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Complexity and order in approximate 
quantum error-correcting codes

Jinmin Yi    1,2, Weicheng Ye1, Daniel Gottesman3 & Zi-Wen Liu    4 

Some form of quantum error correction is necessary to produce large-scale 
fault-tolerant quantum computers and finds broad relevance in physics. 
Most studies customarily assume exact correction. However, codes that may 
only enable approximate quantum error correction (AQEC) could be useful 
and intrinsically important in many practical and physical contexts. Here 
we establish rigorous connections between quantum circuit complexity 
and AQEC capability. Our analysis covers systems with both all-to-all 
connectivity and geometric scenarios like lattice systems. To this end, we 
introduce a type of code parameter that we call subsystem variance, which is 
closely related to the optimal AQEC precision. For a code encoding k logical 
qubits in n physical qubits, we find that if the subsystem variance is below 
an O(k/n) threshold, then any state in the code subspace must obey certain 
circuit complexity lower bounds, which identify non-trivial phases of codes. 
This theory of AQEC provides a versatile framework for understanding 
quantum complexity and order in many-body quantum systems, generating 
new insights for wide-ranging important physical scenarios such as 
topological order and critical quantum systems. Our results suggest that 
O(1/n) represents a common, physically profound scaling threshold of 
subsystem variance for features associated with non-trivial quantum order.

A pillar of quantum information science and technology quantum error 
correction (QEC) has been extensively studied as a means to protect 
quantum information from noise and errors for the purpose of real-
izing the potential advantages of quantum computation in practice1–3. 
Remarkably, in recent years, it has become increasingly evident that 
the concept of QEC carries broad importance in fundamental physics, 
extending far beyond its original realm. In particular, QEC plays fun-
damental roles in our understanding of topological order4 and anti-de 
Sitter (AdS)/conformal field theory (CFT) correspondence5 that stand 
at the frontier of many-body physics and quantum gravity, respectively.

The idea behind the standard notion of QEC is to encode the logi-
cal system into a suitable code subspace in such a way that the logical 
information is effectively ‘hidden’ by entanglement and thus remains 
recoverable under certain noise. Owing much to the clean yet power-
ful scheme of stabilizer codes2, it is customary in the study of QEC 

to seek and understand quantum codes that enable exact recovery. 
However, generalized notions of codes that may only achieve QEC 
in an approximate manner could be adequate for practical purposes 
and outperform exact QEC codes in various ways6,7. Furthermore, 
they encompass a much broader range of scenarios especially innate 
in physical contexts, underscoring the fundamental importance of 
approximate quantum error correction (AQEC) from both practical 
and theoretical perspectives.

Despite the extensive study of QEC, our knowledge on AQEC codes 
is limited to various scattered situations (for example, examples in 
spin chains8, covariant codes9–16 and quasi-exact codes17,18), with their 
fundamental understanding remaining elusive. It is worth mentioning 
a striking finding that an extremely small imprecision tolerance suf-
fices to enable the decoding radius to match the code distance7,19, in 
stark contrast with the situation of exact QEC, signifying the intrinsic 
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logical information after the system undergoes noise; specifically, for 
encoding channel ℰ and some noise channel 𝒩𝒩 , the QEC inaccuracy is 
defined as

̃ε (𝒩𝒩, ℰ) ∶= min
ℛ
P (ℛ ∘ 𝒩𝒩 𝒩 ℰ, idL) , (1)

that is, the minimum distance (here we adopt the channel purified dis-
tance P; Methods provides the detailed definition) between the overall 
logical channel after recovery ℛ and the logical identity idL. From what 
features of the code does such QEC inaccuracy originate? To understand 
this, we introduce a type of parameter intrinsically associated with the 
code space ℭ (image of ℰ) that we call subsystem variance:

εG(ℭ,d) ∶= max
ψ∈ℭ,|S|≤d

‖ψS − ΓS‖1, (2)

where Γ ∶= 1
2k
∑2k
i=1 |ψi⟩ ⟨ψi| is the statistical average of {ψi} that spans 

ℭ, that is, the maximally mixed state of ℭ, and S is a connected (local) 
subsystem with respect to the adjacency graph G (subscript S denotes 
the reduced state on S). Here d should be treated as a tunable variable 
that generalizes the notion of code distance. Intuitively, the subsystem 
variance limits the accessible information from the subsystems and is 
thus closely tied to entanglement and QEC properties. In particular, it 
bounds the violation of the Knill–Laflamme QEC conditions24 and 
broadly characterizes the QEC inaccuracy. As an extreme instance, 
under the same locality restriction,

ε
4 ≤ ̃ε ≤ 2k/2√ε (3)

for any noise represented by replacement channels, including, for 
example, erasure, complete depolarizing and reset channels (some 
relations between QEC error and the violation of Knill–Laflamme con-
ditions are known25,26). A complete form of this result can be found in 
Methods, with full proofs given in Supplementary Note I. In addition, 
we can also establish two-way bounds that relate subsystem variance 
with coherent information, a well-known quantity that characterizes 
quantum information loss27–29 (Supplementary Note II). The physics 
discussions in later sections mainly concern scenarios where ε and ̃ε  
convey similar messages. They may generally be referred to as code/
AQEC error at appropriate instances.

distinction in nature. In the literature, the notion of AQEC commonly 
just means that the imprecision is vanishingly small in system size. 
However, this can even be naturally achieved by a trivial encoding 
defined by appending a series of garbage states to the logical state for 
random local noise, simply because the chance of logical information 
being affected is vanishingly small (Methods and Supplementary Note 
IV). This suggests that our current understanding of AQEC is too coarse.

In addressing this predicament, we establish a general theory of 
AQEC codes based on quantum circuit complexity whose importance 
permeates quantum computation, complexity theory and physics20–23, 
encompassing scenarios both with and without geometric locality. 
More specifically, we define a code parameter called subsystem vari-
ance that characterizes the fluctuation of marginals of the physical 
system and is closely connected with the existing notions of AQEC 
imprecision and many-body entanglement. We derive critical values 
of the subsystem variance that scale roughly as O(k/n), below which 
the entire code subspace is subject to non-trivial circuit complexity 
lower bounds depending on the geometry. The conditions are nearly 
optimal in certain regimes and provide meaningful criteria for interest-
ing codes in general, as supported by concrete examples. From a code 
perspective, our results suggest that it is reasonable to consider O(k/n) 
a boundary between subspaces that should be regarded as ‘acceptable’ 
AQEC codes and those that should not be. Our theory offers not only a 
fundamental understanding of non-trivial AQEC codes but also useful 
methods for the widely important but notoriously difficult problem 
of proving circuit lower bounds. The wide applicability of our theory 
is demonstrated by various examples arising from both quantum 
computation and physics.

Remarkably, our AQEC framework and results have broad applica-
tions in physics, bridging general information-theoretic properties 
with quantum physical features in many ways. In particular, we gain new 
insights into non-trivial quantum order or long-range entanglement 
that underpin ‘exotic’ quantum features including topological order 
and criticality that are of great importance in condensed-matter and 
high-energy physics’ contexts. For topological order, we demonstrate 
that AQEC offers a unifying framework for rigorously understand-
ing the relationship between strict notions of gapped topological 
order and the long-range entanglement and topological entanglement 
entropy (TEE) signatures. For critical quantum systems, we show that a 
power-law AQEC imprecision is a fundamental nature of the CFT codes 
that emerge at low energies and discuss how our theory may provide 
insights into quantum gravity through AdS/CFT. It is notable that a 
roughly O(1/n) imprecision scaling naturally arises as some kind of 
‘threshold’ in several different situations.

Circuit complexity from AQEC
Here we will work with multiqubit systems, namely, those living in a 
Hilbert space given by the tensor product of multiqubit Hilbert spaces. 
The notions of locality and geometry associated with such a many-body 
system are captured by an adjacency graph, the edges of which define 
the connection relations among the nodes (qubits). Two prototypical 
types of adjacency graph are complete (all-to-all) graphs and local 
lattices embedded in finite spatial dimensions, with the former being 
more common in computer science contexts and the latter incorpo-
rating geometric locality that is usually essential in physical contexts 
(Fig. 1 shows an illustration).

Now, we lay the groundwork for our study of AQEC. We propose 
to call any 2k-dimensional subspace of an n-qubit Hilbert space an 
((n, k)) quantum code (k < n) as it represents an encoding of a k-qubit 
logical system into an n-qubit physical system, and any pure state within 
this subspace is called a code state. Of course, it may not be a good QEC 
code as QEC requires intricate structures. A theme of this work is to 
understand the meaning of the deviation from ideal QEC codes, which 
is generic and serves as the basis for the theory for AQEC. This deviation 
can naturally be quantified by how well the recovery can restore the 

a bAll-to-all 1D

Fig. 1 | Locality and quantum circuit complexity. In a circuit, the local gates are 
only allowed to involve connected nodes with respect to the adjacency graph. 
Characterizing the time required for implementation, the depth of a circuit is 
given by the number of gate layers, where each layer can only consist of disjoint 
gates. a,b, Illustrations of all-to-all (a) and one-dimensional (1D) (b) 2-local 
circuits, associated with the complete graph and 1D chain; both examples are 
depth-3 circuits. The all-to-all (quantum circuit) complexity of an n-qubit 
quantum state |Ψ〉, denoted as 𝒞𝒞𝒞ψ), is defined as the minimum depth of the 
2-local quantum circuits that generate |Ψ〉 from |0〉⊗n. The geometric (quantum 
circuit) complexity of |Ψ〉, denoted as 𝒞𝒞GD 𝒞ψ), is defined analogously, with the 
difference being that only two-qubit gates acting on the nearest neighbours in a 
D-dimensional integer lattice GD are allowed. We also consider the δ-robust 
versions of these complexities, denoted by 𝒞𝒞δ, which are defined as the 
minimum corresponding complexity of any state |Ψ′〉 within the δ vicinity of |Ψ〉, 
that is, ||Ψ′ – Ψ||1 ≤ δ.
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We now introduce our main results on quantum circuit complex-
ity from AQEC for both all-to-all and geometric cases (Fig. 1 shows an 
illustration and brief definitions of circuit complexity, with further 
details provided in Methods). The log symbols denote the logarithm to 
base 2. H2(p) = –plogp – (1 – p)log(1 – p) is the binary entropy function; 
whenever it appears, it is assumed that p < 1/2.

Theorem 1. Given an ((n, k)) code ℭ, the δ-robust all-to-all quantum 
circuit complexity of any code state |ψ⟩ ∈ ℭ satisfies 𝒞𝒞δ(ψ) > logd , if 
H2(εg(ℭ,d)/2 + δ/2) < k/n with g being the complete graph (ε is 
defined with respect to any d qubits), where ε + δ < 1.

Theorem 2. Given an ((n, k)) code ℭ, the δ-robust geometric circuit 
complexity with respect to adjacency graph GD embedded in a 
D-dimensional integer lattice of any code state |ψ⟩ ∈ ℭ satisfies 
𝒞𝒞δ

GD (ψ) > (d1/D − 1)/2, if H2(εGD (ℭ,d)/2 + δ/2) < k/n, where ε + δ < 1.

Evidently, our results cover exact QEC codes as special cases (for 
example, recovering the stabilizer code result of ref. 30 in the no 
low-energy trivial state context (NLTS) and the long-range entangled 
property of the toric code), which can be seen by noting that 
εG(ℭ,d − 1) = 0 for any [[n, k, d]] code and any adjacency graph G so 
that our code error conditions are automatically satisfied. It is also 
worth emphasizing that the above results are independent of the topol-
ogy of the base manifold, and reflect universal complexity features of 
the entire code spaces that encompass arbitrary superpositions of 
special wavefunctions in the code, which are important but rarely 
understood in physics contexts. From the perspective of proving circuit 
complexity lower bounds, our approach can be used to establish 
bounds for specific states beyond the applicability of the theorems.  
A physically interesting family of examples is given by what we call 
momentum codes, which are discussed in detail in Supplementary 
Note VI. Another noteworthy point is that AQEC properties are able to 
guarantee the intrinsic all-to-all circuit complexity, which is not con-
strained by geometry and spatial locality. Finally, note that our results 
conversely indicate lower bounds on code error depending on the code 
states (Supplementary Note III).

Although our results apply to any specific n, one is usually  
most interested in the asymptotic scalings in the thermodynamic 
(large-n) limit. The distinction of whether the circuit complexity of a 
system is O(1) (that is, finite in the large-n limit) holds exceptional 
importance in both physics and complexity theory. States with ω(1) 
(superconstant) complexity, often referred to as long-range entangled 
states when a proper notion of geometric locality is present, are gener-
ally associated with certain kinds of non-trivial quantum order and play 
central roles in the theory of phases of matter and Hamiltonian com-
plexity (in both contexts, it is sometimes desirable to consider ω̃(1) 
complexity); however, this difference is inconsequential in our results). 
The key implications of our theory are summarized in the following 
corollary.

Corollary 3. Given an ((n, k)) code ℭ with subsystem variance 
εG(ℭ,d) where d = ω(1). Suppose H2(εG(ℭ,d)/2) < k/n, which is 
satisfied particularly when

•	 k = Õ(1), ε = ̃o(1/n);
•	 k = Ω(n), ε = o(1).

Then, for any code state |ψ⟩ ∈ ℭ, it holds that 𝒞𝒞G(ψ) = ω(1).

Figure 2 depicts the schematic of the circuit complexity ‘phase 
diagrams’ for any d and G in terms of the corresponding ε as well as ̃ε  
(for replacement channels) over k.

Most importantly, our results identify ‘non-trivial’ regimes of code 
parameters—any state that belongs to a code within these non-trivial 
regimes is subject to our circuit complexity lower bounds.

Note that the critical scalings below which our bounds can apply 
can be roughly achieved in a naive manner, suggesting that our code 
error conditions for circuit lower bounds represent meaningful condi-
tions for AQEC codes. Besides, the conditions are nearly tight for small 
k, as evident from the Heisenberg chain code. This is further discussed 
in Methods, with full details given in the Supplementary Information.

The universality of our framework enables applications in an 
exceptionally broad range of scenarios in coding theory and physics. 
In Table 1, we summarize the properties of various representative types 
of AQEC code originating from diverse contexts, which also provide 
meaningful examples for different parameter and complexity regimes. 
The CFT codes and momentum codes are introduced and analysed in 
this work.

Topological order
Our complexity results shed a new light on topological order, a widely 
studied concept in modern condensed-matter physics that character-
izes exotic quantum phases of matter arising from many-body entangle-
ment. A central problem in the study of topological order is to identify 
simple criteria or indicators for states associated with systems having 
topological order. As signified by the prototypical example of the toric 
code4, QEC is a representative feature (and application) of topologically 
ordered systems. Indeed, QEC properties underlie the well-established 
topological quantum order (TQO) condition, which is tied to strong 
physical notions of topological order such as gap stability31,32, essen-
tially demanding that the state belong to an (almost) exact QEC code 
with macroscopic (at least poly(n)) distance. On the other hand, based 
directly on many-body entanglement properties, there are two other 
prominent characteristics, oftentimes considered definitions, for 
states with topological order: long-range entanglement21,33 and TEE34,35. 
Despite extensive study and usage of all the three conditions, their rela-
tionship has not been systematically understood. We now demonstrate 
that AQEC provides a general framework that allows us to rigorously 
compare the TQO and entanglement conditions, thereby sharpening 
our understanding of topological order. Here we present an overview, 
with more details given in Methods and Supplementary Note VII.

First, a direct implication of our results is a general quantitative 
understanding of the gap between TQO and long-range entanglement 
conditions, with the former being strictly stronger than the latter. To 
be more specific, recall that long-range entanglement means super-
constant geometric circuit complexity. According to Corollary 3, the 
code property requirements in TQO can be relaxed from exponentially 
small error under macroscopic distance32 to ε = ̃o(1/n) under any super-
constant (for example, logarithmic) distance, still ensuring that all the 
code states are long-range entangled. This is a substantial relaxation 
that is expected to encompass wide-ranging physical situations. How-
ever, in the literature, the notions of long-range entanglement and 
topological order are frequently lumped together, especially for 

ε

O(1/n)

O(1) O(logn)

o(1) o(1)

O(n) k kO(1) O(n)
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O(1/  n)

O(1/n)
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Fig. 2 | Schematic circuit complexity phase diagrams of general quantum 
codes. ‘Non-trivial’ and ‘unboundable’ mean that our complexity bounds hold for 
any code state, or are inapplicable, respectively. The diagram for ̃ε  is obtained 
using equation (3); the intermediate regime can be regarded as an expanded 
boundary where the applicability of the complexity bounds depends on the code.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-024-02621-x

gapped systems. Our observation elucidates the discrepancy between 
the two notions in terms of AQEC parameters.

Next, let us consider TEE, which widely serves as a simple 
information-theoretic signature for topological order. More  
concretely, consider the standard two-dimensional (2D) setting, 
 where the ground states of gapped systems commonly obey an area 
law, with possible subleading corrections originating from long-range 
entanglement inherent in topologically ordered systems, based on 
which TEE is defined. For general AQEC code states, we show the 
following:

Proposition 4. (Informal) Consider an ((n, k)) code with an area-law 
code state defined on a 2D torus. Suppose ε = o(1/n) for any contract-
ible region of linear size; then, all the code states have non-trivial TEE.

Specifically, the Abelian topological order saturates the best TEE 
lower bound of k/2 from our approach.

As a corollary, a 2D area-law state with trivial TEE does not belong to 
any code that achieves ε = o(1/n) on linear-size contractible regions.

To conclude, a key takeaway is that TEE and long-range entangle-
ment have a similar ~1/n robustness against AQEC error. It is worth 
emphasizing that our discussion applies to any subspace, not hinging 
on gapped ground spaces (associated with Hamiltonians) as conven-
tional in the context of topological order.

Critical systems and CFTs
Critical quantum systems, widely described by CFT, represent 
another prominent type of quantum order with wide-ranging phys-
ical importance. The nature of critical systems, specifically their 
gaplessness and scale invariance, suggests a universal presence of 
highly non-trivial entanglement that supports interesting quantum 
coding properties. In particular, in the context of quantum gravity, 
the concept of CFT codes is expected to play a pivotal role, in light 
of the fundamental connection5,36 between QEC and AdS/CFT cor-
respondence37,38.

Physically, it is most natural to consider the low-energy sectors 
as code spaces, where k does not scale with the system size and all the 
states are CFT states. As explained in greater detail in Methods and Sup-
plementary Note VIII, they generally give rise to intrinsic AQEC codes 
whose properties are closely connected to the physics of the system 
and can be concretely analysed by employing techniques from the field 
of CFT. Indeed, for d = O(loglog(n)) on a complete graph, ε follows a 

power-law scaling with the exponent determined by the minimum 
scaling dimension Δ, precisely

ϵ = ϴ̃(n−∆/D). (4)

Crucially, this shows that the polynomial AQEC error is a funda-
mental nature of CFT, different from, for example, topological order.

As per Corollary 3, our theory has the following implication that 
could be of particular interest in relation to holography: if the minimum 
scaling dimension Δ > D (such that ε = ̃o(1/n)), then any state in the CFT 
code is not just long-range entangled (as can also be inferred from the 
general spatial correlation properties of CFT using Lieb–Robinson-type 
arguments31,39), but actually has the fundamentally stronger feature of 
being intrinsically non-trivial, that is, has superconstant all-to-all com-
plexity. This all-to-all property is morally congruent with the ultras-
trong long-range interactions and chaotic behaviours (think, for 
example, the Sachdev–Ye–Kitaev model), which are strong physical 
signatures of non-trivial gravity duals in AdS/CFT40–44, providing new 
insights into the duality from a quantum information perspective. 
Indeed, a large scaling dimension is associated with a large central 
charge45,46 and bulk field mass38,47, which are in accordance with strong 
coupling and complexity. Although our understanding of their relation-
ship is incomplete, the connections among all these perspectives 
indicates that AQEC plays a profound role in the physics of CFT and 
gravity that could be fruitful to further study.

Remarkably, the threshold of our complexity results’ applicabil-
ity, Δ = D, is of special physical importance as global symmetry current 
operators have scaling dimension D. Therefore, if the system has a con-
tinuous global symmetry, Δ is capped at D so that the CFT code obeys 
ε = Ω(1/n), thereby falling outside the regime of universal non-trivial 
complexity. As an implication, AQEC parameters could be used to 
probe symmetries. This is consistent with the scaling limit of the AQEC 
error of covariant codes10–15,48 and highlights the fundamental nature 
of the ~1/n boundary from yet another angle. In addition, Δ > D implies 
a fundamental tension with global symmetries on both sides of AdS/
CFT49, which could be a situation of special importance given the key 
role of symmetries in quantum gravity49–51. All things considered, our 
discussions suggest compelling motivations to look for and study CFTs 
in the Δ > D regime. This problem is non-trivial and interesting by itself 
because such a theory is not forbidden by known constraints in any D 
(note that the stress–energy tensor has scaling dimension D + 1), but 
we have limited knowledge of natural examples.

Discussion and outlook
We studied general quantum code subspaces that do not necessar-
ily enable exact QEC, offering a systematic understanding of their 
non-triviality. We proved code error thresholds below which circuit 
complexity lower bounds for any code state remain robust, for any 
geometry. Through the examples of topological order and critical 
systems that respectively represent gapped and gapless order, we 
have demonstrated that AQEC provides a powerful unifying lens for 
understanding the physics of complex many-body quantum systems, 
highlighting the value of insights from quantum information in physics.

A noteworthy phenomenon is that intrinsically approximate codes 
with power-law error scaling, although highly atypical in the sense 
that randomly constructed codes almost always exhibit exponen-
tially small errors, naturally arise in wide-ranging physical scenarios 
like gapless systems in fundamental ways. In particular, error scaling 
near the ~1/n boundary often emerges hand in hand with symmetries 
or specific structures of states. Based on our theory, the non-trivial 
order associated with such scenarios, which we call marginal order, 
is expected to represent a general type of order that is fundamentally 
distinct from topological order in its stability and other physical prop-
erties. It would be interesting to further investigate this notion. Note 
that the approximate Eastin–Knill theorems10–15,48 place codes with 

Table 1 | Various representative examples of AQEC codes

Code k εa Code-space 
complexity

ETH energy window Ω(n) exp(–O(n)) Non-trivial*

Random unitary 
codeb

Ω(n) exp(–O(n)) Non-trivial*

Topological code O(1) exp(–O(n)) Non-trivial

‘Good’ AQLDPC code Ω̃(n) O(1/polylog(n)) Non-trivial*

Heisenberg chain 
code

Ω(logn) ω̃(1/n) Unboundable

CFT low-energy 
sector

O(1) Θ(1/nΔ/D)c Indefinite*

Momentum code O(logn) O(1) Unboundable
a With respect to suitable superconstant d. b With 1 – exp(–O(n)) probability. c Δ is the minimum 
scaling dimension of the CFT. The ETH and Heisenberg chain codes (Supplementary Note V 
provides a refined analysis) are defined in ref. 8; the good approximate quantum low-density 
parity-check (LDPC) code specifically refers to the spacetime Hamiltonian construction in 
ref. 52; the italicized codes are explicitly studied in this paper. The rightmost column lists 
the complexity results deduced from our theory, where the asterisks specify applicability 
to all-to-all complexity and the remaining entries concern geometric complexity in their 
respective native dimensions.
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continuous transversal gates or symmetries outside the acceptable 
code regime, further strengthening our understanding of the incom-
patibility between symmetry and QEC.

The CFT codes represent a family of intrinsically AQEC codes that 
warrant deeper investigation, especially because of their importance 
to the understanding of quantum criticality as well as quantum gravity. 
Specifically, our preliminary discussion points towards several interest-
ing avenues for more rigorous consideration, such as the existence of 
non-trivial gravity duals and implications for symmetries in quantum 
gravity. Furthermore, it is potentially valuable to consider extensions 
to continuous variable and fermionic systems, open quantum systems 
and more general QEC settings.

To conclude, a key takeaway is that we expect AQEC codes to sub-
stantially extend the scope and utility of conventional notions of QEC 
in the realms of practical quantum technologies, complexity theory 
and physics. We hope this study sparks further exploration in AQEC 
and its physical as well as practical applications.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-024-02621-x.
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Methods
Asymptotic notations
In addition to the standard Bachmann–Landau notation using O, o, Ω, 
ω and Θ symbols53, we shall also use the ‘soft’ notation with a tilde on 
top, which hide polylogarithmic factors that are unimportant in our 
context; explicitly, for A ∈ {O, Ω, Θ}, ̃A( f(n)) means A(f(n)polylog(n)) 
for some polylog function, and for a ∈ {o, ω}, ̃a( f(n))  means a(f(n)
polylog(n)) for any polylog function.

Some formal definitions
Here we provide the full mathematical definitions of several key con-
cepts used in this work for readers’ convenience.

Trace norm and channel purified distance. Let ||O||1 denote the trace 
norm of operator O given by ‖O‖1 ∶= Tr√O†O . The purified distance 
between quantum states ρ and σ is defined as

P( ρ,σ) ∶= √1 − f( ρ,σ)2, (5)

where f is the Uhlmann fidelity, which is given as

f( ρ,σ) ∶=∥ √ρ√σ∥1 = Tr√√ρσ√ρ. (6)

Then, the proper channel version of the purified distance, known as 
the completely bounded purified distance, between two quantum 
channels ℳ1 and ℳ2, is defined as

P(ℳ1,ℳ2) ∶= √1 − F(ℳ1,ℳ2)
2 (7)

= max
ρ
P ((ℳ1 ⊗ id) (ρ), (ℳ2 ⊗ id) (ρ)) , (8)

where F is the completely bounded fidelity of channels given by

F(ℳ1,ℳ2) ∶= min
ρ
f((ℳ1 ⊗ id)( ρ), (ℳ2 ⊗ id)( ρ)), (9)

with the optimization running over input states on any extended system.
Note that the channel purified distance is chosen due to its desir-

able properties but other channel distance measures like Bures and 
diamond distances can also be considered and will yield similar results.

Quantum circuit complexity. Generally, for an n-qubit quantum state 
|Ψ〉, the (quantum circuit) complexity associated with the adjacency 
graph G, denoted by 𝒞𝒞G(ψ), is defined as the minimum depth (number 
of layers) of 2-local (with respect to G) quantum circuits that generate 
|Ψ〉 from |0〉⊗n. More precisely,

𝒞𝒞G(ψ) ∶= min {l ∶ |ψ⟩ =
l
∏
i=1
Ui|0⟩

⊗n} , (10)

where the Ui values must be a tensor product of disjoint two-qubit 
unitary gates acting on the nearest neighbours in G. The two standard 
scenarios specifically discussed in the main text are all-to-all quantum 
circuit complexity corresponding to complete graph g and geometric 
quantum circuit complexity corresponding to finite-dimensional lat-
tices GD. The δ-robust versions of these complexities, denoted by 𝒞𝒞δ, 
are defined as the minimum corresponding complexity of any state 
|Ψ′〉 within the δ vicinity of |Ψ〉 in trace norm, namely,

𝒞𝒞δ
G(ψ) ∶= min

‖ψ ′−ψ‖1≤δ
𝒞𝒞G(ψ′). (11)

Relating subsystem variance and QEC inaccuracy
Here we present a detailed form of the two-way relation between the 
subsystem variance and QEC inaccuracy given in equation (3).

Proposition 5. Let 𝒩̌𝒩R be any replacement channel acting on a d-qubit 
subsystem R that is connected with respect to adjacency graph G. Denote 
the overall channel by 𝒩𝒩 = 𝒩̌𝒩R ⊗ idR. Consider the subsystem variance for 
a particular subsystem R defined as εG(ℭ,R) ∶= max

σ∈ℭ
‖σR − ΓR‖1. It holds that

1
4 εG(ℭ,R) ≤ ̃ε(𝒩𝒩𝒩 ℰ𝒩𝒩  2k/2√εG(ℭ,R). (12)

A version for the overall subsystem variance is directly obtained by 
optimizing over R:

1
4 εG(ℭ,d) ≤ max

R
̃ϵ(𝒩𝒩𝒩 ℰ𝒩𝒩  2k/2√εG(ℭ,d). (13)

This result is established based on methods provided in another 
work25 that relate QEC inaccuracy and violation of Knill–Laflamme 
conditions, further using complementary channel methods and 
information-theoretic bounds. Full details of the proof are given in 
Supplementary Note I. Note that the bounds here assume replacement 
channels, which can be regarded as the worst class of noise channels. 
Modified bounds for general noise channels can also be derived.

Remarks on generalizations of the setup
Several assumptions in the setup and definitions are only made for the 
convenience of exposition and can be generalized in various ways that 
may encompass a wide range of physically relevant scenarios.

•	 The qubit assumption is not essential; generalizations to higher 
local dimensions are straightforward.

•	 The methods to derive circuit complexity bounds can be gen-
eralized to arbitrary graphs (shown below and Supplementary 
Note III).

•	 Generalizing 2-locality to t-locality for any finite t only intro-
duces constant factors to the results; more explicitly, the proofs 
reveal that if we consider t-local gates instead of 2-local gates, 
then our circuit complexity bounds for the all-to-all and geo-
metric cases hold with an extra 1/logt factor and an extra 1/(t – 1) 
factor, respectively.

•	 Several physical variants of the setting, including quasi-local 
gates with fast decaying tails, quasi-adiabatic evolutions54 and 
more general lattices in certain dimensions, are expected to 
retain the relevant messages in this work.

Further remarks on the complexity results
Our results are applicable to different notions of AQEC error. Recall 
that the code error conditions for circuit complexity lower bounds in 
the main text take the form H2(εG(ℭ,d)/2 + δ/2) < k/n. Using equation (3) 
(Proposition 5), the conditions can be alternatively expressed in terms 
of QEC inaccuracy ̃ε, substituting εG(ℭ,d) with 4 ̃ε(𝒩𝒩, ℰ) for replacement 
channels 𝒩𝒩  acting on any d-local subsystems with respect to the associ-
ated adjacency graph G.

Additionally, it is worth noting that our complexity results indicate 
‘intrinsic’ circuit complexities of code states themselves, which should 
not be confused with the depth of the encoding circuits that are blind 
to the input logical states.

We now briefly discuss two natural examples that shed light on the 
non-triviality of our complexity characterizations of codes.

First, the critical scalings of code error below which our complexity 
bounds apply can be roughly achieved in a naive manner, by considering 
a trivial kind of ‘encoding’ map that simply appends garbage states to 
the original logical state, that is, ℰ(|ψ⟩) = |ψ⟩ ⊗ |gar ⟩ ⊗…⊗ |gar ⟩, where 
〈ψ∣gar〉 = 0, which we call redundant encoding. This suggests that our 
code error conditions for circuit lower bounds represent meaningful 
conditions for AQEC codes. A detailed analysis can be found in Sup-
plementary Note IV.
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Moreover, the code error thresholds for our complexity bounds 
are nearly optimal in the sense that they cannot be much improved at 
least in the regime of small k. This is seen from the Heisenberg chain 
code8, where the code states are well-separated ground states of the 
ferromagnetic Heisenberg chain. Such codes have AQEC errors close 
to the critical scaling for small k, yet their code space contains states 
with low circuit complexity, signifying the near-tightness of the error 
thresholds. Details can be found in Supplementary Note V.

Complexity theorem for general adjacency graphs
As mentioned, our approach can be generalized to obtain circuit com-
plexity bounds for arbitrary adjacency graphs. The general theorem 
takes the following form:

Theorem 6. Given an ((n, k)) code ℭ, the δ-robust circuit complexity with 
respect to adjacency graph G  of any code state |ψ⟩ ∈ ℭ  satisfies 
𝒞𝒞δ

G(ψ) > f−1(d), where f(t) is the maximum size of the light cone of a single 
qubit under depth-t circuits, if H2(εG(ℭ,d)/2 + δ/2) < k/n, where ε + δ < 1.

For certain adjacency graphs including D-dimensional lattices, 
the results can be further improved by exploiting the structure of the 
graph (Supplementary Note III).

Intuition for the complexity theorems for AQEC codes
With improved forms of the results and detailed proofs provided in Sup-
plementary Note III, we now distil the core intuitions for our code-space 
complexity theorems, which generally apply to any connectivity, from 
all-to-all to geometric cases.

Our results roughly say the ‘distance’ (noise size) under which 
a code can maintain a sufficiently small code error indicates circuit 
complexity lower bounds. An overall conceptual message is that higher 
complexity is generally associated with smaller code errors and larger 
code rates. The main proof idea, adapting a method in ref. 30 to our 
AQEC setting, goes as follows. Suppose a code state is generated by a 
circuit Q of some low depth from |0〉⊗n where each qubit’s effects are 
confined within its light cone determined by Q. Now run this circuit 
backwards (apply Q†) on the maximally mixed code state Γ. Using the 
properties of the light cone, one finds that if ε within the light cone scale 
of Q (exp(O(n)) for all-to-all circuits and O(nD) for D-dimensional circuits) 
is small, then the output of the backward circuit is well approximated by 
|0〉 locally and therefore the entire system has small entropy due to sub-
additivity. Making ε sufficiently small leads to contradictions with the 
entropy of Γ directly determined by k, which, in turn, implies complexity 
lower bounds because the light cones are too small for consistency.

More on topological order
We first introduce, in more detail, the three major characteristics of 
topological order discussed in the main text, namely, TQO conditions, 
long-range entanglement and TEE.

The TQO condition31,32 asserts that the ground subspace is an (almost 
exact) QEC code with a macroscopic distance that grows as a positive 
power of the lattice size L. Usually, the ground subspace is assumed to 
be an exact code, up to at most exponentially small corrections.

Long-range entanglement21,33 means that the ground state of the 
system cannot be smoothly transformed into a product state by any 
finite-depth local unitary circuit.

TEE34,35 is an entropic measure of the topological contribution to 
entanglement. Specifically, suppose the entanglement entropy of any 
contractible subsystem A takes the form

S(A) = al(A) − γ + o(1), (14)

where the first term manifests the area law, with a being some constant 
and l(A) being the length of the boundary of A, and the correction 
γ is the TEE, which is expected to be a universal constant signifying 
topological order.

We would like to demonstrate that TQO is notably stronger 
than the other two characteristics: roughly speaking, although the 
TQO condition requires the AQEC error to be exp(–O(n)), an O(1/n) 
error is sufficient for the presence of long-range entanglement and 
non-trivial TEE.

The comparison between TQO and long-range entanglement is 
discussed in the main text. Here we present the formal result for TEE 
and provide some intuitions with full details given in Supplementary 
Note VII.

Proposition 7. Consider an ((n, k)) code defined on a 2D lattice on a 
torus. Suppose that ε = o(1/n) for any contractible region of size d, and 
there exists a code state with area-law entanglement. Then, in the ther-
modynamic limit, the TEE of any code state satisfies

γ ≥ k/max{2, 2⌊n/2d⌋}. (15)

Specifically, we have the best bound γ ≥ k/2, which is saturated by an 
Abelian topological order, if the code conditions hold for

	i.	 d > n/4, or
	ii.	 any d linear in n if, additionally, for error regions that do not 

contain non-contractible loops on the torus, ̃ε = o(1/n) can be 
achieved by recovery operations acting within the O(1) distance 
to the error region (ℓ = O(1), where the ℓ parameter is defined 
elsewhere55).

This result is proven using the prescription from ref. 56. The main 
idea is to apply the Markov entropy decomposition57 to relate k and a 
signed sum of subregion entropies in which all the area-law terms are 
cancelled out, leaving only TEE with corrections due to subsystem vari-
ance. When ε = o(1/n), the corrections turn out to be vanishingly small, 
ensuring non-trivial bounds on TEE. Conversely, when ε = ω(1/n), there 
is no non-trivial bound because TEE cannot overshadow the correc-
tions. Note that in Proposition 7, d can be improved to cn with any c > 0 
if we further require a local recoverability feature (which is expected 
to generally hold for topological order). This is proven by leveraging 
the expansion lemma from ref. 55. We further note that this result does 
not hinge on a strict area law, that is, small fluctuations in correction 
γ are allowed, in which case the lower bound is for the average TEE. 
Supplementary Note VII provides detailed proofs.

By considering a deformation of the toric code through adding 
string tension (such that the code states are string-net wavefunctions 
with tension)58, we can construct a physically interesting example of a 
code family with tunable AQEC error where the TEE vanishes as the AQEC 
error increases, in accordance with our results (Supplementary Note VII).

AQEC from CFTs
Here we briefly introduce the ideas behind the analysis of AQEC prop-
erties of CFT codes using techniques native to the field of CFT (Sup-
plementary Note VIII provides the full details).

Consider the low-energy sectors as code spaces, where k does not 
scale with the system size and all the states are CFT states. Let the sys-
tem be defined on a hypersphere SD of D ∈ ℤ+ spatial dimensions. Using 
the state-operator correspondence59 on the cylinder geometry SD × R, 
it can be shown that the one-point functions 〈ϕβ|ϕα|ϕγ〉 for code states 
|ϕβ,γ〉 and local (O(1)-size) primary operator ϕα, which can be related to 
the Knill–Laflamme conditions for QEC, exhibit the scaling 
behaviour60,61

⟨ϕβ||ϕα ||ϕγ⟩ = ϴ ( 1
n∆α/D

) , (16)

where n is the total system size and Δα is the scaling dimension of ϕα. 
These one-point functions are studied for extracting the conformal 
data in the CFT literature62–65. Here we can use them to compute the 
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AQEC error scaling. For the sake of non-trivial circuit complexity argu-
ments, consider sufficiently small subsystems (that are not necessar-
ily spatially local) of size O(loglog(n)). The reduced code states on 
the subsystem can then be expanded with an orthonormal operator 
basis, which can be well approximated by a product of local operators 
via proper renormalization group flow so that the scaling in equation 
(16) is expected to hold up to minor (at most polylog(n)) factors. Then, 
it can be shown (Supplementary Note VIII) that ε follows a power-law 
scaling with the exponent determined by the minimum scaling dimen-
sion Δ, precisely,

ε = ϴ̃(n−∆/D). (17)
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