Ephys

Evirt
. (8)

This definition of environment complexity gives us an intuitive way
to describe how easy it is to locomote through an environment, and
CR tells us how similar the complexities of two environments are. In
VR, it is common for the PE to have a lower obstacle density than the
VE, i.e. C(Ephys)>C(Evirt). A higher value for CR corresponds to a
greater disparity in the complexity of the PE and VE, which implies
that collision-free VR navigation is more difficult. This definition for
CR is formulated on a continuous domain, which makes it difficult
to compute exactly. To simplify the computation, we discretize the
equation by sampling a point every 0.5 meters in the environment.

3.2 Alignment-based Redirection Controller
3.2.1 Redirection Heuristic
In this section, we provide details on how our alignment-based redi-
rection controller (ARC) uses alignment to determine the RDW gains
to apply at each frame. Note that ARC assumes that the user travels
on a collision-free virtual trajectory in the direction of their heading
(they do not walk backwards or side-to-side). Since the user’s positions
and orientations in the environments are known at all times through
the tracking information, ARC can compute the A(Qt) on every frame
according to the equations defined in Sect. 3.1.1. If A(Qt) = 0, no
redirection is applied. If A(Qt) 6= 0, ARC uses the following heuristics
to set the redirection gains, depending on the user’s current movement.

If the user is translating, the translation gain gt is set to be:

gt = clamp
(

d(pphys,θphys)

d(pvirt ,θvirt)
, minTransGain, maxTransGain

)
,

(9)
where minTransGain = 0.86 and maxTransGain = 1.26. The
clamp(x,minVal,maxVal) function returns x if minVal ≤ x≤ maxVal,

and returns minVal if x<minVal or maxVal if x>maxVal. This heuris-
tic for the translation gain speeds up the user’s physical walking speed
relative to their virtual walking speed if there is more open space in
front of the physical user than there is in front of the virtual user. If
there is more space in front of the virtual user than there is in front of
the physical user, the user’s physical walking speed decreased relative
to their virtual walking speed. We set gt equal to the ratio of the dis-
tances, bounded by previous measured perceptual thresholds, so that
the translation gain changes gradually, which increases user comfort.

If the user is undergoing a translation motion, we need to set the
curvature gain gc. First, we determine which of the spaces to the left and
right of the physical user is more dissimilar to its virtual counterpart:

misalignLe f t = d(pphys,θphys +90◦)−d(pvirt ,θvirt +90◦),

misalignRight = d(pphys,θphys−90◦)−d(pvirt ,θvirt −90◦).
(10)

If misalignLe f t > misalignRight, we want to steer the user to the left
in order to minimize the misalignment. To do this, we set gc as follows:

scalingFactor = min(1,misalignLe f t),
gc = min(1,scalingFactor×maxCurvatureRadius),

(11)
where maxCurvatureRadius = 7.5m. If we instead want to steer the
user to the right in order to minimize the misalignment (i.e. when
misalignRight > misalignLe f t), we set gc in a manner similar to
Equation 11, but we exchange misalignLe f t for misalignRight in the
scalingFactor computation. The sign of the curvature gain must also
be set appropriately to steer the user in the desired direction. With this
heuristic, we set the curvature gain proportional to the misalignment
on the left or right of the user, depending on which is larger. The gain
is bounded by the maximum curvature gain of radius 7.5m to reduce
the chance that the user feels simulator sickness during redirection.

If the user is rotating, we set the gain according to the user’s distance
to objects in front of and on both sides of the user. Our heuristic
for gt only considers the distance to objects in front of the user since
translation gains only alter the forward and backwards displacement
of the user. The heuristic for gc only considers the distances to objects
on either side of the user since curvature gains only steer the user to
the left or right when walking on a straight virtual path. However, our
heuristic for the rotation gain considers all three distances in order to
accurately describe the user’s orientation. Orientation is a function
of all 360◦ around the observer, so the most accurate measurement of
orientational alignment would compare distances in all 360◦ directions.
That degree of detail is not necessary, since d(p,θ) and d(p,θ +∆θ)
will produce very similar values for most positions p in an environment
for small ∆θ . Furthermore, sampling distances in all directions around
the observer is too computationally expensive to run in real-time, which
is a requirement for reactive RDW controllers.

To set the rotation gain gr, we check if the direction that the user is
turning increases or decreases their rotational alignment. To compute
this, we first compute the user’s rotational alignment for the current
and previous frames:

curRotaAlignment = dist(qphysical
t ,qvirtual

t),

prevRotaAlignment = dist(qphysical
t−1 ,qvirtual

t−1).
(12)

Then, we set gr based on whether the current rotational alignment is
better or worse than the previous rotational alignment:

gr =

minRotaGain prevRotaAlignment < curRotaAlignment,
maxRotaGain prevRotaAlignment > curRotaAlignment,
1 otherwise.

(13)
Here, minRotaGain = 0.67 and maxRotaGain = 1.24. The rotation
gain is smoothed by linearly interpolating gr between frames with a
weighting of 0.125 on the previous frame’s gain. The idea behind this
heuristic is that we want to speed up the user’s rotation when they are
turning in a direction that improves their rotational alignment, and slow
down their rotation when they are turning in a direction that worsens
their rotational alignment.

Fig. 3. A visualization of the two steps involved in resetting. The top row
shows the process of selecting the best direction for resetting. In this
example, θreset is chosen to be θ3. To reduce visual clutter, we only show
eight of the twenty sampled directions. The bottom row shows the user
to turning to face the best direction.

3.2.2 Resetting Heuristic
Since we cannot guarantee that the user will travel on a collision-free
physical path, our alignment-based controller needs a resetting policy to
reorient the user when they are about to collide with a physical obstacle.
To ensure that the user does not actually walk into any obstacles, a
reset is triggered when the user comes within 0.7m of an obstacle. Our
reset policy reorients the user such that they face the direction in the
PE for which the distance to the closest physical obstacle in the user’s
physical heading direction most closely matches the distance to the
closest virtual obstacle in the user’s virtual heading direction.

When a reset is triggered, let pphys and pvirt be the user’s physi-
cal and virtual positions, respectively, and let θphys and θvirt be their
physical and virtual headings, respectively. First, we sample 20 equally-
spaced directions {θ1,θ2, ...,θ20} on the unit circle centered at pphys.
For each θi, we compute the distance to the closest physical obstacle in
that direction as d(pphys,θi) to produce 20 distances {d1,d2, ...,d20}.
The direction the user will face after the reset is complete, denoted
θreset , is the θi for which the corresponding distance di most closely
matches the distance d(pvirt ,θvirt). This value θreset is subject to two
constraints. First, θreset must face away from the obstacle the user is
about to walk into:

dot(θreset ,obstacleNormal)> 0, (14)

where obstacleNormal is the normal of the closest face of the obstacle
that triggered the reset. The second constraint is that d(pphys,θreset)≥
d(pvirt ,θvirt). If this second constraint cannot be satisfied by any of
the θi that also satisfy the first constraint, θreset is set to the direction
that minimizes the difference between d(pphys,θreset) and d(pvirt ,θvirt)
and satisfies the first constraint. Please refer to Fig. 3 for a visual
explanation of our resetting policy.

Once θreset is computed, we turn the user to face that direction. The
user is instructed to turn in place until their heading is the same as
θreset , while the virtual turn is scaled up to be a 360◦ turn. In order to
minimize the amount of rotational distortion required for the reset, the
user turns in the direction of the larger of the two angles between θphys
and θreset . This method for resetting is inspired by the reset method
used by Bachmann et al. [3].

4 EVALUATION

We conducted three experiments in simulation, each with a different
pair of physical and virtual environments (see Sect. 4.3). For each
experiment, we compared our controller with two reactive controllers:
an artificial potential function-based algorithm (APF) and steer-to-
center (S2C). The APF controller is implemented as described by
Thomas et al. [38]. We compared our method with APF because it

is currently the state-of-the-art reactive RDW controller, having been
shown to perform well in empty environments, environments with
obstacles, and environments with multiple users [3,8,20,38]. We chose
to also compare our method with S2C because it is a commonly-used
benchmark in the RDW controller literature. Our implementation of
S2C is the same as the one developed by Hodgson et al. [11] since it
has many improvements over the original S2C algorithm proposed by
Razzaque [28]. We note that S2C is expected to perform very poorly in
some of our environments (Sect. 4.3) due to obstacles near the center
of the PE, and that it is fairer to compare ARC against APF in these
environments, but we still evaluated S2C in these conditions for the
sake of completeness. The reset policy used by APF and S2C was the
modified reset-to-center policy described in [38]. We also informally
tested a proof of concept VR implementation to evaluate ARC in real
PE/VE pairs, for which we implemented ARC in the Unity 2019.4.8f1
game engine, and ran tests using an Oculus Quest head-mounted device.
The participant in the proof of concept was one of the authors.

There are existing controllers that either have similar features to
our alignment-based controller or were tested in similar environments.
Zmuda et al.’s FORCE controller [43] makes use of the core assumption
of alignment, that users will not walk into obstacles in the VE, to get
performance gains. Nescher et al.’s MPCRed controller [21] uses
information about the VE to inform the decisions about gain selection.
Although those controllers are similar to our controller in some aspects,
we did not compare our work against them in this paper because they
are predictive controllers, while our algorithm is purely reactive. Since
predictive and reactive controllers have fundamental differences by
definition [23], it would not be a fair comparison.

It should be noted that while it is unfair to compare ARC to predic-
tive controllers, it may not be completely fair to compare with reactive
controllers, either. ARC is not predictive in the sense that it does not
explicitly predict the user’s future trajectory. However, by comput-
ing the user’s proximity, ARC does implicitly “predict” where a user
will travel, since the algorithm assumes that users will avoid virtual
obstacles. ARC is reactive in the sense that all information used to
set redirection gains is computed on a frame-by-frame basis, and no
future or past information is used in the steering process. Thus, one
can consider ARC to fall somewhere between predictive and reactive
controllers, which suggests that the traditional taxonomy of redirection
controllers [23] may need to be updated to include newer algorithms.

4.1 Performance Metrics
For each experiment, we compared the performance of the controllers
using three quantitative performance metrics. The metrics we used are:

• Number of resets: The number of times the user collided with a
physical obstacle. This is a standard metric in RDW literature.

• Average distance walked between resets: The average of the
physical distance walked on a path before incurring a collision.

• Average alignment: The average alignment A(Qt) for a path.

We also include qualitative evaluations showing the amount of space in
the physical environment that was used, showing the effects of CR on
controller performance, and showing the distribution of curvature gains
applied by each controller.

The number of resets and the average distance walked between resets
both provide a measurement of how many collisions the user incurs
during locomotion. The more collisions a user experiences, the shorter
the distance between resets will be. We also use heat maps of the user’s
location in the physical environment as a qualitative metric for the
number of collisions. When a user collides with an obstacle, they start a
reset maneuver (Sect. 3.2.2) which involves turning in place where they
stand. This is manifested as a large amount of time spent in one spot,
which will be highlighted on the heat map. To measure and compare the
intensity of gains applied by each controller, we computed the average
curvature gain for each path walked, and present histograms of the
frequency of each average curvature gain across all paths. This metric
is the same as the average steering rate metric that commonly appears

in RDW literature [3, 17, 33]. The average alignment metric is used
to show that our algorithm does indeed optimize for a low alignment
score, and that other algorithms do not.

4.2 Simulated Framework

Properly evaluating an RDW controller requires testing the controller
on a large number of paths, ideally in varied environments. It is com-
mon to use simulations to evaluate RDW controllers to avoid the high
cost of running user studies [3, 6, 8, 17, 20, 33, 37–39]. Our simulated
experiments were conducted on a computer with an AMD Ryzen 7
3700X 8-Core processor (3.60 GHz), 16 GB of RAM, a GeForce RTX
2080 SUPER GPU, and 64-bit Windows 10 OS.

In an effort to make it easier to compare out work to prior research,
our simulated user representation is similar to the one used by Thomas
et al. [38]. The user was represented as a circle with radius 0.5m. If
the boundary of this circle came within 0.2m of an obstacle, this was
counted as a collision and a reset was initiated. The user’s walking ve-
locity was 1m/s, and their angular velocity was 90◦/s. The path model
used to generate user trajectories is the same as the one developed by
Azmandian et al. [2]. In this model, a waypoint is generated at a random
distance ranging from 2m to 6m away from the previous waypoint. The
waypoint was placed at a random angle between π and −π relative to
the previous waypoint. To follow a series of waypoints, the user turned
to face the next waypoint, and then walked in a straight line towards it.
Our simulation ran with a timestep of 0.05. To compute distances to
obstacles, we represent the PE, VE, and obstacles as polygons (sets of
vertices).

4.3 Environment Layouts

Each of our three simulation experiments had a unique pair of physical
and virtual environment configurations. Diagrams for each environment
are shown in Fig. 4. Exact coordinate data of the environment layouts
is included in the supplementary materials.

Environment A includes an empty 10m× 10m physical environ-
ment and an empty 10m×10m virtual environment. This simple envi-
ronment is used as a sanity check and to show that our algorithm can
guide users on collision-free paths if perfect alignment is achievable.
The CR of Environment A is 1.

Environment B is a moderately complex environment. The physical
environment is a 12m× 12m physical room with 2m-wide corridors.
These corridors are created by four 3m×3m square obstacles placed in
the four quadrants of the room. The virtual space for Environment B
is a 17m×12m room with 2m-wide corridors, created by six 3m×3m
square obstacles. Environment B was used to show that ARC can
handle environment pairs that have locally similar features (regular
corridors of the same width) but globally different dimensions. The CR
of Environment B is 1.170.

Environment C is a highly complex environment. The physical
environment is a 10m× 10m physical room with three rectangular
obstacles. In the center of the space is a 2m×4m obstacle. The bottom-
left corner of the room features a 2m×2m square obstacle. Along the
top boundary of the room is a 1m×4m obstacle. This PE was designed
to represent a plausible layout for a room in a house (such as a living
room). The virtual space used in Environment C is a 20m×20m room
with regular and irregular polygonal obstacles scattered throughout the
room. Environment C was used to show that our algorithm is able to
steer users through environments that are different in both local and
global features. The CR of Environment C is 1.625.

We also used two different PE/VE pairs in our proof of concept
implementation. The first environment pair included a roughly 3.8m×
6.9m PE and a roughly 5.65m× 8.7m VE. The PE was empty, and
the VE had a roughly 1.7m×2.3m obstacle in the northeast corner of
the room. The second PE/VE pair featured a roughly 4.87m×7.62m
PE and the same virtual room from the first environment pair. The
PE had a 1.1m× 1.5m obstacle along the west wall, and the VE had
a 1.7m× 2.3m obstacle on the east wall, and a 1.7m× 1.8m obstacle
along the west wall.

Fig. 4. Diagrams of the physical and virtual environment pairs tested in
our experiments. Full descriptions of the environment layouts can be
found in the supplementary material.

4.4 Experiment Design
For each experiment, we generated 100 random, collision-free virtual
paths with 100 waypoints. The user travelled along each path three
times, using either S2C, APF, or ARC for redirection. Note that the
same 100 paths were used for each redirection controller within a
particular environment. Although the virtual paths were random, they
all had the same starting location and direction within an environment.
In Experiment 1, the virtual user started in the center of Environment A,
facing north. In Experiment 2, the virtual user started in the center of
Environment B, facing north. In Experiment 3, the virtual user started
3.5m below the center of Environment C (south of the pentagon), facing
north. For every path, the physical user had a random starting location,
but their heading direction matched that of the virtual user’s at the start
of the path. The physical starting location for a given path was the same
regardless of the controller being evaluated. Having the user start in a
random physical location increases the dissimilarity between the user’s
physical and virtual states, which makes it harder for a redirection
controller to avoid collisions. We used these random starting positions
to show that ARC is still able to achieve a low number of collisions,
even in this difficult setting.

5 RESULTS

We performed evaluations of the performance of S2C, APF, and ARC
using three quantitative metrics and three qualitative metrics (Sect. 4.1).
Each metric was computed for all 100 paths in each condition. RDW
controller algorithms can sometimes encounter “unlucky” virtual paths
that make it particularly difficult to avoid collisions, and the user will
end up incurring many collisions in a short time frame. To make our
comparisons robust to these unlucky paths, outliers in the data that were
1.5 times larger than the interquartile range of the data were replaced
with the median of the data. We evaluated the normality of the data
using visual inspection of Q-Q plots and histograms as well as measures
of the distributions’ skew and kurtosis. Homoscedasticity was evaluated
using Levene’s test. For each metric measured, the assumption of
normality or homoscedasticity was violated, so we conducted all of
our tests using a robust one-way repeated measures 20% trimmed
means ANOVA (using the WRS2 package for R). Pairwise post-hoc
comparisons were computed using linear contrasts.

Due to the large sample size in our experiments, we report 95%
confidence interval instead of p-values. As the sample size grows,
statistical tests become sensitive to small differences between samples,
and the p-value becomes unreliable as it approaches 0. Confidence
intervals, however, become narrower as the sample size grows, which
means they are able to scale with the sample size and are still reliable
for experiments with large samples. Furthermore, reporting confidence
intervals allows for easier comparisons with future work if they also re-
port confidence intervals, since the interval provides numerical bounds
on the differences between conditions [18].

The results are shown in Table 1, with discussions in subsequent sec-

tions. Since the distance walked between resets depends on the number
of resets, we do not present the full analyses of the distance walked.
Instead, we only include the average differences in distances walked
(see Table 1). Full analyses on the distance walked between resets can
be found in the supplementary materials. Most of the discussion is
limited to comparing ARC to APF, since it is already well-established
that APF outperforms S2C [3, 38]. A confidence interval that does not
contain 0 in its range [CI lower, CI upper] is considered to be signifi-
cant. Thus, we found significant differences between all groups in our
post-hoc tests. The common pattern seen in the results is that ARC
outperforms APF and S2C, while APF outperforms S2C. One condition
for which this was not the case is the alignment metric in Environment
C. Boxplots, heat maps, and frequency plots that visualize the results
and redirection data are also included in the supplementary materials.

5.1 Experiment 1 (Environment A)
5.1.1 Number of resets
The robust repeated-measures ANOVA revealed a significant effect
of redirection controller on the number of resets in Environment A
F(1.68,98.95) = 126.1711, p < .0001. ARC outperformed both S2C
and APF because it was usually able to steer the user on the same
virtual paths as S2C and APF, but with fewer collisions. We noticed
that ARC sometimes performed worse than APF. However, ARC was
also sometimes able to achieve perfect alignment and steer users along
paths with no collisions, which APF and S2C were not able to do.

In this experiment, APF outperformed S2C. However, in the imple-
mentation of APF by Thomas et al. [38], they did not find significant
differences in the number of resets between APF and S2C in Environ-
ment A. Since APF steers the user towards the center of the room, it
is expected that APF and S2C will have similar results, as they did
in [38]. The difference in performance between APF and S2C is pos-
sibly explained by the stronger curvature gains applied by APF, since
our implementation of S2C [10] includes gain smoothing, whereby
curvature gains transition gradually between values instead of instantly
applying the strongest gain, as is done in APF [38].

5.1.2 Average alignment
The robust trimmed means ANOVA revealed a significant effect of
steering controller on the user’s average alignment F(1.39,82.19) =
10870.26, p < .0001. The user’s average alignment score was usu-
ally lower when they were redirected with ARC than when they were
redirected with either APF or S2C. Neither APF nor S2C is designed
using concepts of alignment, so they should not be expected to achieve
higher alignment scores than ARC does. We also observed that user’s
alignment was consistently low regardless of the path, which signals
the reliability of ARC in making the state at least close to aligned.

5.1.3 Qualitative Evaluations
For all conditions, the user spent most of their time near the center of
the environment. This is what S2C is designed to do, and APF reduces
to S2C in empty environments, so this is no surprise. One interesting
thing to note, however, is that when the user is steered using ARC, they
spend less time at the center of the room than with S2C and APF.

We observed differences in the average curvature gain applied by the
controllers. The implementation of APF we used [38] always applies
maximum curvature gain. However, S2C and ARC do not always apply
the maximum curvature gain. The average curvature gain for S2C is
always above 6◦/s, which is still fairly high considering the perceptual
limit is ≈ 7.6◦/s. On the other hand, ARC is able to apply curvature
gains much lower than the perceptual limit and with high consistency,
mostly ranging from 3◦/s to 6◦/s. All of the average gains applied by
ARC are below 7◦/s.

5.2 Experiment 2 (Environment B)
5.2.1 Number of resets
The robust ANOVA revealed a significant effect of controller on the
number of resets F(1.6,94.42) = 56.0129, p < .0001. ARC and APF
have somewhat similar performances, although ARC still resulted in
significantly fewer resets than APF. Furthermore, the interquartile range

Environment A
Number of resets Distance walked between resets Average alignment score

Redirection Controller ψ̂ CI lower CI upper ψ̂ CI lower CI upper ψ̂ CI lower CI upper
S2C [10] vs. ARC 16.983 14.066 19.901 -14.163 -17.857 -10.470 1.290 1.266 1.312
APF [38] vs ARC 5.750 2.686 8.814 -8.809 -12.967 -4.651 0.492 0.465 0.519
S2C [10] vs APF [38] 11.617 9.148 14.086 -5.822 -6.808 -4.836 0.801 0.789 0.813

Environment B
Number of resets Distance walked between resets Average alignment score

Redirection Controller ψ̂ CI lower CI upper ψ̂ CI lower CI upper ψ̂ CI lower CI upper
S2C [10] vs. ARC 46.867 32.784 60.950 -0.507 -0.630 -0.385 0.808 0.778 0.838
APF [38] vs ARC 11.317 3.449 19.184 -0.130 -0.237 -0.023 0.761 0.747 0.774
S2C [10] vs APF [38] 36.408 23.560 49.256 -0.382 -0.502 -0.263 0.033 0.002 0.065

Environment C
Number of resets Distance walked between resets Average alignment score

Redirection Controller ψ̂ CI lower CI upper ψ̂ CI lower CI upper ψ̂ CI lower CI upper
S2C [10] vs. ARC 2139.983 2062.215 2217.752 -3.719 -3.792 -3.645 -1.036 -1.060 -1.012
APF [38] vs ARC 137.108 124.065 150.152 -2.296 -2.420 -2.171 -0.109 -0.131 -0.087
S2C [10] vs APF [38] 2005.500 1928.841 2082.159 -1.414 -1.488 -1.339 -0.928 -0.961 -0.894

Table 1. The results of pairwise post-hoc comparisons between controllers, computed using linear contrasts and reported using confidence intervals
due to the large sample size [18]. For each metric, ψ̂ is the difference in estimated means between the two groups (estimate of the true mean). CI
lower is the lower bound of the confidence interval on this difference, and CI upper is the upper bound. Narrower intervals indicate a more precise
estimate of the true mean. We can interpret a cell as the estimated difference between the group means (ψ̂), and CI lower and CI upper to represent
that on 95% of samples, the true difference in means between the groups will fall in the range [ψ̂−CI lower, ψ̂ +CI upper]. For a given row that
compares Algorithm X vs. Algorithm Y, a positive ψ̂ value indicates that Algorithm X scored more than Algorithm Y by that ψ̂ , while negative a value
indicates that Algorithm X scored lower than Algorithm Y by that ψ̂, bounded by CI lower and CI upper.

for the number of resets is lower for ARC than it is for APF, supporting
the notion that ARC delivers a consistent locomotion experience that is
robust to different virtual paths.

5.2.2 Average alignment

A significant effect of redirection controller on the user’s average align-
ment was found F(1.44,84.85) = 3484.467, p < .0001. The same
trend seen in Environment A for the average alignment score is also
seen in Environment B. ARC achieves a noticeably lower alignment
score, which shows that ARC is able to successfully steer the user to a
more aligned state.

5.2.3 Qualitative Evaluations

The physical position data showed differences between algorithms in
where they steered the user. S2C and APF have very similar heat maps
since both algorithms steer the user towards the center of the space.
Interestingly, the user is able to visit most areas of the room using
ARC, but there is a tendency to keep the user in the upper-left corner
of the room. It is possible that ARC is getting stuck between obstacles.
If that is the case, however, we would expect that the user gets stuck
uniformly across the room due to their random starting locations, rather
than getting stuck in one corner.

The average curvature gains showed a similar pattern as they did in
Environment A. S2C and ARC apply weaker curvature gains than APF.
One difference between Environment A and B is that the distribution of
gains applied by ARC in Environment B is much smaller than it was in
Environment A, which is likely because ARC was not able to achieve
perfect alignment and thus was not able to apply small gains while also
lowering the user’s alignment score.

5.3 Experiment 3 (Environment C)
5.3.1 Number of resets

There was a significant effect of controller on the number of resets
F(1.04,61.34) = 4186.948, p < .0001. ARC performs dramatically
better than APF and S2C, with a much smaller spread in the number of
collisions. Paths steered by APF all have at least as many collisions as
paths steered by ARC and are sometimes more than twice as bad as the
worst path for ARC.

5.3.2 Average alignment
We found a significant effect of steering controller on the user’s aver-
age alignment F(1.04,61.34) = 4186.948, p < .0001. An interesting
pattern seen in the alignment scores for Environment C is that S2C
scores the best (lowest) average alignment of all the controllers, and
ARC has the highest alignment score. This is surprising because nei-
ther S2C nor APF is designed to work based on alignment, but ARC
is. Even though ARC has the worst average alignment score of all
the controllers in Environment C, it undoubtedly has the best perfor-
mance in terms of number of collisions and physical distance travelled
between resets. This disagreement in the metrics suggests that the
alignment metric we used in this study may not be a good represen-
tation of an alignment-based controller’s ability to keep the system
aligned and avoid collisions. We stress that we do not believe this
means the alignment-based methods ARC uses to steer the user are
flawed, since all other results in this section indicate that ARC does
work well compared to other controllers. It may simply be the case that
reporting the averaged sum of the user’s forward and lateral alignment
is not a good way to measure a controller’s alignment capabilities since
the results from Environment C show that it is possible for a controller
that does not use alignment to have a better alignment score. Another
possible explanation for the differences in average alignment seen for
Environment C is that the amount of distances we sample to compute
distance to obstacles (k = 3, see Sect. 3.1.1) may not be enough to
accurately capture proximity in this environment. Since this paper is
only the second to formally study concepts of alignment, our alignment
metric can likely be improved.

5.3.3 Qualitative Evaluations
Upon observing the physical position heat maps, we noticed that ARC
utilizes more of the PE for navigation than do APF or S2C, but there is
still a bias towards the leftmost region of the room. Visual inspection
of the random starting positions in the PE confirmed that the bias was
not due to the starting position, so more work should be done to get a
better understanding of the biases of ARC.

We inspected the frequency plot of gains applied by each controller
across all paths in Environment C. All gains applied by both ARC and
S2C are lower than those of APF, with ARC applying the lowest gains
of all, while applying stronger gains less frequently than S2C.

5.4 Proof of Concept Implementation
We implemented ARC in a VR system using an Oculus Quest and the
Unity 2019.4.8f1 game engine. Our proof of concept implementation
shows that ARC works as intended in real VR systems, but we note that
a full user study should be conducted before drawing more conclusions
about ARC in VR systems. In both environments that we tested, the
user’s virtual position started centered along the south wall of the VE,
and the user was instructed to walk in a straight line forward in the VE.

The first PE/VE pair was intentionally designed to be fairly simple
in order to verify that ARC steers the user as it should. The user’s
physical position started in the southeast corner of the PE. Once the
user started walking forward, they were steered to the left, away from
the east wall of the PE, using curvature gains. The user was steered
away from the east wall in order to improve their alignment with the
virtual state, since the virtual user was not beside any walls.

In the second PE/VE pair, the user’s physical location started in the
southwest corner of the physical room. Similarly to the first environ-
ment, the user was steered away from the nearby physical wall. Once
their virtual position was between the two obstacles in the VE, ARC
continued to steer the user to the right with curvature gains, in an effort
to minimize the misalignment between the user’s physical and virtual
states. When the user walked past the virtual obstacle on the left, ARC
steered the user slightly towards the left to improve their alignment.

The proof of concept implementation shows that our algorithm is
able to run in real time without interfering with the user’s ability to
travel on an intended virtual path, which is a crucial requirement for
redirection controllers. Additionally, ARC is simple enough such that
it can be used on each frame without negatively impacting the frame
rate of the system. Recordings of the user walking in each PE/VE pair
can be found in the supplementary materials video.

6 DISCUSSION

We found that a redirection controller based on alignment can be a very
effective alternative to traditional controllers that always try to steer
users away from physical obstacles. Our novel alignment-based redi-
rection controller, ARC, outperformed current state-of-the-art methods
in all environments that we tested for all metrics except for average
alignment in Environment C. In addition to being able to deliver a loco-
motion experience with fewer collisions and further distances walked
between collisions, ARC steers the user with curvature gains that are
less intense than those applied by other controllers. ARC achieves this
high performance using just three distance calculations from the VE
and three from the PE, which allows it to easily run in real time. Using
information from the VE has usually only been done by predictive con-
trollers, but we were able to develop a reactive controller that leverages
instantaneous information from the VE for large performance benefits,
and does not require complex predictions about the user’s behavior.

We also presented Complexity Ratio (CR), a new metric to measure
the relative complexity of a pair of physical and virtual environments
by describing the density of obstacles in the environments. The relative
complexity of environments is an important factor in a controller’s
ability to steer the user, but we are unaware of any RDW studies that
have explicitly defined and discussed any notions of relative complexity
and how it affects controllers’ performance. Our work presents the
first step in this direction. We showed that traditional controllers tend
to perform worse as the difference in complexity between the PE and
VE grows. This agrees with prior observations that the shape of the
environment affects a controller’s performance [2, 10].

ARC comes with many advantages over traditional steering policies.
First, ARC decreases the likelihood that a user experiences simulator
sickness due to strong redirection. While the exact cause of simula-
tor sickness is not known, one of the main theories is that simulator
sickness arises when there is a conflict between visual, vestibular, and
proprioceptive stimuli [15]. RDW creates this exact perceptual conflict,
so it is not uncommon for users to feel simulator sickness when being
redirected. Although we know it is safe to apply redirection within
the perceptual thresholds, these thresholds will vary from user to user.
Thus, the we cannot assume that commonly purported threshold values
will be suitable for all users. By only applying redirection when the

user is misaligned, and only applying gains at the intensity necessary
to achieve alignment, ARC redirects the user less than a traditional
controller does, which decreases the likelihood of simulator sickness
and creates a more comfortable experience.

Steering by alignment provides passive haptics by enabling the user
to interact with the physical environment [37, 39]. Passive haptics are
physical objects that provide feedback to the user through their shape
and texture [19]. Passive haptics can significantly increase a user’s feel-
ings of presence and spatial knowledge transfer [13]. Passive haptics
and RDW have typically been considered mutually exclusive due to
their conflicting requirements. However, Kohli et al. [14] demonstrated
that it is possible to combine the two if we have the appropriate envi-
ronment configurations. Their demonstration was in a carefully crafted
environment designed specifically to enable passive haptics. Alignment
can enable passive haptics in arbitrary environments, which may allow
for more immersive experiences that combine comfortable locomotion
through redirection with realistic sensations through passive haptics.
The efficacy of using alignment to combine passive haptics and RDW
should be studied through formal user studies, since alignment currently
does not consider the shape and orientation of obstacles, which are
important factors for effective passive haptics [14].

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented ARC, a novel controller based on alignment.
Through extensive simulation-based experiments, we showed that our
controller was able to outperform state-of-the-art algorithms in both
simple and complex environments. Furthermore, our algorithm applied
redirection gains at a lower intensity than other controllers, which re-
duces the chances of inducing simulator sickness and improves the
usability of RDW systems for people with low RDW perceptual thresh-
olds. We also formalized the notion of relative environment complexity
between the physical and virtual environments, which to the best of
our knowledge had not yet been done. To this end, we introduced
Complexity Ratio (CR), a novel metric to measure the difference in
navigation complexity between the physical and virtual environments,
and showed how CR influences controller efficacy.

There are many avenues for future work. The heuristics that ARC
uses are fairly simple, so it is likely that a more complex algorithm
will yield a better performance. For example, a finer approximation
of the user state using more distance samples may yield better results.
Additional work should also be done to get a better understanding of
the biases that ARC exhibited, so we can better predict how a controller
will perform in an environment. Extending ARC to dynamic scenes
with moving obstacles or multiple users is also an interesting area for
future work. Furthermore, ARC should also be evaluated with full user
studies now that we know that alignment can be an effective method for
redirection. Future work should also investigate ways to use concepts
of alignment to combine passive haptics with redirected walking.

It is currently quite difficult to compare controllers from different
researchers without implementing them oneself, since experiments are
often conducted under very different conditions. The ability to compare
controllers may help the community to develop new controllers more
effectively, since direct comparisons will highlight the strengths and
weaknesses of controllers. To enable comparisons between RDW
controllers, work should be done to develop accurate performance
metrics and standard benchmarks. It is likely that development of
good metrics and benchmarks will require a deep understanding of the
complicated interactions between the PE, the VE, the virtual path, and
the controller, since any good metrics and benchmarks will need to
encapsulate these interactions.

ACKNOWLEDGMENTS

The authors wish to thank Tabitha Peck for her helpful comments on sta-
tistical analysis, and the reviewers for their insightful suggestions. This
work was supported in part by ARO under Grants W911NF1910069
and W911NF1910315, and in part by Intel.

REFERENCES

[1] G. T. Anderson and G. Yang. A proposed measure of environmental com-
plexity for robotic applications. In 2007 IEEE International Conference
on Systems, Man and Cybernetics, pp. 2461–2466. IEEE, 2007.

[2] M. Azmandian, T. Grechkin, M. T. Bolas, and E. A. Suma. Physical
space requirements for redirected walking: How size and shape affect
performance. In ICAT-EGVE, pp. 93–100, 2015.

[3] E. R. Bachmann, E. Hodgson, C. Hoffbauer, and J. Messinger. Multi-user
redirected walking and resetting using artificial potential fields. IEEE
transactions on visualization and computer graphics, 25(5):2022–2031,
2019.

[4] D. A. Bowman, E. T. Davis, L. F. Hodges, and A. N. Badre. Maintain-
ing spatial orientation during travel in an immersive virtual environment.
Presence, 8(6):618–631, 1999.

[5] D. A. Bowman, D. Koller, and L. F. Hodges. A methodology for the
evaluation of travel techniques for immersive virtual environments. Virtual
reality, 3(2):120–131, 1998.

[6] Y. Chang, K. Matsumoto, T. Narumi, T. Tanikawa, and M. Hirose.
Redirection controller using reinforcement learning. arXiv preprint
arXiv:1909.09505, 2019.

[7] J. W. Crandall. Towards developing effective human-robot systems. PhD
thesis, Brigham Young University. Department of Computer Science,
2003.

[8] T. Dong, X. Chen, Y. Song, W. Ying, and J. Fan. Dynamic artificial poten-
tial fields for multi-user redirected walking. In 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pp. 146–154. IEEE, 2020.

[9] T. Grechkin, J. Thomas, M. Azmandian, M. Bolas, and E. Suma. Revisiting
detection thresholds for redirected walking: Combining translation and
curvature gains. In Proceedings of the ACM Symposium on Applied
Perception, pp. 113–120, 2016.

[10] E. Hodgson and E. Bachmann. Comparing four approaches to generalized
redirected walking: Simulation and live user data. IEEE transactions on
visualization and computer graphics, 19(4):634–643, 2013.

[11] E. Hodgson, E. Bachmann, and D. Waller. Redirected walking to explore
virtual environments: Assessing the potential for spatial interference. ACM
Transactions on Applied Perception (TAP), 8(4):1–22, 2008.

[12] C. Hutton, S. Ziccardi, J. Medina, and E. S. Rosenberg. Individualized
calibration of rotation gain thresholds for redirected walking. In ICAT-
EGVE, pp. 61–64, 2018.

[13] B. E. Insko, M. Meehan, M. Whitton, and F. Brooks. Passive haptics
significantly enhances virtual environments. PhD thesis, University of
North Carolina at Chapel Hill, 2001.

[14] L. Kohli, E. Burns, D. Miller, and H. Fuchs. Combining passive hap-
tics with redirected walking. In Proceedings of the 2005 international
conference on Augmented tele-existence, pp. 253–254, 2005.

[15] E. M. Kolasinski. Simulator sickness in virtual environments, vol. 1027.
US Army Research Institute for the Behavioral and Social Sciences, 1995.

[16] E. Langbehn and F. Steinicke. Redirected walking in virtual reality. En-
cyclopedia of Computer Graphics and Games. Springer International
Publishing, 2018.

[17] D.-Y. Lee, Y.-H. Cho, and I.-K. Lee. Real-time optimal planning for
redirected walking using deep q-learning. In 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pp. 63–71. IEEE, 2019.

[18] M. Lin, H. C. Lucas Jr, and G. Shmueli. Research commentary—too
big to fail: large samples and the p-value problem. Information Systems
Research, 24(4):906–917, 2013.

[19] R. W. Lindeman, J. L. Sibert, and J. K. Hahn. Hand-held windows: towards
effective 2d interaction in immersive virtual environments. In Proceedings
IEEE Virtual Reality (Cat. No. 99CB36316), pp. 205–212. IEEE, 1999.

[20] J. Messinger, E. Hodoson, and E. R. Bachmann. Effects of tracking area
shape and size on artificial potential field redirected walking. In 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.
72–80. IEEE, 2019.

[21] T. Nescher, Y.-Y. Huang, and A. Kunz. Planning redirection techniques
for optimal free walking experience using model predictive control. In
2014 IEEE Symposium on 3D User Interfaces (3DUI), pp. 111–118. IEEE,
2014.

[22] C. T. Neth, J. L. Souman, D. Engel, U. Kloos, H. H. Bulthoff, and B. J.
Mohler. Velocity-dependent dynamic curvature gain for redirected walking.
IEEE transactions on visualization and computer graphics, 18(7):1041–
1052, 2012.

[23] N. C. Nilsson, T. Peck, G. Bruder, E. Hodgson, S. Serafin, M. Whitton,
F. Steinicke, and E. S. Rosenberg. 15 years of research on redirected
walking in immersive virtual environments. IEEE computer graphics and
applications, 38(2):44–56, 2018.

[24] T. C. Peck, H. Fuchs, and M. C. Whitton. Evaluation of reorientation
techniques and distrators for walking in large virtual environments. IEEE
Transactions on Visualization and Computer Graphics, 15(3):383, 2009.

[25] T. C. Peck, H. Fuchs, and M. C. Whitton. Improved redirection with

distractors: A large-scale-real-walking locomotion interface and its effect
on navigation in virtual environments. In Virtual Reality Conference (VR),
2010 IEEE, pp. 35–38. IEEE, 2010.

[26] T. C. Peck, H. Fuchs, and M. C. Whitton. An evaluation of navigational
ability comparing redirected free exploration with distractors to walking-
in-place and joystick locomotion interfaces. In Virtual Reality Conference
(VR), 2011 IEEE, pp. 55–62. IEEE, 2011.

[27] E. D. Ragan, D. A. Bowman, R. Kopper, C. Stinson, S. Scerbo, and R. P.
McMahan. Effects of field of view and visual complexity on virtual reality
training effectiveness for a visual scanning task. IEEE transactions on
visualization and computer graphics, 21(7):794–807, 2015.

[28] S. Razzaque. Redirected walking. University of North Carolina at Chapel
Hill, 2005.

[29] R. A. Ruddle and S. Lessels. The benefits of using a walking interface to
navigate virtual environments. ACM Transactions on Computer-Human
Interaction (TOCHI), 16(1):1–18, 2009.

[30] D. A. Shell and M. J. Mataric. Human motion-based environment com-
plexity measures for robotics. In Proceedings 2003 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.
03CH37453), vol. 3, pp. 2559–2564. IEEE, 2003.

[31] A. L. Simeone, N. C. Nilsson, A. Zenner, M. Speicher, and F. Daiber. The
space bender: Supporting natural walking via overt manipulation of the
virtual environment. In 2020 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), pp. 598–606. IEEE, 2020.

[32] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estimation of
detection thresholds for redirected walking techniques. IEEE transactions
on visualization and computer graphics, 16(1):17–27, 2009.

[33] R. R. Strauss, R. Ramanujan, A. Becker, and T. C. Peck. A steering
algorithm for redirected walking using reinforcement learning. IEEE
Transactions on Visualization and Computer Graphics, 26(5):1955–1963,
2020.

[34] E. A. Suma, G. Bruder, F. Steinicke, D. M. Krum, and M. Bolas. A
taxonomy for deploying redirection techniques in immersive virtual en-
vironments. In 2012 IEEE Virtual Reality Workshops (VRW), pp. 43–46.
IEEE, 2012.

[35] E. A. Suma, S. Clark, D. Krum, S. Finkelstein, M. Bolas, and Z. Warte.
Leveraging change blindness for redirection in virtual environments. In
2011 IEEE Virtual Reality Conference, pp. 159–166. IEEE, 2011.

[36] E. A. Suma, Z. Lipps, S. Finkelstein, D. M. Krum, and M. Bolas. Impos-
sible spaces: Maximizing natural walking in virtual environments with
self-overlapping architecture. IEEE Transactions on Visualization and
Computer Graphics, 18(4):555–564, 2012.

[37] J. Thomas, C. Hutton Pospick, and E. Suma Rosenberg. Towards physi-
cally interactive virtual environments: Reactive alignment with redirected
walking. In 26th ACM Symposium on Virtual Reality Software and Tech-
nology, pp. 1–10, 2020.

[38] J. Thomas and E. S. Rosenberg. A general reactive algorithm for redirected
walking using artificial potential functions. In 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pp. 56–62. IEEE, 2019.

[39] J. Thomas and E. S. Rosenberg. Reactive alignment of virtual and physical
environments using redirected walking. In 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW),
pp. 317–323. IEEE, 2020.

[40] M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater, and F. P.
Brooks Jr. Walking > walking-in-place > flying, in virtual environments.
In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, pp. 359–364. ACM Press/Addison-Wesley
Publishing Co., 1999.

[41] B. Williams, G. Narasimham, B. Rump, T. P. McNamara, T. H. Carr,
J. Rieser, and B. Bodenheimer. Exploring large virtual environments
with an hmd when physical space is limited. In Proceedings of the 4th
symposium on Applied perception in graphics and visualization, pp. 41–48,
2007.

[42] N. L. Williams and T. C. Peck. Estimation of rotation gain thresholds con-
sidering fov, gender, and distractors. IEEE transactions on visualization
and computer graphics, 25(11):3158–3168, 2019.

[43] M. A. Zmuda, J. L. Wonser, E. R. Bachmann, and E. Hodgson. Optimiz-
ing constrained-environment redirected walking instructions using search
techniques. IEEE transactions on visualization and computer graphics,
19(11):1872–1884, 2013.

A SUPPLEMENTARY MATERIALS

A.1 Environment A: Analysis of Average Distance Walked
Between Resets

There was a significant effect of controller on the distance walked
F(1.09,64.09) = 57.9766, p < .0001. A boxplot of the average dis-
tance walked between resets for each controller is shown in Fig. 5, and
the precise difference between controllers is shown in Table 1. When
navigating with ARC, the user was able to walk further without collid-
ing with a physical obstacle when compared with APF and S2C. The
long upper whisker and the dots representing outlier paths indicate that
for some paths, the simulated user was able to walk over 45m before
colliding with an obstacle, which shows that ARC is able to deliver VR
experiences with very few resets.

A.2 Environment B: Analysis of Average Distance Walked
Between Resets

There was a significant effect of steering algorithm on the average
distance walked between resets F(1.9,112.05) = 58.9188, p < .0001.
A plot of the average distances walked between resets for all paths
with all controllers is shown in Fig. 5. The results of post-hoc tests
to determine the differences between controllers is shown in Table 1.
The boxplot for the physical distances walked in Environment B shows
that ARC achieves a higher median distance than APF and S2C, but
the largest average distances afforded by ARC are not as big as the
longest distances walked with APF. This suggests that APF may be
more suited than ARC for navigation in environments with corridors,
like Environment B, but additional studies should be conducted to
confirm this.

A.3 Environment C: Analysis of Average Distance Walked
Between Resets

A robust trimmed-means ANOVA revealed a significant effect of con-
troller on the average physical distance walked by the user between
resets F(1.52,89.44) = 5855.824, p < .0001. Boxplots showing the
distributions of average distances walked between resets for all con-
trollers are Environment C is shown in Fig. 5, and the results from
post-hoc significance tests are in Table 1. ARC outperforms APF and
S2C, and the results for ARC are more consistent than they are for APF,
though there is not as dramatic a difference as there was for the number
of resets. The number of resets for Environment C shows that ARC
performs much more consistently than APF, but the average distance
between resets for Environment C, while it shows the same overall
trend, suggests that the difference in consistency is not as large as it
seemed from the number of resets, highlighting the importance of using
multiple performance metrics.

A.4 Environment Layouts and Additional Figures

Environment A (physical)
Boundary (−5,−5),(5,−5),(5,5),(−5,5)

Environment A (virtual)
Boundary (−5,−5),(5,−5),(5,5),(−5,5)

Environment B (physical)
Boundary (−6,−6),(6,−6),(6,6),(−6,6)
Obstacle 1 (−4,−4),(−1,−4),(−1,−1),(−4,−1)
Obstacle 2 (1,−4),(4,−4),(4,−1),(1,−1)
Obstacle 3 (1,1),(4,1),(4,4),(1,4)
Obstacle 4 (−4,1),(−1,1),(−1,4),(−4,4)

Environment B (virtual)
Boundary (−11,−6),(6,−6),(6,6),(−11,6)
Obstacle 1 (−4,−4),(−1,−4),(−1,−1),(−4,−1)
Obstacle 2 (1,−4),(4,−4),(4,−1),(1,−1)
Obstacle 3 (1,1),(4,1),(4,4),(1,4)
Obstacle 4 (−4,1),(−1,1),(−1,4),(−4,4)
Obstacle 5 (−9,1),(−6,1),(−6,4),(−9,4)
Obstacle 6 (−9,−4),(−6,−4),(−6,−1),(−9,−1)

Environment C (physical)
Boundary (−5,−5),(5,−5),(5,5),(−5,5)
Obstacle 1 (−4.5,−4.5),(−2.5,−4.5),

(−2.5,−2.5),(−4.5,−2.5)
Obstacle 2 (−2,−1),(2,−1),(2,1),(−2,1)
Obstacle 3 (−2,4),(2,4),(2,5),(−2,5)

Environment C (virtual)
Boundary (10,−10),(10,10),(−10,10),(−10,−10)
Obstacle 1 (−4.5,−4.5),(−2.5,−4.5),(−3.5,−2.5)
Obstacle 2 (0,2),(2,1),(1,−2),(−1,−2),(−2,1)
Obstacle 3 (−2,4),(2,4),(2,5),(−2,5)
Obstacle 4 (−8.5,8.5),(−8.5,2.5),(−6.5,2.5),

(−7,7),(−2.5,6.5),(−2.5,8.5)
Obstacle 5 (−8,−1),(−8,−2),(−7,−2),(−7,−1)
Obstacle 6 (−7,−3),(−7,−4),(−6,−4),(−6,−3)
Obstacle 7 (−9,−5),(−9,−7),(−8,−7),(−8,−5)
Obstacle 8 (−6,−9),(−3,−7),(−3,−6),(−7,−8)
Obstacle 9 (3,−4),(3,−8),(7,−8),(7,−4)
Obstacle 10 (5,9),(4,8),(8,4),(8,8)

Table 2. Coordinates of vertices of boundaries and obstacles in each
environment.

Fig. 5. Boxplots of performance metrics for each controller in each environment. The boxplots show the median and IQR for the data. A significant
difference was found between all algorithms in all environments. ARC outperformed APF and S2C for all metrics in all environments except for
average alignment in Environment C.

Fig. 6. A heat map of the user’s physical position across all paths for
each controller in Environment A. Yellow tiles indicate the most time
spent at that location, while purple tiles indicate the least amount of time.
S2C and APF steer the user such that they spent the large majority of
their time in the center of the room, while ARC allows the user to visit
each region of the room more evenly.

Fig. 7. A histogram of the average curvature gain applied by each
controller for each path in Environment A. The implementation of APF
we used always applies the same gain, while S2C and ARC apply lower
gains on average. S2C still applies gains fairly close to the perceptual
threshold (≈ 7.6◦/s), but ARC is able to steer the user on paths with
fewer collisions and significantly reduced curvature gains. Most of the
gains applied by ARC fall in the 3◦/s−5◦/s range, showing that ARC only
applies the gains necessary to avoid collisions and maintain alignment.

Fig. 8. A heat map of the physical locations visited by the user in
Environment B when steered with each controller. Yellow tiles indicate
more visits to a region, while purple tiles indicate less time spent in a
region. Obstacles are shown in black. S2C and APF keep the user
concentrated near the center of the room since it is the most open space
in all directions, while ARC is able to utilize more of the space and steer
the user along all corridors in the room. ARC has some tendency to keep
the user near the north wall of the room, which we suspect is due to the
user getting stuck in between obstacles, but the exact cause is not clear.

Fig. 9. A histogram of the average curvature gain applied for each path
with each controller in Environment B. As in Environment A, APF applies
a constant curvature gain when the user is walking. S2C and ARC apply
gains with an average in the range of 4◦/s− 6◦/s, with ARC applying
gains all gains at a lower intensity than about half of the gains applied by
S2C. Note that the lowest gains applied by S2C are lower than those of
ARC.

Fig. 10. A heat map of the simulated user’s location in the physical
environment when exploring a virtual environment using three different
redirection controllers. Yellow tiles represent a large amount of time spent
in that region, and purple tiles represent a small amount of time spent in
that region. The Alignment-based Redirection Controller (ARC) allows
the user to utilize more of the physical space while exploring the virtual
world compared to S2C and APF. This means that users spends less
time being reset and more time walking through the physical environment,
when steered with ARC than with S2C or APF. This is supported by the
results for the number of collisions and distance walked.

Fig. 11. The average curvature gain applied by each controller for all
paths in Environment C. The same trend as in Environment B is seen
here, where APF has a higher steering rate than S2C and ARC. One
difference between the steering rates in Environment B and C is that
the gains applied by S2C and ARC are in a higher range (6◦/s−7◦/s) in
Environment C than they were in Environment B (4◦/s−6◦/s).

Fig. 12. The relationship between the environment complexity and the
number of resets incurred by a redirection controller. ARC consistently
has a better performance than S2C and APF for all environment complex-
ities. The performance difference between ARC and the other algorithms
is quite large for environments A and C, but the difference decreases
drastically for Environment B. It is not clear why Environment B causes
the controllers to have a more similar performance, but it may be due
to the relatively few pathing options afforded by the narrow hallways of
Environment B. Environments A and C both include regions with a fairly
large amount of open space, unlike Environment B (see Fig. 4).

Fig. 13. A screenshot of the user’s state and recent path in Environment
A for each controller. Each simulated user travelled on the same virtual
path in this figure, and the screenshot was taken at the same time in the
simulation. When steered with ARC, the system is able to achieve perfect
alignment, and the user’s physical state and recent path matches the
virtual counterpart. APF and S2C are not able to achieve alignment, and
their paths and states are very dissimilar to the virtual counterparts. The
state of the virtual user is not the same across all conditions because
the virtual user pauses while the physical user reorients after a collision,
and each controller incurred a different number of collisions.

	Introduction
	Background
	Perceptual Thresholds
	Redirected Walking Controllers
	Environment Complexity Metrics

	Redirection by Alignment
	Definitions and Background
	Alignment
	Environment Complexity

	Alignment-based Redirection Controller
	Redirection Heuristic
	Resetting Heuristic

	Evaluation
	Performance Metrics
	Simulated Framework
	Environment Layouts
	Experiment Design

	Results
	Experiment 1 (Environment A)
	Number of resets
	Average alignment
	Qualitative Evaluations

	Experiment 2 (Environment B)
	Number of resets
	Average alignment
	Qualitative Evaluations

	Experiment 3 (Environment C)
	Number of resets
	Average alignment
	Qualitative Evaluations

	Proof of Concept Implementation

	Discussion
	Conclusions and Future Work
	Supplementary Materials
	Environment A: Analysis of Average Distance Walked Between Resets
	Environment B: Analysis of Average Distance Walked Between Resets
	Environment C: Analysis of Average Distance Walked Between Resets
	Environment Layouts and Additional Figures

