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Abstract

Recognizing and generating object-state compositions
has been a challenging task, especially when generalizing
to unseen compositions. In this paper, we study the task
of cutting objects in different styles and the resulting object
state changes. We propose a new benchmark suite Chop
& Learn, to accommodate the needs of learning objects
and different cut styles using multiple viewpoints. We also
propose a new task of Compositional Image Generation,
which can transfer learned cut styles to different objects,
by generating novel object-state images. Moreover, we also
use the videos for Compositional Action Recognition, and
show valuable uses of this dataset for multiple video tasks.
Project website: https://chopnlearn.github.io.

1. Introduction
Objects often exist in different shapes, colors, and tex-

tures in the real-world. These visually discernible proper-
ties of objects, also known as states or attributes, can be
inherent to an object (e.g., color) or be a result of an ac-
tion (e.g., chopped). Generalization to unseen properties
of objects remains an Achilles heel of current data-driven
recognition models (e.g., deep networks) that assume ro-
bust training data available for exhaustive object properties.
However, humans (and even animals) [4, 7] can innately
imagine and recognize a large number of objects with vary-
ing properties, by composing a few known objects and their
states. This ability to synthesize and recognize new combi-
nations from finite concepts, called compositional general-
ization is often absent in modern deep learning models [30].

Several recent works have been proposed to study com-
position in terms of the disentanglement of objects and the
states in images [24, 34, 56, 73] as well as videos [3, 5,
12, 19, 55, 60, 61]. A few works have attempted to im-
prove open-world text-to-image generation models [13, 53]
for the task of compositional generation. However, current
suite of datasets lacks either granular annotations for object
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Figure 1. We present Chop & Learn (ChopNLearn), a new
dataset and benchmark suite for the tasks of Compositional Image
Generation and Compositional Action Recognition. It consists of
1260 video clips and 112 object state combinations captured from
multiple viewpoints for 20 objects and 8 cut styles. We also pro-
pose two new compositional tasks and benchmarks - (1) Image
Generation: given training images of various objects in various
states, the goal is to generate images of unseen combinations of ob-
jects and states. (2) Action Recognition: training videos are used
to recognize objects along with transition from state1 → state2, to
generalize on recognizing unseen object-state transitions.

states or enough data to study how object states evolve un-
der different conditions. Therefore, measuring the compo-
sitional generalizability of these models on different tasks
remains an open challenge.

In this paper, we propose a new dataset, Chop &
Learn (ChopNLearn) collected to support studying com-
positional generalization, the ability to recognize and gen-
erate unseen compositions of objects in different states. To
focus on the compositional aspect, we limit our study to a
common task in our daily lives – cutting fruits and vegeta-
bles. When using different styles of cutting, these objects
undergo different transformations and the resulting states
are easily recognizable by humans. Our goal is to study
how these different styles can be applied to a variety of
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Table 1. Comparison with other video datasets. This table high-
lights the distribution of the objects, states and compositions in
different datasets. Obj. refers to objects, Comp. is composi-
tions of objects and styles, N refers to the number of compositions
that have more than 10 samples, and Styles∗ refers to grouping of
styles: instead of generic names like cut, chop, etc., we use 3 dis-
tinct styles (chop/dice, peel, grate) as styles. MIT-States† is the
only image-based dataset, the rest are video-based datasets. All
these data numbers are for edible objects and cutting style actions
from respective datasets. Our dataset has uniform distribution for
each metric in the table, which makes it suitable for learning ob-
jects and their states.

Datasets
Total # of Avg. # of Samples

N # of
ViewsSamples Obj. Comp. Styles∗ /Obj. /Comp. /Style

MIT-States† [25] 1676 27 52 4 62.07 32.23 419 48 1
Youcook2 [76] 714 160 313 3 7.3 2.2 166.7 26 1
VISOR [9] 301 58 122 3 5.2 2.5 42.9 3 1
COIN [64] 390 6 7 2 65 55 195 6 1
Ego4D [14] 216 12 12 3 18.2 18 54.5 8 1
50Salads [62] 904 5 6 2 182 152 457 6 1
ChangeIt [60] 264 8 14 4 46.3 26.4 96 14 1
CrossTask [77] 1150 7 8 2 164.3 143.7 575 8 1
Breakfast [29] 1055 3 4 2 351.7 263.8 527.5 4 1

ChopNLearn 1260 20 112 8 74.2 11.8 185.5 112 4

objects for recognizing unseen object states. More specif-
ically, we select twenty objects and seven commonly used
styles of cuts (plus whole object) which results in object-
state pairs with different granularity and sizes (Figure 1).
We collect videos of these objects being from four different
viewpoints, and label different object states in each video.
Each style of cut changes the visual appearance of different
objects in different ways. To study and understand object
appearance changes, we propose two new benchmark tasks
of Compositional Image Generation and Compositional Ac-
tion Recognition, with a focus on unseen compositions.

The objective of the first task is to generate an image
based on an (object, state) composition that was not seen
during training. As shown in Figure 1, during training, a
generative model is provided with images of an (apple,
whole) as well as an (orange, round slices). At the
test time, the model has to synthesize a new unseen compo-
sition (apple, round slices). We propose to adapt
large-scale text-to-image generative models for this task.
Specifically, by using text prompts to represent the object-
state composition, we benchmark several existing methods
such as Textual Inversion [13] and DreamBooth [53]. We
also propose a new method by introducing new tokens for
objects and states and simultaneously fine-tuning language
and diffusion models. Lastly, we discuss the challenges and
limitations of prior works as well as the proposed generative
model with an extensive evaluation.

In the second task, we extend an existing task of Compo-
sitional Action Recognition [36]. While the focus of prior
work [36] is on long-term activity tracking in videos, we

aim to recognize subtle changes in object states which is
a crucial first step for activity recognition. By detecting
the initial state and final object state compositions, our task
allows the model to learn unseen object state changes ro-
bustly. We benchmark multiple recent baselines for video
tasks on the ChopNLearn dataset.

Finally, we discuss various other applications and tasks
that can use our dataset in image and video domains. To
summarize, our contributions are threefold:

• We propose a new dataset ChopNLearn, consisting of a
large number of images and videos of diverse object-state
compositions with multiple camera views.

• We introduce the task of Compositional Image Genera-
tion, which goes beyond the common conditional image
generation benchmarks, and focuses on generating im-
ages for unseen object and state compositions.

• We introduce a new benchmark for the task of Composi-
tional Action Recognition, which aims at understanding
and learning changes in object states over time and across
different viewpoints.

2. Related Work
Object states or attributes have recently received signif-

icant attention for recognition tasks, in images and videos.
Some of the common works and their dissimilarities with
the proposed dataset are mentioned here.
Attributes of Objects. In the image domain, states are
often referred to as attributes for Compositional Learn-
ing of attribute-object pairs. Attributes describe the visual
properties of objects, such as shape, color, structure and
texture. The common datasets used are MIT-states [24],
UT-Zappos [73], COCO-attributes [43], CGQA [35] and
VAW [45]. All of these datasets consist of web-scraped
images of various types of objects (from furniture to shoes
and clothes to food items), which makes the variety of states
very diverse. Most of the prior works [31, 34, 35, 41, 44, 46,
56, 59, 70, 72] focus on attribute-object recognition tasks
using compositional learning but do not expand to image
generation tasks due to the diversity in background and at-
tributes. Some works in compositional zero-shot learning
of attributes show visual disentanglement of attributes from
objects [56, 68], however, they only hallucinate composi-
tions of unseen attribute-object pairs in the feature space,
rather than the image space. Moreover, even newer large
vision-language models such as CLIP [48], DALL-E [50]
fail to capture the subtle attributes of objects which are vi-
sually discernible [38, 74]. Therefore, the image generation
task for objects with different attributes is still unexplored,
which is a major focus of our work.
States for Action Recognition. Detecting object states
and corresponding actions from videos is explored in su-
pervised [3, 5, 12, 55] and self-supervised manners [11, 60,
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Figure 2. Left: We show examples of cutting styles from popular video datasets (VISOR [9]: chop and peel potato, Youcook2 [76]: chop
broccoli, peel radish), image dataset (MIT-states [24]:slice pear, peel orange) and generation pipelines (DALL-E [50]:baton cut apple, half
round slices tomato). Most of these are either too noisy to capture subtle differences in objects or do not have the granularity of specific
cutting styles. Center: Our 4 camera setup captures videos of one object in 4 different views. Right: We capture 8 styles of object states,
which can be derived in a hierarchical manner from larger to small cuts. Each style is of different shape and granularity.

61]. While some works focus on recognizing actions us-
ing states [3, 5, 12, 55], others discover states as the future
frames in the videos in [11, 26]. Some works [60, 61] also
detect the exact frames of state 1, state 2 and the action that
causes transition from state 1 → 2. Another recent work
(Ego4D [14]) also proposes new tasks like point-of-return
state-change prediction for object state transition detection.
Hence, object states so far have been used as a signal for de-
tecting and localizing actions. We focus on extending this
understanding of states to generalize across different objects
with limited seen object-state transition videos.
Compositional Action Recognition. In contrast to ran-
domly assigning samples for training and testing, [36] pre-
sented a new task of Compositional Action Recognition.
The premise of this task is: actions are split based on ob-
jects they apply on. During training, only a set of objects
are seen corresponding to set of objects, while during test-
ing, unseen object appear for seen action labels. Following
studies [28, 33, 47, 67, 71] used relationship between ob-
jects and states bounding boxes to model the compositional
aspect, where the evaluation is performed on how well the
composition of unseen object and state is recognized. We
propose a similar task, where videos are trained on seen
compositions and tested on unseen compositions.
Comparison with existing Datasets. The existing image
datasets such as MIT-states [24], UT-Zappos [73], COCO-
attributes [43], CGQA [35] and VAW [45], are not suit-
able for image generation tasks for two reasons: 1) there
are very few transferable objects and attributes, 2) the im-
ages are web-scraped and very diverse with varied back-
ground. Due to this, generative models latch on back-
ground details rather than understanding subtle changes
in objects. In video domain, there have been various
video datasets with procedural and kitchen activities that
capture object and state transformations, such as Epic-
Kitchens [8] with object and hand bounding box anno-
tation version VISOR [9], Youcook2 [76], Ego4D [14],
COIN [64], HowTo100M [40], Breakfast [29], 50Sal-

ads [62], CrossTask [77] and ChangeIt [60]. There are a
few common problems across these datasets: (1) Most of
these datasets lack annotations for the granularity of cutting
styles. The styles labeled are cut, chop, slice, dice,
peel, grate, julienne, which only comprises of three
broader styles of transformations, i.e. chop/dice, peel
and grate. (2) The compositions of different objects
and states are highly skewed and similar to image datasets.
Some datasets have a long-tail distribution of objects, which
can make it challenging for models to learn per-object-
based states when there is only one sample available in the
dataset. And lastly (3), the frames are noisy with lots of
objects and attributes that object states changes are harder
to capture (as shown in left side of Figure 2). For most
datasets, the ground truth is also not annotated for object
detection, which makes it even harder to look for object of
interest. Using an object detector to remove the background
is an option, however with deformable objects, most Faster-
RCNN [51] based object detectors fail to capture the object
itself, and latch onto smaller pieces instead. In Table 1,
we show statistics of data available in different datasets.
The # of clips from other datasets that has granular anno-
tations of object-state pairs and can be used for composi-
tional tasks. For instance, COIN [64] has 180 categories
with 10000 videos, but clips that have cutting styles as la-
bels were only 390. Further, these clips only cover cut/peel
actions, and cannot be categorized further based on granu-
larity and shape of pieces. Our proposed dataset ChopN-
Learn is designed to capture various objects and their cut
styles, with uniformly distributed samples for 20 objects
and 8 styles (including whole, 7 other cut styles Figure 2).

3. Chop & Learn
Our main objective with Chop & Learn (ChopNLearn) is

to understand and learn granular object states, specifically
styles of cuts which can be applied to diverse variety of ob-
jects. With this in focus, we collect object state transition
videos, as well as images of object in various states, with



w: whole
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lc: large cut
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Figure 3. Statistics for ChopNLearn: We show the number of
samples for each object-style composition in a color-coded man-
ner: orange represents 12 samples, green represents 8 samples and
blue represents 4 samples.

4 different camera views (Figure 2). We discuss the design
choices and motivation below.

3.1. Design Choices
Selection of States (styles of cuts). Fruits and vegetables
are commonly cut in specific styles based on the need of
the recipes. For instance, for eating an apple, we slice it
in relatively large pieces while for using it in a pie, we
might cut smaller or round slices of it. We select 8 common
styles of cuts, i.e., large cut, small cut, baton,
julienne, round slices, half round slices,
peel, and whole for our study. These are the most com-
mon styles of cuts for vegetables and fruits, which do not
require any additional training to learn apart from common
kitchen operation and knife handling skills. These styles of
cuts can also have similarities with respect to shapes, yet are
different in granularity. For example, baton (french-fries
style cut) and julienne are similar in shape (long pieces),
but julienne is more finely cut than baton. Similarly,
large cut is a coarser version of small cut, and
half round slice is one step from round slices
(as shown in Figure 2). We also have annotated the states
whole and peel, which are the base states of objects.
Selection of Objects. We want to learn to transfer styles
of cuts to different objects. To ensure consistency in trans-
fer, we also consider the base state, i.e., whole state of
objects. For instance, it is hard to visualize large cut
of carrots, if the seen data only includes rounder objects
like oranges. Hence, we consider some fruits and veg-

etables with similar colors, textures and shapes to include
consistency across visual similarities after chopping. In this
study, we used seasonal fruits and vegetables categorised on
the basis on their shapes, colors and textures: round small
objects: [apple, pear, mango, potato, turnip,
onion, kiwi], citrus fruits [lemon, orange], flower-
like textured objects: [cauliflower, broccoli] ,
larger round objects: [cantaloupe, watermelon],
textured from inside objects: [bellpepper, tomato,
persimmon], and long objects: [cucumber, carrot,
squash, banana]. This consists of 10 fruits and 10
vegetable items, with at least one pair of similar objects
presents in the dataset.
Related Groups. One of the key aspects of this dataset is
transferability of cut styles to a variety of objects. We set
up some constraints and create related groups for objects
and styles. These related group enable us with structural
and visual style transfer abilities. If an object is seen from
related group A with a particular style, we should be able
to transfer that style to another object from the same related
group A and vice-versa. In other words, we group sets of
objects and cut styles which are visually similar (based on
color, shape and texture) together to create related groups
for objects and states separately. For states, we combine
[baton, julienne], [round slices, half-round
slices], and [large cut, small cut] together
as related groups. For objects, we define seven
groups with related objects: [apple, pear, mango],
[lemon, orange], [cauliflower, broccoli],
[cantaloupe, watermelon, kiwi], [bellpepper,
tomato, persimmon], [potato, turnip, onion],
and [cucumber, carrot, squash, banana].

3.2. Data Collection Setup
We collect data using four GoPro cameras [1] positioned

at different angles, with three participants (Figure 2). We
use a green screen and green chopping board for minimum
distraction in the background, such that the objects and their
cut pieces are easily segmented for each view.
Granularity of styles. For ease and consistency across par-
ticipants, the size of cut pieces can be defined as the shape
and ratio of one piece with respect to the whole object. For
more details, please refer to the appendix. Given a set of n
states and m objects, we can have at most m × n compo-
sitions. However, our dataset does not include some com-
positions which are not commonly found in real world. For
instance, due to the texture of onions, it is not feasible to
cut onions in baton or julienne style, since the lay-
ers of the onion do not stay intact, so we do not have a
sample of [baton, onion].
Video Recording. We primarily collect video data, and de-
rive state change frames from long videos. Each video con-
sists of 2-3 object states, which are annotated while data col-
lection process using the highlight features of GoPros. For



(a) (b)

Figure 4. (a) The clip length distribution for one camera (315 unique clips). (b) Preliminary results of using green screen to augment the
dataset with different backgrounds. We continue to improve the transfer results by adding shadows and background matting.

Table 2. Compositional generation evaluation. FID, user scores,
and classifier scores of various generative models. User Realism
is on a scale of 1-5. (⋆) denotes that accuracies are evaluated on a
seen data split. Bold represents the best result.
Method Patch User Classifier Acc. (%) User Acc. (%)

FID ↓ Realism ↑ Object ↑ State ↑ Object ↑ State ↑
Real Images - 4.65 87.5⋆ 92.0⋆ 73.6 84.0

SD 178.0 3.41 73.1 27.9 81.6 28.8
SD+TI 145.0 2.58 23.6 37.7 21.6 43.2
DreamBooth 139.9 3.56 53.5 74.2 61.6 72.8
SD+FT 88.9 3.78 70.5 67.7 72.0 65.6
SD+FT+TI 82.2 3.47 67.8 81.4 67.2 79.2

synchronizing across different cameras, we initially start
with a clapper to make a clap sound for indicating the be-
ginning of the video. Then, we highlight the frames in one
of the GoPro as the first/initial state. The participant then
walks up the object and starts cutting the object. After the
object is cut in one style, the participant steps back and we
highlight another frame as the next state. The participant
performs at least 2 styles of cut in each video, which can
be done consecutively. For instance, we can first cut an ob-
ject with large cuts, and then do small cuts sub-
sequently. The video ends with another clap for the end of
video detection and synchronization across different cam-
eras. Henceforth, we collect video data along with anno-
tated states for each participant, without extra effort of an-
notations. More details and statistics of dataset are shown
in Figure 3. Average video clip length (one state change for
an object) is 1m40s. The distribution is shown in Fig. 4(a).

4. Compositional Image Generation

Large-scale deep generative models [49, 52, 54] trained
on open-world big datasets have made significant break-
throughs in image generation in the last couple of years.
These models, are typically conditioned using a text en-
coder and also support tasks such as zero-shot image gener-
ation, inpainting, image editing, and super-resolution with-
out explicit training on these tasks. However, the perfor-
mance of these models significantly degrades when it comes
to compositional generation [10]. Our dataset, consisting of
112 real-world object and state combinations, is well-suited
to test the compositional capabilities of generative models.

Task Description. The goal of the task is to either train
from scratch or fine-tune an existing generative model using

the (object, state) pairs provided in the training, and gen-
erate images from unseen compositions. We consider all
20 objects, each object captured in up to 7 different states,
i.e., all the states excluding peel. We split the (object,
state) combinations into a training set consisting of 87 com-
binations and a test set consisting of 25 combinations. The
training set covers all objects and states used in our dataset,
but it does not overlap with the test set in terms of (object,
state) combinations. In other words, for each combination
of object and state present in the test set, the training set
includes exactly one of either the object, or the state, but
not both. We also ensure that for each (object, state) com-
bination (o, si) in the test set, there exists a combination
(o, sj) in the training set, where si and sj belong to the
same state related group defined in Section 3.1. This setting
ensures that all object and state information are available in
the training set. Each combination in our dataset has 8-12
images, resulting in a total of 1032 images in the training set
and 296 images in the test set. The exact split is provided in
the appendix along with some examples.

4.1. Methods

Stable Diffusion. (SD) We evaluate a popular open-source
text-to-image generative model Stable Diffusion (SD) [52].
For details on the SD, refer to the original work [52]. Here
we briefly describe the sampling process. Diffusion mod-
els generate an image from Gaussian noise via an iterative
denoising process. SD uses classifier-free guidance [21] for
sampling. This means given a text prompt c, we encode
the prompt using CLIP’s text classifier [48] and recursively
update a Gaussian noise sample with

ωϵθ(xt, c) + (1− ω)ϵθ(xt) (1)

where xt is the denoised sample at the time step t and ϵθ
is SD. With each time step, we try to move the denoised
sample using the guidance provided by the text prompt. The
strength of the guidance is defined by ω.

As our first baseline approach, we sample zero-shot im-
ages from SD with a text prompt “An image of oi cut in
sj style”, where oi is the ith object and sj is the jth state
of the object. Zero-shot generation with a pre-trained SD
model doesn’t work as intended as shown in Figure 5, and
the generated images often perform poorly in capturing the



Figure 5. Compositional Generation Samples. Ground Truth (GT) real images are shown in the first row for reference. Seven object-state
combinations in the test set are displayed, each with two generated samples for each method. Please zoom in to see details.

object state. Several recent works have shown that it is pos-
sible to extend models such as SD to achieve high-quality
customized generations [13, 53, 75]. We evaluate several
methods that have been proposed for compositional gen-
eration in the recent literature. We also propose a simple
yet strong baseline by fine-tuning a Stable Diffusion (SD)
model [52] along with textual inversion.
SD + Textual Inversion (TI). Textual Inversion [13] in-
troduces new tokens in the vocabulary and optimizes their
embedding from the given images keeping SD frozen. We
adapt the method for our task by introducing new tokens
for the objects {oi} and the states {sj}, and jointly opti-
mize the embeddings of {oi} ∪ {sj} by providing (image,
prompt) pairs from our training data. As before, the prompt
is simply constructed as “An image of oi cut in sj style”.
DreamBooth. Next, we adapt DreamBooth [53], which
fine-tunes the diffusion model along with the state-specific
tokens. In our experiments, we fine-tune one model for each
state in the dataset, where only the state token is learned.
Original DreamBooth optimizes the diffusion loss as well
as a prior preservation loss [53]. We observed that the latter
significantly deteriorates the performance thus we skip it.
SD + Fine-tuning (FT). We also fine-tune SD. In this base-
line, only the parameters in the UNet of the diffusion model
are optimized while keeping the text encoder fixed. SD +
TI + FT. Finally, we combine SD fine-tuning and Textual
Inversion [13]. Specifically, on top of our SD + Fine-tuning
baseline, we also adapt Textual Inversion by introducing
new object tokens and state tokens and optimizing their em-
beddings along with the UNet parameters.

4.2. Evaluation
We use both qualitative and quantitative measures to eval-
uate the capabilities of different methods. This section ex-
plains the details of different evaluation metrics we used:
Patch FID. Fréchet Inception Distance (FID) [20] is a com-

monly used metric to assess the quality of generative mod-
els. Given a set of real images and a set of generated images,
FID compares the mean and std of Inception-v3 features of
the two sets. For each composition and generative model,
we compute patch FID using all real and 16000 generated
patches, and report the average number for the test pairs.
We hypothesize that using patch FID gives more weight to
the object-state patches, rather than the whole image, which
includes almost 50% background pixels. We further calcu-
late the lower bound for patch FID score by computing it
between two sets of real images. Any score lower than that
for this dataset can be disregarded as irrelevant. The deter-
mined lower bound for the patch FID score is 37.2.

Object/State Accuracy using a Classifier. To evaluate the
correctness of objects and states in the generated images, we
train a classifier on real images for classifying objects and
states independently. This classifier is built on top of CLIP-
ViT-B/32 [48]. Classification logits are obtained by com-
puting the cosine similarity between the image embedding
and text embeddings of all possible state labels or object
labels. To ensure the reliability of the classifier’s results,
we train it on the training set from a different dataset split,
where all (object, state) combinations are present.

User Study. We conducted a user study to evaluate the gen-
erated images. We took images from the test set as well as
samples from our generative models and present them to 30
users. Each user was presented with 25 distinct images, ran-
domly sampled with an even distribution from our models
and the test set. After giving a tutorial to the users about the
different objects and states present in our experiments, the
users were asked to choose an appropriate object name and
state label, as well as rate the image for realism on a scale
of 1-5. We report the object and state accuracies as well
as realism score in Table 2. The details of our user study
design can be found in the appendix.



Table 3. Compositional action recognition results. “Start/End” denote the prediction results for the initial and the final state composition
with the corrected object type. Bold and underline represent the top-1 and top-2 results.

Split 1 Split 2 Split 3

Start End Start End Start End

Model Features acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

AvgPool I3D [6] 9.5 23.7 4.7 14.2 8.3 21.9 5.2 19.8 15.9 28.5 4.8 22.3
LSTM [22] I3D [6] 14.2 36.2 5.7 29.8 12.5 29.2 6.2 26.0 17.5 34.9 6.3 23.7
Transformer [65] I3D [6] 23.7 49.0 10.9 44.3 27.5 46.2 14.6 44.2 20.6 42.9 11.1 44.4

AvgPool MIL-NCE [39] 11.1 31.6 4.8 28.4 9.4 17.7 5.2 13.5 14.2 41.4 12.8 41.4
LSTM [22] MIL-NCE [39] 15.9 36.5 6.4 36.6 11.9 36.7 9.8 36.7 18.9 39.6 8.0 25.4
Transformer [65] MIL-NCE [39] 50.9 85.7 47.7 76.2 56.2 82.3 52.7 88.5 41.1 74.6 42.9 77.7

STLT [47] – 2.8 15.5 1.4 8.4 1.4 13 1.4 11.6 4.2 14.1 1.4 11.3
Transformer [65] R3D [15] 45.1 85.9 52.1 85.9 55.1 94.2 58.0 92.8 59.1 85.9 56.3 85.9
CAF [47] R3D [15] 53.5 88.7 57.8 88.7 55.1 95.7 58.0 95.7 62.0 93.0 63.4 93.0

4.3. Results and Discussion
Qualitative Results. Fig. 5 displays the generated images
from various methods for seven (object, state) combina-
tions in the test set. The first row of the figure exhibits
the ground truth real images for reference. We observe
that vanilla SD often generates correct objects in random
states, while SD+TI frequently synthesizes images without
displaying the object. DreamBooth performs better than
SD+TI, but worse than a simple finetuning of SD. SD+FT
and SD+FT+TI perform well in terms of state generation.
Quantitative Results. Table 2 displays the performance of
all baseline methods evaluated according to the metrics out-
lined in Section 4.2. Assessing image realism is a crucial
evaluation metric for generative models; however, defining
and measuring it can be challenging. Note that the patch
FID values and user realism ratings do not align well. This
is due to the disparity between the distribution of images in
our dataset and that of typical occurrence of those objects in
the real world. The patch FID metric measures the similar-
ity between the generated images with those in our dataset,
instead of the ones most typical in real world. In partic-
ular, our results indicate that SD achieves the worst patch
FID score since it has not encountered our dataset before,
whereas its user realism rating is more satisfactory. SD+TI
has the lowest user realism rating and a poor patch FID
score, which suggests that only training object/state em-
beddings is inadequate for generating high-quality images.
DreamBooth receives a good user realism rating but a poor
patch FID, indicating that the images it generates are realis-
tic but not very similar to those in our proposed dataset. Fi-
nally, fine-tuning via both SD+FT and SD+FT+TI achieve
better results for patch FID and user realism.

We next evaluate the accuracy of objects and states in
generated images. It is worth noting that the classification
task on our dataset is intrinsically difficult, which leads to
imperfect user accuracy on real images. In general, the ac-
curacy scores from classifier closely align with one from
users, indicating that the proposed classifier is suited for
evaluating compositional generation.

Our results show that SD achieves the best object ac-
curacy but the worst state accuracy. This is possibly due
to the lack of state variations in most existing large image
datasets. SD+TI is the worst performer due to its limited
learning capacity. On the other hand, DreamBooth, SD+FT,
and SD+FT+TI attain better state accuracy. Among them,
DreamBooth’s object accuracy is slightly worse as it is par-
ticularly trained for states. SD+FT achieves high object ac-
curacy, and SD+FT+TI attains the best state accuracy with
the help of fine-tuning and textual inversion together.
Green Screen Removal. One of the main challenges for
understanding fine-grained object-state pairs with existing
datasets such as MIT-states [25] is diverse backgrounds.
Using them for training often leads to the model latch-
ing on to unwanted background details and missing out on
the state understanding. Hence, we collected ChopNLearn
with a clean green screen background for the benchmark
tasks. While we acknowledge the limitations it poses to our
trained models, we highlight that the green screen can po-
tentially enhance our ability to generalize to diverse scenes.
This can be achieved by segmenting out images and placing
various backgrounds, along with scaled and rotated object-
state images (Figure 4). As a proof-of-concept, we train a
SD+FT+TI model on background-augmented images, and
report the Patch FID, classifier object accuracy and state ac-
curacy in Tab. 4. Note that here we employ a newly trained
classifier that uses background-augmented images, and the
patch FID scores are also computed based on these images.
We further reference the lower bound of the patch FID as
defined in Section 4.2. Due to the complex backgrounds in-
troduced, the object accuracy and the patch FID of the new
model are slightly compromised. However, it maintains a
high and even improved state accuracy. This demonstrates
the potential of the background-augmented ChopNLearn in
enhancing fine-grained compositional image generation.

5. Compositional Action Recognition
Human actions often change object states and different

objects can have diverse visual transitions even when sub-



Table 4. Green screen removal evaluation. Both rows employ
the SD+FT+TI but are trained using images with varying back-
grounds. Classifiers specific to each dataset are trained to assess
Classifier Acc. Validation images used to calculate Patch FID dif-
fer between the two rows. Patch FID Lower Bound is computed
by evaluating the patch FID on one-half of the validation images
relative to the other half. For further details, refer to Section 4.3.

Data Classifier Acc. (%) Patch FID ↓ Patch FID
Background Object ↑ State ↑ Lower Bound

Green Screen 67.8 81.4 82.2 37.2
Various 46.3 82.3 133.6 46.4

jected to the same action type. To investigate this problem
in a more intuitive manner, [36] introduced a new task of
compositional action recognition, which targets at improv-
ing the robustness of models to handle the same actions
with different objects involved. For example, given an ac-
tion of ‘taking something out from something’, the model
is trained on a limited set of objects and is tested on un-
seen types of objects to access its generalizability. Hence,
despite the same underlying action, the object and visual
features can be quite diverse. Similarly, the composition of
the same action with different object types can look very
distinctive. For instance, although cutting an carrot and
a apple require similar knife movements, the resulting vi-
sual changes are distinct, with the former changing from a
whole apple to a peeled apple, and the latter chang-
ing from a whole carrot to a peeled carrot. There-
fore, we propose to use our dataset for the task of compo-
sitional action recognition, which can also be referred to as
Compositional Zero-Shot Action Recognition, as the com-
positions of objects and states are unseen during training.
Task Description. For this task, we consider each clip of a
video as containing a single object with a single state transi-
tion. From the raw videos, which typically contain 2-3 tran-
sitions of object states per video, we segment the clips into
isolated ones with only one transition. Examples of transi-
tions include changing from a whole object to a peeled
object or from a peeled object to a baton cut object.
Similar to [36], we divide all object-final state compositions
into two sets: seen compositions, which are used for train-
ing, and unseen compositions, which are used for testing.
Following the approach used in the Compositional Image
Generation task, we ensure that each object and state are
seen at least once individually in the training set, but not
together as a composition. The objective of the task is to
predict the correct labels for the initial object-state compo-
sition (oi, sj) and the final composition (oi, sk), given a clip
containing an object oi transitioning from an initial state sj
to a final state sk. Note that the clip is considered correctly
classified only if both the object and state labels are correct
for both the initial and final compositions.

5.1. Dataset Splits

We create 3 different dataset splits as follows (more de-
tails are in the Appendix). All splits have disjoint train, test

and validation samples, and are created with different con-
straint combinations:

• Split 1: This split is a random selection of object-final
state compositions with cross-view condition. We do not
use any information from related groups.

• Split 2: In this split, we use related group informa-
tion for states, along with cross-view. based on related
groups, if baton carrots is seen in training set, then
julienne carrots can be part of test set. Since
baton and julienne are part of the same related
group, we can learn an object in one style and can gener-
alize to another style from the same group in Section 3.1.

• Split 3: This split includes information from both related
groups for states and objects. We want to ensure that even
if an object is not seen in its related group, a similar object
is seen in the related group. For example, if broccoli
is seen with large cuts, then cauliflower with
large or small cuts can be in the test set.

Hence different splits represent different complexity levels
for compositional action recognition.
Evaluation. We evaluate the accuracy of predicting both
the initial and final compositions of objects and states in the
test set. Only when the object and state are both correct, it
is counted as a correct prediction. Specifically, we use two
separate prediction heads for objects and states. We em-
phasize the need to evaluate composition as a whole, rather
than just predicting the state, as the way an apple is cut
can differ significantly from the way a bellpepper is cut.
Therefore, accurately recognizing both the object and state
is crucial for tasks related to understanding and generating
videos of object states. We also recognize the importance
of top@3 accuracy, since object states can sometimes be
visually similar, leading to confusion in detecting the cor-
rect composition. For example, julienne apple can be
visually very similar to julienne potato.

5.2. Results

To evaluate our proposed method, we establish base-
lines using both traditional architectures and features for
video action classification, as well as comparing with re-
cent works in compositional action recognition. As shown
in Table 3, in the first section, we use pre-extracted I3D[6]
features and conduct experiments by comparing simple av-
erage pooling, LSTM, and multi-layer Transformer [65]
model. It shows that the Transformer model performs
the best among these variants due to the great capacity
of temporal modeling ability. In the second section, we
also experiment with more recent pre-trained features MIL-
NCE [39] along with transformer models, which outper-
forms I3D features. MIL-NCE [39] features are pre-trained
on HowTo100M [40] with multimodal (RGB+narrations)
setup, which is more robust for video downstream tasks.
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Figure 6. Video parsing graph: For a given video, we use Grad-
CAM[57] on the intermediate frames to identify and visualize the
class activation maps corresponding to the most salient states. Top:
A training video clip has one transition of orange from large
cut → small cut. Bottom: We can learn single transitions
from training data, to generalize transitions in a long video with
multiple state changes and parse the video as a graph.

In the final section of Table 3, we employ the state-of-the-
art compositional video recognition model proposed in [47]
and use pseudo labels of bounding boxes for each hand and
object, as there are no ground-truth hand and object trajec-
tories available. Specifically, the Spatial-Temporal Layout
Transformer (STLT) [47] takes in the spatio-temporal lo-
cations and class labels for each bounding box as input,
uses positional embeddings to project coordinates and class
labels into features, and adds transformer layers to model
spatial-temporal relationships. However, without any ap-
pearance information, STLT achieves low performance on
all metrics. On the other hand, with the appearance features,
which are extracted by inflated 3D ResNet50 [27] (R3D), it
can achieve much higher performances than STLT. Finally,
Cross-Attention Fusion (CAF) applies cross-attention [63]
to fuse the layout (STLT) and appearance (R3D) branch em-
beddings, achieving the best results. It demonstrates that
combining the layout and appearance information together
can help predict object and state types more accurately.

6. Discussion
We discuss the potential future use of ChopNLearn,

while addressing the limitations and scope as well.
Long-term Video Parsing. We use compositional state
recognition to further understand the temporal dynam-
ics [11, 16–18] with the aid of a video parsing graph
construction as previously explored in Ego-Topo [42] and
VideoGraph [23]. Each clip in the training set has one state
transformation (top example in Figure 6). We visualize the
class activation maps corresponding to the most salient in-
termediate state transitions with Grad-CAM [57], to learn
the transition in each frame of the video for training data.
This is illustrated as a graph for a training video. Hav-
ing learned multiple single transformations, we can now
extend this knowledge to understand long activities, with
multiple transitions. As shown in Fig. 6, we can learn state

changes for orange from large cut → small cut
using our training clip. Given a long unseen video with
multiple clips, we can construct a state-transition graph to
represent changes in state for a watermelon. Hence, by
using an extensive array of videos, the process of learn-
ing transitions between individual states can be extended
to encompass transitions between multiple states. This en-
ables the creation of a self-supervised transition knowledge
graph for comprehensive long-term video comprehension,
as demonstrated in [11, 69].
Limitations. With advent of foundation models, few-shot
generalization is an increasingly important task. In this
work, we explore the potential of ChopNLearn for the
research in compositional generation and recognition for
highly complex and interdependent concepts. Admittedly,
ChopNLearn is a small scale dataset with green screen
background, which restricts the models trained on it to have
specific biases. Nonetheless, this is the first attempt to un-
derstand how fine-grained states (cut styles) can be trans-
ferred to diverse objects. We explore this by using ChopN-
Learn as a test set for larger models, fine-tuning these mod-
els using ChopNLearn and trying them with or without a
green screen background. We further see the potential of us-
ing ChopNLearn for benefiting the community in even more
challenging tasks such as 3D reconstruction, video frame
interpolation, state change generation, etc.

7. Conclusion
In this paper, we propose ChopNLearn, a new dataset for

measuring the ability of models to recognize and generate
unseen compositions of objects in different states, a skill
known as compositional generalization. We also introduce
two tasks, Compositional Image Generation and Composi-
tional Action Recognition, and benchmark the performance
of state-of-the-art generative models and video recognition
methods on these tasks. We show the challenges with the
existing approaches and their failure in some cases in their
ability to generalize to new compositions. However, these
two tasks are just the tip of the iceberg. Understanding
object states is important for multiple image and video
tasks such as 3D reconstruction, future frame prediction,
video generation, summarization, and parsing of long-term
video. We hope that our dataset will help the computer
vision community to propose and learn new compositional
tasks for images, videos, 3D, and beyond.
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Jáchym Kolár, Satwik Kottur, Anurag Kumar, Federico Lan-

dini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Man-
galam, Raghava Modhugu, Jonathan Munro, Tullie Mur-
rell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes,
Merey Ramazanova, Leda Sari, Kiran K. Somasundaram,
Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo,
Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu, Pablo
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A. Scope and Limitations

The objective of ChopNLearn dataset is compositional
generation and recognition, using a granular and structural
understanding of transferable object states. Terms such as
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Figure 7. Confusion matrix for generation & action-based tasks.

‘slice’, ‘dice’ alone often lead to a loss of granular infor-
mation. For e.g., a sliced apple can be horizontally or ver-
tically sliced, or cut in the half, and then sliced as semi-
circles. Hence, we use more specific categories than other
traditional state change datasets as shown in Tab. 1. More-
over, the subtle state change understanding is a challenging
task on its own merit [12, 60, 61]. Recognizing/segmenting
actions in a video is a complementary task and an interest-
ing future direction, but is currently beyond the scope of this
work.

Moreover, we acknowledge that making the classes more
granular can be confusing for the model, which appears
similar. To confirm this, in Fig. 7, we show the confu-
sion matrix for generated images (classified by the State-
Classifier, and action-based method using the final states
(CAF+R3D for Split 3 in Tab. 3). We see baton and juli-
enne, half round slice and round slice, are two difficult pairs
for compositional generation. In contrast, the action-based
method can classify most states correctly. We hypothesize
that since action-based methods use trajectory, and multi-
ple frames for classification, the confusion between similar
object-state pairs is significantly reduced.

B. Future Work

B.1. Green Screen Removal (extension).

As described in Section 4.3 of main paper, we chose
green screen to focus on the object states, and such that the
object pieces can be segmented easily. As some preliminary
work, in Figure 8, shows some results on how thresholding
using simple opencv library functions works for segmenting
the object pieces after styles of cuts are applied. Further, we
use Midjourney [2], which is a Stable Diffusion [21] based
text to image generator tool, to generate a set of images with
chopping boards. For each camera angle, we generate 7-
10 images, for red, yellow, blue, white and wooden chop-
ping boards. The captions used for this explain the color
of board, the view or angle and the surrounds, for instance
“empty plastic red colored chopping board in from this view
point –style raw ” is one of the captions used for one view.
Nonetheless, we are aware that achieving precise camera
angles during image generation is a challenging task. Many
of these models exhibit a bias toward placing certain fruits
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Figure 8. We show different uses of our dataset. The first column shows the raw images. The second column shows basic Python based
green screen removal techniques on the dataset. The third column uses generated kitchen chopping board images replacing the green screen
using the segmented object pieces. The fourth column shows results of training stable our benchmark SD+TI+FT model with the images
without a green screen. Further the rightmost four columns show promising results towards 3D reconstruction of deformable objects, which
can be a potential future research problem ChopNLearn can be used for.

or vegetables around or atop the chopping board. As a re-
sult, we have occasionally supplemented the model with
a reference image from the dataset, accompanied by a di-
rective to ”generate the same viewpoint and camera angle
relative to the chopping board.” Despite these efforts, the
outcomes we achieve remain suboptimal, particularly when
it comes to three-dimensional perspectives. The top view
seems to yield the most favorable outcomes for background
generation. We utilize these images to substitute the back-
grounds in segmented images. However, there are instances
where the generated background’s view and angle do not
align with those of the actual image from which the ob-
ject segments originated. This occasionally results in sec-
tions of the objects appearing to levitate above the chop-
ping board. While we acknowledge that the authenticity of
these generated images may sometimes fall short due to oc-
casional inaccuracies in green screen removal and misalign-
ment between object positioning and background image an-
gles, this experiment still holds value in mitigating green
screen bias during model training. Additionally, our anal-
ysis with respect to green screen removal and background
addition sheds light on a significant prospective challenge
– the ability to mat and position objects convincingly from
diverse angles within backgrounds to achieve a realistic ef-
fect. Hopefully, paves the way for new avenues of research
and potential applications of ChopNLearn in the realm of
detailed background matting.

B.2. 3D reconstruction

Collecting data as well as generating 3D models for de-
formable objects is still an open problem. We demonstrate
results of some preliminary experiments with our dataset for
this task. We use RealFusion [37] to recover a promising 3D
scene from a single image of our various cut states Figure 8.
We believe that with our multi-view camera setup, this di-
rection is worth exploring in future work for more accurate
3D reconstruction and can be an interesting task.

Figure 9. Examples of images from the test set and samples from
the generative models presented to participants in the user study



Figure 10. Snapshot of questionnaire presented to participants of
the user study

C. Details of User Study

The purpose of conducting a user study was to see if our
generative models were able to create images that were of
high fidelity and stayed true to capturing the semantic un-
derstanding of the object-state composition provided as a
text prompt. We chose 20 compositions from the test set,
which are unseen as a pair in the training and finetuning
of the generative models. These compositions from the
test set are also given as a text prompt to five generative
models, i) Dreambooth ii) Stable Diffusion iii) Stable Dif-
fusion+Textual Inversion iv) Stable Diffusion finetuned on
our training dataset v) Stable Diffusion + Textual Inversion
finetuned on our training dataset. We evenly chose a distri-
bution of 5 samples per composition, and including the test
set + 5 generative models, we had 6 sets to sample images
from. The total number of images used for the study was
750 and we asked 30 participants to label each of these im-
ages for their object and state as well as rate the realism on
a scale of 1-5. We show some examples of images encoun-
tered in our user study in Figure 9 and a snapshot of how
the user study questionnaire looks like in Figure 10.

D. Compositional Image Generation
D.1. Dataset Split

In the compositional image generation task, we split all
(object, state) compositions into a training set consisting of
87 compositions and a test set consisting of 25 composi-
tions. For each composition of object and state present in
the test set, the training set includes exactly one of either
the object, or the state, but not both. We also ensure that
for each (object, state) composition (o, si) in the test set,
there exists a composition (o, sj) in the training set, where
si and sj belong to the same state related group defined
in Section 3 of our main paper. Each combination in our
dataset has 8-12 images, resulting in a total of 1032 images
in the training set and 296 images in the test set. Fig. 11 il-
lustrates the detailed dataset split used in the compositional
image generation task. In this figure, training compositions
and test compositions are marked with orange and teal, re-
spectively. Unmarked compositions are not included in our
dataset. Fig. 12 and Fig. 13 show some example images in
our training set and test set, respectively.

w: whole
p: peel

lc: large cut
sc: small cut

b: baton
j: julienne

rs: round slice
hrs: half round

: training : test

Figure 11. Dataset Split used in The Compositional Image Gen-
eration Task. Training compositions and test compositions are
marked with orange and teal, respectively. Unmarked composi-
tions are not included in our dataset.

D.2. Number of views.

We assess the impact of the number of views on the im-
age generation task in Tab. 5 using the SD+FT+TI setting.
Using more views improves training data in terms of both
quantity and diversity, yielding results with better patch FID
and object accuracy, and maintaining high state accuracy
even though generating images in more views is more diffi-
cult. The use of 4 cameras also has applications in few-shot
3D reconstruction tasks, which although beyond the scope
of current work, are discussed in Appendix B.

Table 5. Number of views ablation results.
View IDs Object Acc. (%) ↑ State Acc. (%) ↑ Patch FID ↓
1 42.4 78.2 184.7
1, 2 56.8 81.2 121.4
1, 2, 3 66.2 78.3 115.4
1, 2, 3, 4 67.8 81.4 82.2

D.3. Patch FID Details

We propose patch FID to access the quality of the gen-
erated images. In short, it calculates Fréchet Inception Dis-



tance on the image patch level. Specifically, we modify the
standard FID by sampling 224 × 224 random crops from
the real images, as well as the synthetic images. We use 32
patches per image. For each generative model, we compute
patch FID using all available real image patches and 16000
generated image patches, and report the average number for
the test compositions.

D.4. Object State Classifier Details

As mentioned in our main paper, to automatically eval-
uate the correctness of the generated images, we train a
classifier on real images for classifying objects and states
independently. This classifier is built on a CLIP-ViT-
B/32 [48]. To classify an input image, it takes this image
and texts of all possible labels (all objects or all states) as
input. Cosine similarities between the image embedding
and text embeddings of all possible labels are computed as
the classification logits, which are used to calculate the stan-
dard cross entropy loss for classification problems. During
hyperparameter-searching, we fine-tune the CLIP model on
a different training split that all (object, state) compositions
are seen, and report the validation accuracies in the Table 2
of our main paper. One single model is used to predict both
object and state.

After deciding on all hyperparameters and training set-
tings, we train our final-version object state classifier on all
available data in our dataset to maximize its performance.
We keep all parameters in the CLIP model learnable and
train it 2000 epochs using a learning rate of 3e − 5. We
use a batch size of 128, and a warm-up cosine learning rate
schedule [32].

D.5. Method Details

Stable Diffusion. (SD) We briefly describe classifier-free
guidance in diffusion models. Diffusion models generate an
image from Gaussian noise via an iterative denoising pro-
cess. Expected mean square error is used as the denoising
objective:

LDiff = Ex0,ϵ,t∼U(0,1)

[
∥ ϵ− ϵθ(αtx0 + σtϵ, c) ∥2

]
(2)

where x0 is an image and c is the optional condition from
the training data. ϵ is the additive Gaussian noise. αt, σt

are scalar functions of time step t. ϵθ is the diffusion model
with trainable parameters θ. For sampling images from the
text condition, SD employs classifier-free guidance [21],
such that at every time step (during sampling), predicted
noise is adjusted via:

ϵ̂θ(xt, c) = ωϵθ(xt, c) + (1− ω)ϵθ(xt) (3)

where ω is the guidance scale. In our experiments, ω is set
to be 7.5 in all methods using it.
SD + Textual Inversion (TI). In this method, Equation (2)
is used for token embedding optimization. SD weights are

kept fixed during training. We use a learning rate of 3e− 3
with a warm-up cosine learning rate schedule [32], a batch
size of 4, and train the model for 16000 steps.
DreamBooth. The text prompt we used for DreamBooth
fine-tuning is “An image of oi cut in the [V] style”, where
oi is the ith object and [V] is a rare unique identifier rep-
resenting the state this model is fine-tuned for. The goal of
DreamBooth is to overfit a small dataset without drifting too
far away from the pre-trained model. Following the avail-
able open-source implementation, we use a fixed learning
rate of 5e− 6, a batch size of 1, and train the model for 400
steps.
SD + Fine-tuning (FT). We also fine-tune SD while keep-
ing the text encoder fixed. The UNet parameters of the dif-
fusion model are optimized using the diffusion loss defined
by Equation (2). We use a learning rate of 5e − 6 with a
warmup cosine learning rate schedule [32], a batch size of
4, and train the model for 8000 steps.
SD + TI + FT. When combining SD fine-tuning and Tex-
tual Inversion [13] together, we use a learning rate of 5e−6
for all UNet parameters and a learning rate of 3e − 3 for
all added token embeddings. A warmup cosine learning
rate schedule [32] is employed for all parameters. We use a
batch size of 4, and train the model for 16000 steps.

D.6. Additional Qualitative Results

To better compare the compositional image generation
performance of various methods discussed in the main pa-
per, we show additional generated images from them for
seven (object, state) compositions in Fig. 14 and Fig. 15,
where the compositions are from the training set and test
set, respectively.

E. Compositional Action Recognition
E.1. Dataset Splits

Given the diversity of views and object types and styles,
we can construct multiple training and testing splits. In this
paper, we present results on three selected splits. For each
split, we create training, test and validation set. The val-
idation set is for evaluating the model on training classes,
which consists of 10-15% unseen samples for the seen train-
ing compositions. Training and test sets have a disjoint set
of compositional classes, in an 80-20% ratio. All of the
splits in our dataset are created based on object-final state
compositions in the videos.

We leverage these related groups defined in Section 3.1
in the main paper, to create different splits for training and
testing. All splits use multi-view camera angles and involve
creating seen and unseen object-final state compositions in
training and testing sets. This ensures cross-view training
and test splits, as used in other multi-view datasets [58, 66].
The training set consists of samples from three cameras,



Table 6. Input frames ablation. We do experiments on two settings to demonstrate that taking full video as input is necessary. The first
row takes the full length of the video as input. The second row takes the first and last frames of the video as input. Object-final state
classification accuracy is reported here.

Split 1 Split 2 Split 3

Input Model Features acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

Full Transformer [65] I3D [6] 10.9 44.3 14.6 44.2 11.1 44.4
First&Last Transformer [65] I3D [6] 6.3 25.6 9.8 31.0 7.9 34.9

Table 7. Other splits: We also present other possible splits of data. All the results are using I3D [6] pre-trained features along with one
layer Transformer [65] model. Comp. represents the initial: object-initial state composition and final: object-final state composition results
for each split.

Split 4 Split 5 Split 6 Split 7 Split 8 Split 9

Comp. acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

Initial 46.5 78.9 65.2 90.6 37.5 70.8 41.1 76.0 47.2 71.5 41.2 78.3
Final 45.3 75.9 73.9 92.6 37.7 69.2 41.4 72.2 48.9 73.0 42.9 77.6

while the test set includes samples of compositions from
one camera whose view is never seen during training.

Similar to the three splits mentioned in the paper, we
explore multiple other splits, with different constraints to
choose those 3 splits. We find that other splits were not
as challenging for the existing baselines, and hence only
propose 3 splits that are challenging. In Table 7, we present
the results for splits 4-9, which were considered for the data.
We only show I3D [6] based Transformer model for these
splits. All the splits consider the constraints for the object-
final state. The details of each split are as follows:
Split 4: This is the same as the split used for the Composi-
tional Image Generation task (mentioned in Section 4 of the
main paper). We use the related groups to split the object-
final states, such that objects which are seen with one of the
states in a related group in training, are tested on the other
related group during testing. This is also similar to Split 2
in the main paper, however, the multi-view constraint is not
there. All the camera views are used for training and testing.
Split 5: In this split, we have the participant constraint. All
samples from participants 1 and 2 are part of the training
set, while samples from participant 3 are in the test set.
Split 6: This is a combination of split 4 and 5, which has
two constraints: using related groups for splitting object-
final states in different splits, and using only participant id
3 for the test set.
Split 7: This split is about multi-camera view. We use Cam-
era 1,2,3 views in the training set, while the camera 4 view
is part of the test set. No other constraint regarding related
groups for splitting on the basis of object-final states is used.
Split 8: This split is similar to Split 1 in the main paper,
without the multi-camera constraint. The object-final state
compositions are split randomly into train/test. We use all
camera views for both sets, without constraining to distinct

views for each set.
Split 9: This split is similar to Split 3 in the main paper,
without the multi-camera constraint. The object-final state
compositions are split based on random groups for objects
and states. We use all camera views for both sets, without
constraining to distinct views for each set.
We do not have a split having all constraints, i.e. participant
constraint, related groups and multi-view constraint, since
all of these together end up leaving a total of 400 video
clips, which are very few for training and testing. We show
only top@1 accuracy for object-final state composition in
Table 7.

E.2. First and last segment classification

For compositional action recognition, we emphasize that
the model must learn to predict the object-initial state com-
position and the object-final state composition. Moreover,
some works [12, 55] use a similar setup for object state
classification and use only the first and last frame/segment
for this. Ideally, the first few frames and last few frames
should be sufficient for understanding the changes in object
states. We also experiment with the first and last segments
of videos, for classification. The results for the 3 selected
splits (mentioned in the main paper) are in Table 6. We find
that using the additional middle frames improves the classi-
fication accuracy for the final composition.

E.3. Finetuning Backbone

The results we show in the paper without finetuning any
pre-trained features (I3D [6], MIL-NCE [39], R3D [15]).
For the sake of completeness, we also show results with
finetuning the backbone for R3D features in Table 8. Al-
though the top@1 accuracy is much better, it is still not
100%. Moreover, the dataset is much smaller and over-



Table 8. Results of finetuning R3D [15] backbone. “Start/End” denotes the prediction results for the initial and the final state composition
with the correct object type.

Split 1 Split 2 Split 3

Start End Start End Start End

Model Finetune acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

CAF [47] 53.5 88.7 57.8 88.7 55.1 95.7 58.0 95.7 62.0 93.0 63.4 93.0

CAF [47] ✓ 80.3 98.6 87.3 98.6 84.1 98.5 89.9 98.5 88.7 98.6 88.7 98.6

fits very quickly for backbones which are trained on 10x
more data. Hence, for sake of benchmarking, we propose
not fine-tuning the features for consistency.

F. Project Webpage and License
For more details, results and analysis, please visit our web-
site at: https://chopnlearn.github.io.
License. All files in this dataset are copyright by us
and published under the Creative Commons Attribution-
NonCommerial 4.0 International License, found at
https://creativecommons.org/licenses/by-nc/4.0/. This
means that you must give appropriate credit, provide a link
to the license, and indicate if changes were made. You may
do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use. You may
not use the material for commercial purposes.



Figure 12. Example Images In The Training Set. Eight example images are shown in a column for each state. State labels are shown in
the first row. Object labels are marked on the bottom right corner of each image.



Figure 13. Example Images In The Test Set. Eight example images are shown in a column for each state. State labels are shown in the
first row. Object labels are marked on the bottom right corner of each image.



Figure 14. Additional Compositional Generation Samples Using Training Compositions Ground Truth (GT) real images are shown in
the first row for reference. Seven object-state compositions in the training set are displayed, each with four generated samples for each
method. Please zoom in to see the details.



Figure 15. Additional Compositional Generation Samples Using Test Compositions Ground Truth (GT) real images are shown in the
first row for reference. Seven object-state compositions in the test set are displayed, each with four generated samples for each method.
Please zoom in to see the details.


