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Abstract—This paper addresses the problem of selecting in-
stances of a planar object in a video or from a set of images based
on an evaluation of its “frontalness”. We introduce the idea of
“evaluating the frontalness” by computing how close the object’s
surface normal aligns with the optical axis of a camera. The
unique and novel aspect of our method is that unlike previous
planar object pose estimation methods, our method does not
require the true frontal image as a reference. The intuition is that
a true frontal image can be used to produce other non-frontal
images by perspective projection, while the non-frontal images
have limited ability to produce other non-frontal images. We
show that this intuition of comparing ‘frontal’ and ‘non-frontal’
can be extended to comparing ‘more frontal’ and ‘less frontal’
images. Based on this observation, our method estimates the
relative frontalness of an image by exploiting the objective space
error. We also propose the usage of K-invariant space to evaluate
the frontalness even when the camera intrinsic parameters are
unknown (e.g., images/videos from the web). We show that
our method outperforms the homography decomposition-based
method which also does not require reference images. In addition,
a qualitative evaluation is carried out to show that our method
can be applied in selecting the most frontal characters from a
set of images captured in various viewpoints.

I. INTRODUCTION

Consider a crumpled receipt or a folded document which
one would like to capture and save using a mobile device. It
is often impossible to find the precise location and pose to
capture the entire source with perfect quality. This is because
some portions of the documents would not be directly facing
the image plane while other portions may be out of focus, or
experience inconsistent lighting. (Figure 1)

One possible solution is to capture and model the 3-D
structure to “flatten” the document using dewarping algorithms
to reconstruct the original planar surface. However, these
methods either require external sensors such as structured
light [1], [2] or light grid projectors [3] which makes them
inconvenient or even impossible for typical users or cannot
handle complex distortion. It also may not be desirable in
outdoor environments. Instead of seeking to recover the whole
document at once, an alternative approach may be to attempt
to recover locally “optimal” portions of the image, from a
collection of possible poses.

In another task, consider having an interest in a planar
object, such as a book cover or business logo, in a movie or
a long video. If one wants to find a frame which best depicts
that object with respect to its pose, one may have to manually

Fig. 1. Set of frames showing a folded document in different poses
representing the case of crumpled document.

Fig. 2. Set of frames extracted from a video which shows different poses of
an object of interest.

browse through the entire video. An example set of frames for
such a case is shown in Figure 2.

As suggested in the case of crumpled documents, one may
assert that this can be handled by applying a pose estimation
solution for planar objects which seeks to estimate the relative
pose of an object with respect to a reference (frontal) image.
This has been addressed in a number of articles including [4]–
[6] which were shown to have reliable and stable performance.
However, these methods all share the same limitation in that
they assume the reference model (frontal image) is provided
a priori. This makes them unsuitable for handling this case
because the assumption of having an ideal frontal image
beforehand directly conflicts with the very purpose of our
goal. Homography decomposition [7]–[9], on the other hand,
does not require this assumption and can estimate the surface
normal of a planar surface with respect to the optical axis of a
camera when given a pair of images. However, it suffers from
highly unstable performance and also provides results which
are ambiguous.

We claim that these problems can be handled in a common
framework which relies on analyzing the poses of the local
planar targets and selecting the best one when given images
or a video which span different viewpoints. Without loss of
generality, the best shot of a planar target can be considered
as the one capturing the pose closest to the frontal pose of the
target.

In this paper we develop the concept of evaluating the
frontalness of the image of a planar source by measuring how



well the surface normal of a planar object aligns with the
optical axis of a camera. We show that measuring the relative
frontalness can be analyzed by noting that if an image is
assumed to be a true frontal image (as a reference), but is not,
it shows limited ability to represent other non-frontal images.
In other words, a less frontal image has less representability
for different poses of an object than a more frontal image.
Based on this observation, we estimate the relative frontalness
by comparing the objective space errors for a given image
pair, first setting one of the two images as the true frontal
image (reference image), then setting the other. Objective
space error values are acquired by applying a state-of-the-art
pose estimation algorithm for planar objects [4].

II. OUR METHOD

A. Overview

We assume that we have a short video or camera burst of a
planar source, captured from different orientations, sufficient
to adequately capture at least one instance that would be
considered acceptably “frontal”. Given a pair of candidates,
our goal is to evaluate the relative frontalness of the images
and select the one which is more frontal. Through multiple
pairwise comparisons, we can ultimately find the best or most
frontal candidate. Since our method does not use any temporal
information, it can be applied to any unordered set of images
in an equivalent manner.

In order to evaluate the relative frontalness of a target,
we use a pose estimation error-based method. Typically, pose
estimation is used to estimate the pose of an object with
respect to a set of model points which are assumed to be
known beforehand. However, in our case, the pose estimation
algorithm is employed to measure the pose estimation error,
or objective space error for an image with respect to another
image. Thus, to compare the pose estimation errors for each
image in a pair, the error is computed twice, once with the
first image as the reference model and the second time with
the other image as the reference model.

The intuition behind this process is that, when the true
(or more) frontal image is used as a reference image, the
pose estimation error is smaller than the case where non
(or less) frontal image is used as the reference. This occurs
because a true-frontal image can be used to reproduce non-
frontal images by perspective projection, whereas the non-
frontal image has a limited ability to reproduce other non-
frontal images. Detailed explanation on our method is included
in the following subsection.

B. Frontalness evaluation with known intrinsic camera pa-
rameters (K)

Let us first summarize the typical approach for a pose
estimation procedure. Consider n coplanar model points pi

=
[
pix piy 0

]T
in reference coordinate system. These points

can be transformed into the camera coordinates vi by:

vi ∝ Rpi + t, (1)

where ∝ indicates that the left hand side is directly propor-
tional to the right hand side, due to the fact that vi can only
be computed up to a scale. Note that R and t indicate the
3 dimensional rotation and translation vectors, respectively,
which are also known together as extrinsic camera parameters.
Under the assumption that the image coordinate system aligns
with the reference coordinate system, the task of estimating
the pose of a camera with respect to the reference coordinate
system, is to estimate R and t. So in principle, a pose
estimation algorithm seeks to find the values for R and t that
minimizes an error function. We use the object-space error, as
used by [4], [6], [10], which can be written as:

Eos(R̂, t̂) =

n∑
i=1

‖ (I−V̂i)(R̂pi+t̂) ‖2 with V̂i =
v̂iv̂i

t

v̂i
tv̂i
. (2)

For evaluating frontalness, we exploit the objective error
itself which is being minimized in the pose estimation process
instead of utilizing R̂ or t̂. When given a pair of images,
we first acquire a set of corresponding features from both
images (in our case, SIFT [11] and RANSAC [12]). These
feature coordinates are then normalized (i.e., transformed to
camera coordinates) using the camera intrinsic parameters
(represented by the matrix K) which are assumed to be known.

Using the transformed feature coordinates, we perform the
pose estimation (Eq. 2) twice. In each case, one of the two
images is chosen as the reference image. Lastly, we compare
the two error values to decide which one better fits as the
reference image or “which one is more frontal”. Note that the
smaller error value indicates that the reference image has been
chosen well and this image serves better as a representative
for the other image.

The overall process of frontalness evaluation given a set
of corresponding feature coordinates extracted from a pair of
images (image i and image j) is computed as shown below:

f∗ =

{
i, Ep(j|µ = i)/Ep(i|µ = j) ≤ 1

j, otherwise
(3)

where f∗ and µ indicate image to be chosen (more frontal
of the two) and the model frame, respectively. Also note that
Ep(j|µ = i) indicates the pose estimation error of image j
when image i is set as the reference image.

To verify that our method of comparing Ep is a reasonable
approach for frontalness evaluation, we have run a simulation
using a synthetic dataset generated by a perspective camera
model with known K. The images of a number “5” in various
poses were captured by rotating the camera between −70◦ to
70◦ with respect to the y axis (Figure 3a). Each graph in Figure
3b is acquired by plotting the objective space error (Ep) for
all the images in the dataset with respect to a reference model
(µ). Observe that the Ep values generate a smoothly changing
plot which is minimum when the reference model (µ) is used
as the test model.

Now consider one example of comparing the Ep val-
ues which correspond to the two locations with the circle



(a)

(b)

Fig. 3. (a) Synthetic images of number “5” with various rotations captured by
perspective camera model. (b) Objective space error plot for different reference
images. X-axis: Test image angle (−70◦ to +70◦), Y-axis: Ep.

and the triangle marks in Figure 3b. It clearly shows that
Ep(−60◦|µ = −40◦) is smaller than Ep(−40◦|µ = −60◦),
and this verifies that the image with −40◦ angle is indeed
“closer to the true frontal” than the image with −60◦. By
comparing any two Ep values in two different plots, one can
verify that the method can be applied in general.

C. K-Invariant projective space

In applying the method described in the previous subsection,
we assume that the camera intrinsic parameters (K) are known.
This means it remains a challenge for uncalibrated cameras
where K is inconsistent or unknown [13]. There may be a case
where K is constantly changing due to zooming even if a same
camera is used. When the goal is to evaluate a set of randomly
collected images from a web search, K is also unknown and
most likely different for each image. In such cases, we need
to transform the points from two images onto a space to make
them invariant to the camera intrinsic parameters. This can
be done by using a projective transformation as used in [14],
[15].

Consider three non-collinear points in one image
(p1,p2,p3) and their corresponding points in a second
image (p∗

1,p
∗
2,p

∗
3), both in image coordinates. The image

coordinates of these points are acquired by equations:

P = KV and (4)

P∗ = K∗V∗. (5)

where P = [p1 p2 p3], V = [v1 v2 v3], P∗ = [p∗
1 p∗

2 p∗
3],

and V∗ = [v∗
1 v∗

2 v∗
3]. Here, vi is a point represented in

camera coordinates as in Eq. 1. Since we assumed that these
three points are not collinear, matrices P and P∗ are non-
singular which can define two different projective spaces,
for example, γ and γ∗. Thus, we can transfer the points
in the images onto the projective spaces as w = P−1p and
w∗ = P∗−1p∗, respectively. Considering these equations with
Eq. 4 and Eq. 5, we can observe that w and w∗ are invariant
to K as shown below:

w = P−1p = V−1K−1Kv = V−1v and (6)

Fig. 4. Sample images from the dataset including scanned frontal images
(top row) and corresponding non-frontal images (bottom two rows).

w∗ = P∗−1p∗ = V∗−1K∗−1K∗v∗ = V∗−1v∗. (7)

For generating the matrices P and P∗, three non-collinear
points from each images need to be chosen. These points
are automatically chosen so as to maximize the spacing as
recommended in [16]. We will show in the following section,
that this approach indeed increases the accuracy of frontalness
evaluation on images with unknown K.

III. EXPERIMENTAL EVALUATION

The experimental evaluation was carried out by targeting
two real data scenarios based on the availability of camera
intrinsic parameters (K). First, we evaluated our method
assuming that the camera is calibrated (i.e., K is known).
The camera intrinsic parameters were obtained beforehand
using the the calibration method introduced in [17]. We
compare the performance of our method with the homography
decomposition-based method [8].

Second, we performed an evaluation on images under the
assumption that K is unknown. In this scenario, we compare
the performance of two different methods: 1) our method with
a known or fixed K and 2) our method which uses a K-
invariant space.

For both experiments, frontalness evaluation was performed
on each possible pair of images deciding which of the two
images is more frontal. The overall accuracy is computed
as the percentage of the correct pairwise decisions over all
possible pairs in the given dataset.

Lastly, we include two samples results which qualitatively
verify that our method performs well in selecting the most
frontal image from a set of images.

A. Experiment 1: Calibrated Camera, Known K

We have constructed a new dataset as there are no public
dataset available targeting the evaluation of frontalness. The



TABLE I
FRONTALNESS EVALUATION ACCURACY

Homography-decomp 68.35%
Ours 86.04%

dataset consists of 1200 images which were captured using
the camera on iPhone5s with the resolution of 3264 x 2448
(w x h). This includes 30 different planar objects (books, docu-
ments, boxes), with each object being captured in 40 different
camera angles and distances. The images were captured so
that the angle between the optical axis of the camera and
the surface normal of the plane ranges between 0◦ to 50◦,
approximately, distributed in various random directions.

To evaluate the performance of each decision, the angle
between a test image and the optical axis of the camera should
be provided as groundtruth. Since it is difficult to directly
measure and work with the optical axis of a camera, we
computed the angle between each image in the dataset (non-
frontal) with respect to its corresponding true frontal shot. The
pose estimation method in [4], which is known to be one of
the state-of-the-art in robustness and accuracy, was used to
compute the angles and be saved as the groundtruth. The true
frontal image of each planar object was acquired by scanning
the frontal surface of the object using a flatbed scanner. Figure
4 shows some of the selected images of frontal (scanned) and
non-frontal shots from the dataset.

Each decision is made in a pairwise manner. Thus, testing
was performed on every possible image pair in the dataset,
which sums up to 23.4k pairs. The frontalness evaluation
accuracy of our method and the homography decomposition-
based method (baseline) for the overall dataset is shown in
Table 1. Our method clearly outperforms the baseline method.

To better analyze the capability of our method with different
difficulty levels, we have defined the measure of difficulty, ν,
which can be computed for each image pair. We use the cosine
similarity as the measure which is shown below:

ν =
A ·B

‖ A ‖‖ B ‖
=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

, (8)

where A and B are the two surface normal vectors of the two
given images which are provided by the groundtruth.

The plot in Figure 5 shows the performance of our method
with respect to the 7 different difficulty levels along with
two sample pairs with minimum and maximum difficulty. The
accuracy goes up to 97% for the easiest pairs while it performs
71% for the most difficult ones. Note that, however, as the
difficulty level goes up, the appearance of the image pairs
begin to resemble with each other, thus having low risk even
if the decision is incorrect.

The frontalness evaluation of each pair of images requires
less than a second (0.54 seconds in average for the given
dataset) with MATLAB implementation on Intel Core i5 PC

Fig. 5. Frontalness evaluation accuracy with respect to difficulty levels.
Testing dataset size = 23.4k pairs.

Fig. 6. Sample images from the dataset for cases with unknown K.

(2.6GHz CPU, 4GB RAM) excluding the feature extraction
time.

B. Experiment 2: Randomly Collected Images, Unknown K

Our method explained in Section III-A which assumes that
K is given, is not suitable for handling images captured with
cameras with unknown intrinsic parameters. To validate the ef-
fectiveness of using K-invariant space with a pose estimation-
based method, we have collected images of 3 different planar
objects (a FedEx logo, a UPS logo, and a Wall Street sign),
each at various rotations. For each planar object, 20 non-planar
images are included along with the one true frontal image
for each object. Note that there are 190 possible pairs for
each object for evaluation. The groundtruth for each pair was
generated in an equivalent manner as described in Experiment
1. The images were downloaded from the internet and sample
images are shown in Figure 6.

We compare the performance of two different methods: our
method which assumes known/fixed K, our method which uses
K-invariant space (KIS). When applying the method which
assumes known/fixed K, we have used the K of our pre-
calibrated camera to transform the points to camera coordi-
nates in order to make a fair comparison. The performance
comparison is shown in Figure 7 and it depicts the effective-
ness of applying the K-invariant space. However, the overall
performance does not quite reach the accuracy shown in the
known/fixed K cases.

C. Qualitative Results

In addition, we show that our method can be used in
selecting the best characters from a set of 40 images with



Fig. 7. Frontalness evaluation accuracy on dataset with unknown K. Using
K-invariant space (KIS) shows its effectiveness.

(a)

(b)

(c)

Fig. 8. (a) Sample Images of a folded document captured in different
viewpoints. (b) Characters with highest frontalness. (c) Characters with lowest
frontalness.

various viewpoints. The sample images are shown in Figure
8a. Each character in different images are assumed to be
residing on piecewise planar surfaces. Bounding boxes for the
characters were manually assigned so that the evaluations are
carried out within the same set of characters. Compare the best
set of characters with the worst set of characters in Figure 8b
and Figure 8c, respectively.

In addition, our method of performing the pairwise compar-
ison of the Ep values can easily be used on a set of images
to order them in terms of their frontalness. We have selected
one of the objects from the dataset introduced in III-A and
applied our method. The resulting ordered images are shown
in Figure 9.

Fig. 9. Ordered images with respect to their frontalness, from high to low.

IV. CONCLUSION

In this paper, we have devised a novel method for evaluating
the frontalness of planar objects. Our method takes a pair of
images at a time to measure the relative frontalness between
the two by exploiting the objective space error. Each run
only requires a fraction of a second which makes it possible
to be applied in real applications. Unlike the previous pose
estimation methods that strictly require a true frontal image
of the target object as a reference model, our method does
not require any reference model. Moreover, by introducing
K-invariant space, we show that the proposed method can
be applied even when the camera intrinsic parameters are
unknown. The approach can be applied to optimizing the
reconstruction of severely crumpled documents from a short
video scan, especially the cases where a character or any
continuous content reside on two or more piecewise planar
surfaces. In addition, bringing more efficiency in terms of
computation time would trigger real time applications or auto
capturing of planar objects using mobile devices.
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