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Abstract— Robotic Assisted Feeding (RAF) addresses the
fundamental need for individuals with mobility impairments to
regain autonomy in feeding themselves. The goal of RAF is to
use a robot arm to acquire and transfer food to individuals from
the table. Existing RAF methods primarily focus on solid foods,
leaving a gap in manipulation strategies for semi-solid and
deformable foods. This study introduces Long-horizon Visual
Action (LAVA) based food acquisition of liquid, semisolid,
and deformable foods. Long-horizon refers to the goal of
“clearing the bowl” by sequentially acquiring the food from
the bowl. LAVA employs a hierarchical policy for long-horizon
food acquisition tasks. The framework uses high-level policy
to determine primitives by leveraging ScoopNet. At the mid-
level, LAVA finds parameters for primitives using vision. To
carry out sequential plans in the real world, LAVA delegates
action execution which is driven by Low-level policy that uses
parameters received from mid-level policy and behavior cloning
ensuring precise trajectory execution.

We validate our approach on complex real-world acquisition
trials involving granular, liquid, semisolid, and deformable food
types along with fruit chunks and soup acquisition. Across 46
bowls, LAVA acquires much more efficiently than baselines with
a success rate of 89± 4%, and generalizes across realistic plate
variations such as different positions, varieties, and amount of
food in the bowl. Code, datasets, videos, and supplementary
materials can be found on our website.

I. INTRODUCTION

For individuals with limited mobility or disabilities, the
act of feeding themselves can pose a significant challenge.
This challenge has motivated the development of Robotic
Assisted Feeding (RAF) [1] aiming to restore independence
and enhance the quality of life for those affected, while also
alleviating the caregiver burden. A key component of such
an assistive feeding system is bite acquisition, i.e., the act
of a robotic arm picking up morsels of food from a plate to
transfer the food to a person’s mouth.

Navigating the diverse array of foods—from granular
cereals to semi-solid food such as yogurt and deformable
food items such as tofu—without breakage or deformation
presents significant challenges for RAF [2], [3]. Additionally,
the dynamic positioning of food chunks within a fluid
medium complicates the prediction of their exact location
at the time of scooping, requiring sophisticated sensing and
real-time adaptation capabilities. This underscores the need
for RAF systems to exhibit not only dexterity but also an
advanced understanding of the dynamic nature of various
food types and operate over a long horizon to clear the bowl.

Traditional RAF methodologies have depended on
hard-coded adaptation strategies and low-level vision-
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Fig. 1: System setup for LAVA alongside an illustrative
description of the proposed framework with snapshots of task
execution.

parametrized primitives for food manipulation, employing
distinct tools and primitives for specific tasks such as skew-
ering [4]–[7], bite transfer [4], [8], [9], scooping [2] and even
end-to-end system [10], [11].

This approach, while effective for singular, isolated ac-
tions, falls short in replicating the complex, sequential be-
haviors exhibited by humans during feeding. Humans adeptly
combine various actions, such as scooping both solid chunks
and liquid from a bowl in a single motion or rearranging
food items for easier acquisition, demonstrating a nuanced
understanding and strategy that spans the entire meal. This
limitation underscores a gap in RAF technology and high-
lights the need for an advanced understanding and replication
of human-like, long-horizon feeding strategies capable of
managing both the rigidity of solid foods and the complexity
of deformable items.

Recent advancements in skill-based reinforcement learning
(RL) offer promising methodologies for modeling these com-
plex, long-horizon manipulation sequences in a hierarchical
manner. This entails first learning a high-level policy for
composing skills [12], and then optionally inferring the
parameters of low-level skills separately [13], [14]. Such
approaches have shown potential, yet they face limitations
when applied to the food domain, which demands high-
fidelity models for food deformation, visual recognition,
and utensil interaction not fully captured in current sim-
ulations. While VAPORS [7] demonstrates effective long-
horizon planning for specific food items such as noodles, it
relies heavily on simulation for learning plate dynamics and
lacks adaptability and applicability in real-world scenarios
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Fig. 2: LAVA: System Architecture of LAVA wich employs a high level policy(blue) πH to select amongst discrete high
level primitives P k

H , such as wide primitive and Deep primitive, which then further gets refined by mid-level policy (green)
πM to select amongst mid-level primitivesP k

M , low-level vision parametrized policy πL (brown) executes trajectory learned
from Behavioral cloning for long-horizon dextrous food acquisition.

for broader categories of food types.
Thus, we seek to find an appropriate layer of abstraction

for feeding, which can leverage the benefits of (1) hierarchi-
cal planning for long-horizon manipulation; (2) vision-based
primitives for fine-grained control; and (3) flexible approach
that can dynamically adapt to the wide variety of challenges
presented by different food types.

Recognizing these challenges, this work introduces LAVA
(Long-horizon Acquisition via Visual Action), as a hier-
archical policy for sequential planning of food acquisition
(see Figure 1). Our approach is decoupled into three level-
policy: a high-level policy that identifies primitives based on
visual inputs; a mid-level policy to refine these primitives
and parameterize the actions of the lower-level policy and
a low-level policy to use those parameters to rearrange and
acquire food items and sequentially clear the bowl.

The key contributions of this paper are:

• We present a comprehensive hierarchical policy frame-
work for long-horizon, visual-action-based food ac-
quisition that systematically divides the task of food
acquisition into high-level decision-making, mid-level
action refinement, and low-level execution.

• Our method showcases adaptability and robustness
across a diverse range of food types, effectively clearing
bowls. It addresses and surpasses previous limitations in
adaptability to various food types and the challenge of
completing meals.

• We introduce a dataset of food items, showcasing differ-
ent volumes and spatial arrangements within the bowl.

• We evaluate the learned scooping policies through real-
world deployment system with UR5e and end-effector
coupled with spoon attachment and D435i RealSense
camera on the wrist.

The remaining of the paper is organized as follows.
In Section II, we review related work on robotic assisted
feeding, imitation learning, and long-horizon planning. In
Section III, we present the problem statement. In Section
IV, we introduce the multi-level policy including high-level
policy, mid-level policy, and low-level policy. In Section V,
we present and discuss the real robot experimental results
and compare them with the baseline. Finally, Section VI,
concludes the paper with lessons learned and possible future
work.

II. RELATED WORK

We build on prior works studying multisensory robot
learning and long-horizon task planning both within and be-
yond the food domain. In this section, we will discuss related
work in robot-assisted feeding, learning from demonstration,
and more generally long-horizon planning and control.

A. Robotic-Assisted Feeding

Robotic Assisted Feeding (RAF) can be split into two
stages: bite acquisition and bite transfer. Previous work in
RAF focused on bite acquisition and transfer with the aid



of robotic arms and specialized tools such as spoons and
forks [2], [4], [6], [8], [15]. The incorporation of computer
vision has enabled these systems to adapt to various food
types and user preferences, with models such as SPANet
[5] demonstrating proficiency in mapping food images to
actions. However, challenges remain in handling semi-solid
and deformable foods, where generalizable strategies are
scarce and bimanual scooping [2] techniques have shown
limited success. Market-available devices [11] offer meal-
time assistance but are constrained by their reliance on
teleoperation and the physical limitations of their design.
In isolation, this does not capture many long-horizon real-
world feeding scenarios with multiple utensils and strategies.
While prior research has made strides in visual planning and
manipulation for specific food items [7], a comprehensive
approach that addresses the adaptability to a wide array of
food types and real-world feeding scenarios is still needed.

B. Learning from Demonstration

Learning from Demonstration (LfD) is a methodology
where robots learn new skills by observing expert demon-
strations, which can be performed by humans or intelligent
agents. This approach is particularly useful for tasks that are
challenging to pre-program but can be easily demonstrated.
LfD has been applied across various domains, including
robotic assembly in manufacturing [16], path planning for
complex tasks [17], assistive technologies in rehabilitation
[18], and intricate picking and placing tasks [19]. The
technique is divided into three main approaches: kinesthetic
teaching [20], where a human physically guides the robot;
teleoperation [21], where the robot is remotely controlled;
and passive observation [22], where the robot learns by
watching. Our research primarily utilizes kinesthetic teaching
to instruct a UR5e robot arm in scooping tasks. Within
LfD’s learning objectives, our focus is on developing policies
for handling semi-solid and deformable food items, and
optimizing their scooping trajectories.

C. Long-Horizon Planning and Control

Recent works in long-horizon manipulation frameworks
have explored separating high-level strategic decision-
making from detailed motion planning. Traditional task-
and-motion planning approaches rely on extensive domain
knowledge and fixed task sequences [23]–[25], but falter
due to the unpredictable dynamics of food on a plate and
the complexity of state estimation. Model-based planning
has shown promise in tasks such as dough manipulation by
using environment dynamics learned from visual inputs to
plan action sequences [12], [26]. However, these methods
struggle with the high-dimensional action spaces typical in
food acquisition. Hierarchical reinforcement Learning of-
fers a solution by dividing decision-making into high-level
strategic planning and execution by discrete, parameterized
low-level primitives [27]. While promising in simulation for
tasks such as tabletop manipulation [13], [14], these methods
have limitations in real-world application and handling the
diverse and complex manipulation tasks required for effective

feeding. Our work aims to address these gaps by focusing
on the adaptation to real-world scenarios and the develop-
ment of specialized primitives for a wide variety of food
items, challenging the scalability of current approaches and
introducing the necessity for innovative solutions in robotic
feeding.

III. PROBLEM STATEMENT

In this work, we tackle the challenge of sequential bite
acquisition to maximize the success rate and efficiency
of long-horizon food acquisition to ensure efficient bowl
clearance. The focus is on a variety of food types, ranging
from granular items such as cereals to semi-solid foods such
as yogurt, and deformable substances such as tofu, all within
a bowl fixed in position and assumed to be scoopable with
a spoon.

We assume access to bowl image observations o ∈
R+

W×H×C = O of unknown bowl states S. Here, W , H ,
and C denote the image dimensions. The image is sourced
from a camera attached to the wrist of the robotic arm
with a custom spoon attachment as an end-effector. We have
access to expert demonstration data for robot proprioceptive
information (joint positions). Our goal is to learn a policy
π(ϕt|ot) that takes RGB images as input (ot) and returns
output as joint angles θt of the arm for efficient long-
horizon food acquisition. In this context, long-horizon refers
to a series of sequential actions aimed at complete bowl
clearance.

IV. PROPOSED APPROACH

We formalize the long-horizon food acquisition setting as
a hierarchical policy π. To do so we decouple π into separate
high, mid, and low-level sub-policies. We assume access to
K discrete manipulation primitives P k

H , k ∈ 1, ...,K, and
learn a high-level policy πH which selects amongst these
primitives based on visual input ot. The mid-level policy πM
further refines this selection, parameterizing the low-level
policy πL based on both the chosen primitive and additional
visual inputs.

This low-level policy then executes a sequence of actions
θkt , aimed at achieving precise food acquisition. This hierar-
chical arrangement is formalized as follows:

• High-level policy: πH(P k
H |ot) focuses on selecting the

manipulation primitive suitable for the current visual
scene.

• Mid-level policy: πM (P k
M , ψ

k
M |ot, P k

H) refines this
choice by parameterizing actions tailored to the specific
food item’s characteristics.

• Low-level policy: πL(θkt |P k
M , ψ

K
M ) executes the action

sequence, utilizing parameters and primitives from the
mid-level policy.

We consider low-level actions θt, parameterized by the
position of the tip of a spoon (x, y) and spoon roll and pitch
(γ, β) in the wrist frame of reference. As shown in Figure 2
detailing the LAVA setup, we describe each module in LAVA
in further detail.



A. High-level Policy

At the highest level of our hierarchical model, the high-
level policy πH(P k

H |ot) uses visual cues to select the most
suitable scooping primitive—Wide Primitive (PW

H ) and Deep
Primitive (PD

H ), based on the food type present.
1) Wide Primitive (PW

H ): Wide Primitive, is a strategy
developed for handling foods that lack cohesion or are de-
formable, such as tofu or certain types of jelly. This method
involves using the bowl’s wall as a guide and support mech-
anism for the scooping action. By gently pressing the food
against the wall of the bowl, it creates a pseudo-cohesive
mass that can be scooped more easily. This technique is
especially useful for foods that tend to scatter or break apart,
as the wall provides the necessary containment to gather
and scoop the food effectively. Instance scooping requires
sophisticated control over the spoon’s movement, including
adjusting the angle applied against the food and the bowl
wall, to achieve the desired outcome without compromising
the integrity of the food or missing the target. It requires
identifying the target instance to not collide with other
instances or break them in the process. The wide primitive
is implemented with the other two mid-level primitives align
and wall-guided scooping described in Section IV-B.1

(7, 7, 1280)
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Fig. 3: ScoopNet outputs the softmax probabilities over the
high-level primitive depending on the type of food items
present in the image.

2) Deep Primitive (PD
H ): Deep Primitive, on the other

hand, is a straightforward approach designed for foods that
possess enough cohesion to be picked up directly by a
spoon without requiring additional support or manipulation.
This method is particularly effective for liquid and semi-
solid foods such as yogurt or porridge, where the food’s
natural consistency allows it to adhere to the spoon when
scooped directly from the top or side. The key to successful
direct scooping lies in the precise control of the spoon’s
trajectory and depth of penetration into the food, ensuring
that a sufficient quantity is acquired without disturbing
the remaining contents of the bowl excessively. The deep
primitive is implemented with the direct scooping mid-level
primitive described in Section IV-B.2

3) ScoopNet (πH ): ScoopNet is a network designed to
select between the two high level primitives based on the
type of food, utilizing the MobileNetV2 architecture [28]
as the base. We train on a dataset of 5316 images from a

custom collection and additional sources, targeting binary
classification of high-level primitives P 1

H , ..., P
k
H . We used

data augmentation (including rotations, zooms, and flips)
to increase robustness against food image variations. Our
dataset is available online.

The network is initially trained on the ImageNet dataset,
with a customized final layer for specific task adaptation.
This configuration, along with a Global Average Pooling
layer and two dense layers ending in a sigmoid activation,
uses the Adam optimizer and binary cross-entropy loss for
accurate classification. The detailed architecture, ScoopNet,
is depicted in Figure 3. The output of ScoopNet is softmax
probabilities over high-level primitives.

B. Mid-level Policy

The Mid-level Policy πM (P k
M , ψ

K
M |ot, P k

H) serves as the
intermediary layer that refines and parameterizes the cho-
sen primitive for execution. This refinement is crucial for
bridging the gap between high-level strategy selection and
low-level action execution.

1) TargetNet (πM1) for Wide Primitive: We have de-
signed TargetNet, shown in Figure 4, that uses Mask R-
CNN, tailored for the task of identifying and segmenting
target food items such as tofu in a bowl, crucial for executing
wide primitives. This model precisely segments food items,
enabling the selection of appropriate mid-level primitives:
wall-guided scooping and center align (described later in this
section).

We use a custom dataset annotated for bowl, tofu, and
target scooping areas, TargetNet employs transfer learning to
accurately segment food items against diverse backgrounds,
increasing its generalizability. In Section V-D.3, we report
zero-shot generalization results for other types of food items.
The model’s training includes a COCOEvaluator to ensure
segmentation accuracy meets COCO dataset [29] standards.

Segmentation Subregions Target Instance

R3

RGB Image

R2 R1 (𝑃!"# , Ѱ!"
# )

Fig. 4: TargetNet finds the next “target” item for the wide
high-level primitive and the mid-level primitive that decides
whether to scoop the target item or to align it first.

Post-training, TargetNet creates a binary mask for pixels
that are “occupied” by instances of food items. We divide
the surrounding region of interest into sub-regions. If a sub-
region intersects the bowl boundary, it is considered to be
“occupied.” Otherwise, it is “unoccupied.” A food item is
classified as “R1” if it is rightmost and closest to the wall,
“R2” if the food item is at the center of the bowl, and
“R3” otherwise. The subsequent visualization and centroid
calculation steps of detected instances help with determining
its location in subregions of the bowl and its location with
respect to the center of the bowl, selecting between mid-level



primitives —Wall-guided Scooping(P 1
M1) or Align(P 2

M1)
and predicting parameters for low-level policy.

Wall-guided Scooping (P 1
M1, ψ

1
M1) The Wall-guided

Scooping strategy, parameterized by δ—the centroid distance
of the target instance from the bowl’s center—adapts its
approach based on the target’s proximity to the bowl’s wall
and the sub-region. For food items in subregion R1, the
strategy uses the wall’s structural support for a scooping
action. Conversely, items in central subregion R2 require a
pre-scooping alignment, tactically moving the food towards
the wall to simplify the scooping motion.

Align (P 2
M1, ψ

2
M1) The alignment step is essential for

orienting the spoon to the target instance and guiding its
movement toward the bowl’s center. This procedure takes
into consideration the centroid coordinates of the tofu (xt, yt)
and the bowl’s center (xb, yb) as well as the spoon’s roll (γ)
and pitch (β). Two key parameters are computed:

• Spoon Orientation Angle: Calculated as γ =
arctan( yb−yt

xb−xt
), this angle determines the necessary

rotation of the spoon to align with the target instance,
ensuring the spoon is positioned for optimal interaction
and is untilted for planar push (β = 0◦).

• Instance Push distance: Determined by (xt, yt, xb, yb),
the instance is pushed from its current position towards
the bowl’s center, optimizing the positioning for the
scooping action.

2) DepthNet (πM2) for Deep Primitive: DepthNet is
designed for depth detection of food in a bowl based on
visual input ot and high-level primitive received from high-
level policy. The architecture of DepthNet is outlined in
Figure 5.
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Fig. 5: DepthNet detects the depth (h) of the food in the
bowl.

DepthNet utilizes a vision-based approach to estimate the
volume of food in a bowl, employing a Sequential model
with convolutional layers of 32, 64, and 128 filters for feature
extraction. These layers are augmented with batch normal-
ization for improved training stability and dropout layers
at rates of 0.25 and 0.5 to prevent overfitting. MaxPooling
layers help reduce the dimensions of feature maps, increasing
the model’s efficiency. After convolutional processing, the
model uses a flattened layer for data restructuring, followed
by a dense layer with 32 neurons (using ‘relu’ activation)
for feature processing. The architecture culminates in a final
dense layer with a single neuron (using ‘linear’ activation)
to predict the food’s depth. DepthNet has been trained on a
dataset of 1000 cereal images, categorized into three depth
ranges in the bowl: 5.5 cm, 4 cm, and 2 cm, enabling precise

depth estimation in varied food scenarios.
Direct scooping (P 1

M2, ψ
1
M2) The direct scooping strategy

employs a feedback mechanism centered on a predefined
scooping axis, (β = 0◦). The strategy utilizes the trained
model on a dataset of correct trajectories taken by an expert
human to scoop food from the bowl where the input is the
position of the robotic arm relative to the bowl along with the
estimated depth (h) of the food received from DepthNet and
the output is the adjusted trajectory from behavioral cloning
based on inputs. This real-time adjustment is critical for
achieving precise interaction between the scoop and the food
item, ensuring effective scooping without causing displace-
ment or spillage and long-horizon acquisition as the level of
food changes while sequential scooping. Furthermore, this
strategy is enhanced by the implementation of trajectory
selection from behavioral cloning.

C. Low-level policy

We use Behavioral Cloning (πL) with kinesthetic teaching
to adapt scooping actions for different food textures and
consistencies, improving the robot’s performance in assistive
feeding at the lowest level. Various food items, with their
unique requirements for scooping techniques, necessitate the
modeling of distinct optimal scooping trajectories, especially
for semi-solid and deformable foods. This process includes
collecting demonstration data on joint positions, velocities,
and timestamps to approach the scooping task as a trajectory
optimization problem within the robot arm’s joint space.

The objective is to minimize a cost function J(τ) over
a trajectory τ , represented as J(τ) =

∫ T

0
L(q(t), q̇(t))dt,

where q(t) and q̇(t) denote the robot’s joint positions and
velocities at time t, respectively, and L(·) is an instanta-
neous cost function penalizing deviations from the optimal
trajectory. The Weiszfeld algorithm [30], [31] is used for
this optimization, finding a trajectory x̂ that minimizes the
sum of Euclidean distances to demonstrated trajectories. It
iteratively refines x̂ until the adjustment falls below a small
threshold ϵ.

The algorithm updates the estimate of x̂ using x̂k+1 =∑n
i=1

pi
|x̂k−pi|2∑n

i=1
1

|x̂k−pi|2
, iterating until the change in x̂ between it-

erations is below a predefined threshold ϵ. This method
determines optimal trajectories for the robot arm’s joints,
enhancing the robot’s scooping accuracy and effectiveness.

V. EXPERIMENTS

For the experiments, we begin by describing the experi-
mental setup. Following this, we discuss the data collection
procedure and the baseline for comparison. Subsequently, we
present and analyze the experimental results.

A. Experimental Setup

The setup comprises a UR5e robot arm, a custom spoon
attachment, a RealSense camera, and a fixed-position bowl,
depicted in Figure 1. The spoon is affixed to the arm, with a
length measuring 10.0 cm. The RealSense camera is attached
to the wrist of the arm.



During experiments, we explore varied configurations
across the amount, size, position, and depth of food as well
as different food types including granular cereals, liquid
water, and semi-solid yogurt in the bowl. Food position
configurations encompass multiple numbers of tofu and fruit
chunks placed in different instance positions across the bowl.
The varied amount and food depth included cereals, water,
yogurt, and jelly filled at different depth levels inside the
bowl. Additionally, we conduct tests with tofu chunks inside
soup as shown in Figure 8. For each food type, and depth,
we conduct 10 trials of long-horizon food scooping attempts
and for each position configuration in case of multiple tofu
and fruit chunks, we conduct 5 trials of long-horizon food
scooping attempts.
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Fig. 6: Breakdown of experimental performance comparison
between LAVA, LAVA-low, and Fixed Trajectory Scoop-
ing(FTS). ∗ represents zero-shot experiments.

B. Data Collection

We collected data through kinesthetic teaching, which
encompassed two different types of trajectory— wall-guided
scooping and direct scooping, with twenty-five demonstra-
tions recorded for each category with different parameters,
focusing on RGB images and robot joint positions. This
process was limited to cereals and tofu.

C. Baselines

In our study, we used two baselines, LAVA-low and Fixed
Trajectory Scooping (FTS). For both baselines, the process
begins with detecting the bowl in an RGB image using
RetinaNet [32]. Upon identifying the bowl, we calculate
its centroid and map this position to the robot’s coordinate

system. This allows the robot to move to the bowl’s location,
adjusting to a predetermined height and orientation.

In the case of FTS, during tests with various food items
in a stationary bowl position, wrist 2 of the robot arm is
rotated by −0.6 radians to start the scooping action along a
predefined trajectory.

Conversely, LAVA-low, employs the same low-level policy
πL as LAVA for scooping. For deformable food and fruit
chunks, we stick with the wall-guided scooping trajectory
for the R1 region(see Figure. 4 for reference) and keep
rotating the bowl every 45 degrees constantly so that the
spoon can reach all the instances in the bowl near the wall
and gets maximum coverage. In contrast for granular, liquid,
and semi-solid foods we stick with direct scooping, adjusting
its approach based on the depth of the food within the bowl.
This adjustment occurs once a predefined depth threshold
is reached, to effectively target the lower layers of food,
ensuring thorough bowl clearance.

D. Experimental Results

In this section, we present and analyze the experimental
results. We first present the success rate of LAVA’s networks.
Then, following the training of the hierarchical policy, we
evaluate its performance on the robot and compare it with
the baseline methods. We test across varied food items and
varied food configurations, including granular food cereals,
liquid food water, semi-solid yogurt, deformable tofu, and
multi-medium soup with tofu chunks. To assess performance,
we employ the criteria of success rate, which indicates the
successful scooping of food items from a bowl without
spillage and breakage and successful long-horizon food
acquisition by clearing the bowl efficiently. Instances where
some spillage occurs are considered partial success.

1) LAVA’s Network Success rates: ScoopNet achieved
100% accuracy in choosing correct high-level primitives
across 46 bowls, TargetNet accurately predicted bite targets
at 87.9% over 83 instances, and DepthNet successfully
determined correct spoon depths for bite sizes at 85.7%
across 175 instances, demonstrating the LAVA networks’
effectiveness in robotic-assisted feeding.

2) Comparison with Baselines: In our experimental anal-
ysis, we evaluate the success rates of LAVA against two
baseline models, Lava-low and FTS, across a variety of food
types and scooping dynamics, as shown in Figures 6 and
7. Our evaluation focused on several key metrics: efficiency
(total time taken to clear the bowl), scoop size, and spillage
for granular, semisolid, and liquid foods. For deformable
foods and fruit chunks, we recorded configuration, number
of scoop attempts, and instances of food breakage. In partic-
ular, for complex scenarios such as soup with tofu chunks,
our assessment averaged efficiency, spillage, and breakage
metrics.

How do all the methods handle the challenge of
scooping liquids, such as water and soup, which are
prone to spillage? The analysis, particularly visible in
Figure 6c, reveals that both baseline models struggle with
the fluidity of water and soup, leading to significant spillage.
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(a) 5 tofu chunks.
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(b) 4 tofu chunks.
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(c) Cereals.

Fig. 7: Individual trials comparison between LAVA, LAVA-low and FTS. Subfigures (a) and (b) show the comparison with
different tofu configurations, and (D) show the comparison with cereals.

The FTS model, with its fixed end-effector orientation and
height, is not equipped to adjust to the varying dynamics of
liquid scooping, resulting in spillage and ineffective scoop-
ing. LAVA-low initially copes but struggles as water levels
decrease, showing inefficiency in maintaining adequate scoop
sizes. In contrast, LAVA adeptly adjusts to real-time changes
in food depth, achieving optimal scoop sizes and minimizing
spillage for efficient bowl clearance.

What about the acquisition of more solid, yet de-
formable food types, such as tofu? Our findings, demon-
strated in Figures 7a, 7b, and 6d, indicate that Both baselines
encounter issues with deformable foods such as tofu, often
resulting in food breakage. The FTS model’s rigid scooping
motion damages the food, while Lava-low, despite managing
to scoop, causes tofu to accumulate and break as shown
by instances of food breakage in Figure 6d due to lack
of strategic food prioritization based on subregions. LAVA,
however, prioritizes tofu chunks based on their subregion,
aligning them for easier access and significantly reducing
breakage, mimicking human scooping strategies.

How does each method fare in preventing spillage
and ensuring efficient scoop attempts with solid foods
such as fruit chunks? The evaluation as visible in Figure
6c and 6a reveals that the baselines are less adept with
solid, irregularly shaped foods such as fruit chunks, prone to
rolling or falling off the spoon. This issue is exacerbated for
fruits with curved surfaces. LAVA, employing an align-then-
scoop strategy, ensures better alignment and significantly less
spillage by adjusting to the fruit’s shape for secure scooping.

We see that LAVA consistently outperforms the baselines,
achieving higher success rates and more effective plate clear-
ance. It surpasses FTS and Lava-low by adapting its strategy
for efficient, minimal-breakage scooping across all tested
food types, demonstrating the benefits of its hierarchical
policy framework. As expected, FTS and Lava-low, limited
by their static approaches, fail to optimize for future scooping
advantages, leading to increased breakage and inefficiency,
especially without considering food prioritization and ar-
rangement strategies.

LAVA’s comprehensive strategy ensures efficient, adap-
tive, and precise food acquisition, significantly improving

upon the limitations of existing models.

3) Zero-shot Generalization: As detailed in Section V-B,
our data collection process exclusively involved the transpar-
ent glass bowl containing granular cereals and tofu. However,
we evaluated our approach to soup with tofu chunks and
different food types such as liquid water and semi-solid
yogurt, and solid apple chunks during testing. Remarkably,
our approach demonstrates robust performance across these
varied configurations, as depicted in Figure 6 and 8

Especially with soup and tofu chunks, scooping up both
the solid pieces and the liquid at the same time is tricky.
Our system, LAVA, is designed to adjust to these challenges.
Despite the tofu chunks’ tendency to float away from the
desired central scooping area, LAVA’s adaptive strategy
realigns and reorients to scoop the tofu effectively. Following
the tofu acquisition, LAVA continues to adapt and clear the
remaining soup, showcasing its capability to handle various
food textures and types within the same meal, leading to
efficient bowl clearance.

Failure

Success

Fig. 8: (Zero-shot) long-horizon food acquisition with tofu
chunks in soup. The top sequence of images shows the
spoon aligning the target tofu towards the bowl’s center,
which then drifts away during the scooping attempt due to
the soup’s fluidity. The bottom sequence shows the system’s
subsequent attempt to realign the tofu to the center, followed
by a successful scooping action.



VI. CONCLUSION, LIMITATION AND FUTURE WORK

In this work, we have developed and presented a hierarchi-
cal policy framework designed to enhance robotic systems’
capability in the acquisition of diverse food types, ranging
from liquids to solids and deformable items. Through inte-
grating DepthNet, TargetNet, and ScoopNet, our approach
leverages representation learning, alongside sophisticated
planning and execution strategies, to address the challenges
associated with the variability in food textures, sizes, and
positions within the bowl.

Our experimental analysis demonstrates the framework’s
better performance in achieving better efficiency, minimum
spillage, and breakage as well as adaptive food scooping
compared to baseline models. Specifically, it showcases
improvements in success rates across various food configu-
rations. Despite the promising result towards generalization,
limitations exist, particularly in handling thin, flat, or irreg-
ular foods needing specialized strategies. Future efforts will
focus on broadening the action space for diverse food types
and exploring efficient data acquisition methods, including
leveraging internet video resources for complex food han-
dling strategies in real-world scenarios.
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