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A unified crowd simulation model revealing
relationships among

“Physiology-Psychology-Physics” factors
Mingliang Xu, Chaochao Li, Pei Lv, Wei Chen, Zhigang Deng, Bing Zhou and Dinesh Manocha

Abstract—We present a unified model for crowd simulation, CubeP, which comprehensively considers physiological, psychological, and
physical factors. Inspired by the theory of “the devoted actor,” the movements of each individual in our model are determined by modeling
the physical influence of physical strength consumption and the emotion of panic. In particular, human physical strength consumption is
computed using a physics-based numerical method. Inspired by the James-Lange theory, panic emotion is estimated by means of an
enhanced emotional contagion model that leverages the inherent relation between physical strength consumption and panic emotion. To
the best of our knowledge, our model is the first method that integrates physiological, psychological, and physical factors together and
exploits the relationship between these factors. We highlight the performance on different scenarios and compare the resulting behavior
with real-world video sequences. Our approach can reliably predict the changes in physical strength consumption and panic emotion of
individuals in an emergency situation.

Index Terms—Crowd simulation, emotional contagion, physical strength, James-Lange theory

F

1 INTRODUCTION

E FFICIENT and accurate crowd simulation is one of the
most important research topics in the field of computer

graphics and public safety [1]. There are no known compu-
tational models that can simulate realistic crowd behaviors
in all kind of situations and take into account various com-
plex factors. At a broad level, crowd behavior is governed
by psychological and physiological factors [2].

The main purpose of crowd simulation algorithms is to
model the movements of individuals in a crowd realistically
[3], which includes three aspects: physical, physiological,
and psychological factors. The individual movement (in
terms of speed and direction), physical strength consump-
tion, and panic emotion [4] are the physical, physiological,
and psychological factors, respectively. These three factors
influence one another and evolve dynamically. It is impor-
tant to describe the inherent relationship among these three
factors, which is more obvious in emergency or evacuation
situations [5]. Most previous methods only consider the
physiological or psychological factors but have not tried
to combine them with other issues that govern behavior
or movement [6]. Some crowd simulation algorithms take
into account the physical strength [7]. Physical strength is
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a person’s or animal’s ability to exert force on physical
objects using muscles [8]. Physical strength consumption is
defined as the energy expenditure [9] of a human which
directly affects the moving speed of an individual [10].
Moreover, some approaches incorporate the panic emotions
of individuals in crowd simulations, which is one of the
most commonly used psychological factors [11]. Panic emo-
tion can hinder an individual to take proper actions in
emergency situations [4]. Researchers have observed that
the occurrence of danger can directly cause the changes of
panic emotion in an individual, thereby further determining
his or her movements [12]. We mainly focus on panic
emotion in emergency situations. However, it is difficult to
describe the inherent relationship between physical strength
consumption and panic emotion and then combining these
factors to determine the movement of each individual [5].
Therefore, incorporating them into a unified model for
crowd simulation is challenging, as we describe below:

(1) It is difficult to model the physical strength con-
sumption of an individual in a crowd accurately [13]. This
task involves considering many factors that are needed to
quantify the influence of physical strength consumption on
crowd movement [7].

(2) Modeling the individual panic emotion in a crowd
accurately is difficult because of its constant and dynamic
changes [14]. Various factors, such as physical strength con-
sumption and individual movement, affect panic emotions.

Inspired by the theory of “the devoted actor” [2], which
shows that both psychological and physiological states have
effects on an individual’s physical state, we propose the first
(to the best of our knowledge) unified model that combines
the physiological, psychological, and physical factors to
address these challenges (illustrated in Figure 1). The main
contribution of this paper is that we present the relation-
ship among these three factors in emergency or evacuation
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Fig. 1: The relationships among the physiological (physical
strength consumption), psychological (panic emotion), and
physical (movement) factors of moving individuals in a
crowd. Physical strength consumption is calculated accord-
ing to the actual speed, mass, and moving time of indi-
viduals. The panic emotion is determined by the position
and physical strength consumption of the individual, and it
will further affect the individual’s desired speed. Moreover,
one’s current panic emotion will affect each individual’s
moving direction by changing its acceleration based on the
inferred force. These three factors affect one another and we
highlight their combined effect on the crowd’s movement.

situations. These relationships are summarized as follows:

• We introduce a physical strength consumption cal-
culation method based on how individuals work
based on the laws of physics [15] and quantitively
characterize the dynamic changes of the calculation.
We also present the relationship between physical
strength consumption and moving speed.

• We improve the traditional emotional contagion
model [11] based on the James-Lange theory [5]. Our
new proposed model not only analyzes emotional
contagion, but also depicts the relationship between
physical strength consumption and panic emotion
and how panic emotion determines the movement.

The rest of this paper is organized as follows. Back-
ground and related work are reviewed in Section 2. The
definition of our proposed crowd simulation model is in-
troduced in Section 3. Experiments are presented in Section
4.

2 RELATED WORK

In this section, we provide a brief overview of prior work
on crowd simulation, dividing the summaries based on
whether the works involve physical, psychological, or phys-
iological factors.

2.1 Traditional crowd simulation models
We summarize representative crowd simulation models in
this subsection without considering psychological or physi-
ological factors [16], [17], [18].

In the real world, many environmental factors influence
individual movement, i.e. scene layout, moving pedestrians,
and stationary groups [19], [20]. During the evacuation of a
crowd, the behavioral choice of an individual is highly de-
pendent on the moving directions of nearby individuals, the
hazard location, and obstacles [21]. Cassol et al. [22] focus on
global path planning and their main goal is to identify the
best evacuation routes for a specific population, when leav-
ing a certain building. To realize better behavioral choices,
most approaches calculate the position of each individual
at the next time step to obtain a conflict-free moving path
in a global scenario [23]. However, these approaches are
not applicable to highly complex scenes with dense crowds
since they have many restrictive conditions around different
obstacles. Other approaches use local obstacle avoidance
methods. Namely, once the movement state of an individual
is determined, the movement states of other individuals are
updated by iterating the premise of collision avoidance [24].

Unfortunately, these approaches still face difficulties in
accurately controlling individual movements. Researchers
in this field are increasingly focusing on integrating global
path planning and local obstacle avoidance [25]. Weiss
et al. [26] model collision avoidance constraints both in
short ranges and long ranges to deal with sparse and
dense crowds. In [27], intergroup- and intragroup-level
techniques are presented to perform coherent and collision-
free navigation using reciprocal collision avoidance. Mutual
information about the dynamic crowd is used to guide
agents’ movements by combining both macroscopic and
microscopic controls [28]. By constructing a visual tree,
the shortest path without collision is obtained in [29]. In
addition, in [30], [31], [32], and [33], path planning and
navigation algorithms are described for crowd simulation
in complex contexts. Furthermore, in [34], an effective long-
range collision avoidance algorithm is proposed.

In contrast to these works, our model enhances the tradi-
tional social force model to avoid collisions with surround-
ing individuals and obstacles by combining panic emotion
and physical strength consumption calculations. Traditional
crowd simulation models are not concerned with this ap-
proach. In our model, we mainly deal with the moving
directions and moving speeds which are largely influenced
by the panic emotion and physical strength consumption
during a relatively short period of time.

2.2 Crowd simulation with psychological factors
The psychological state of an individual plays a vital role in
his or her decision-making process [35], [36], [37]. Stress and
panic emotion are typical psychological factors and have a
great influence on the movement of individuals in a crowd.
In this subsection, we introduce representative works on
them.

In [14], authors focus on stress, which is defined as any
change caused by interactions between the environment and
individuals. Generally, stress is caused by a discrepancy be-
tween environmental demands and the abilities of individ-
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uals. Stress can have positive effects on individual behavior.
In emergency or evacuation situations, stress improves the
performance of individuals [14]. It can be chronic and long-
term [14]. However, stress and panic emotion are inherently
different. Panic emotion is short-term and changeable [38]
and usually leads to a negative effect on individuals [39].
One of the most disastrous forms of collective human be-
havior is the kind of crowd stampede induced by panic
emotion, often leading to fatalities as people are crushed
or trampled [12].

Stress and panic emotion of individuals are mirrored by
others and they are disseminated within the crowd [11].
There are two separate lines of emotional contagion re-
search: epidemiological-based and thermodynamics-based.

The epidemiological SIR model [40] divides the individ-
uals in a crowd into three categories: infected, susceptible,
and recovered. The spread of disease among these three
groups is analyzed. This model has also been extended to
other different fields. In [41], the extended model is used to
simulate the spread of rumor. Some researchers use the epi-
demiological SIR model in conjunction with other models
to describe emotion propagation under specific situations.
The cellular automata model is used to simulate the spread
of infectious diseases in [42]. In [11], the epidemiological
SIR model is improved through its combination with the
OCEAN model [43]. The phenomenon of emotional conta-
gion occurs more obviously in a panicked crowd. In [44],
a qualitatively simulated approach to modelling emotional
contagion is proposed for a large-scale emergency evacua-
tion. This approach confirms that the effectiveness of rescue
guidance is influenced by the leading emotion in the crowd.
Moreover, in [45] the cellular automata model based on the
SIR model (CA-SIRS) is used to describe emotional con-
tagion in the crowd-moving process during an emergency
situation.

A thermodynamics-based emotion contagion model was
introduced by Bosse et al. [46] in the ASCRIBE system. The
authors use a multi-agent-based approach to define emotion
contagion within groups. Their study focuses on emotions
as a collective entity rather than the emotions of single
individuals. Neto et al. [36] adapt the model of Bosse et
al. [46] into BioCrowds and cope with different groups of
agents. In [47], dynamic emotion propagation is described
from the perspective of social psychology with a combina-
tion of thermodynamic-based models and epidemiological-
based models.

Because panic emotion has a great influence on individ-
ual movement and often lead to serious consequences, we
focus on panic emotion in emergency situations. Inspired
by the James-Lange theory in biological psychology, we
improve the Durupinar model [11] by considering the in-
fluence of physical strength consumption on panic emotion.
In contrast to previous methods considering only panic
emotion, we further demonstrate the relationship between
physical strength consumption and panic emotion.

2.3 Crowd simulation with physiological factors

To complete a comprehensive analysis of crowd movement,
we must consider not only psychological factors, but also
physiological factors of individuals because these factors are

also very important in determining the crowd movement
[10].

Physical strength is one of the most important physiolog-
ical parameters that affects individual movement. Bruneau
et al. [48] apply the principle of minimum energy (PME)
on groups of different sizes and densities. In [9], [49],
some physiological indicators (such as physical strength
consumption and heart rate) are described. Furthermore, the
relationship between physical strength consumption and
heart rate is revealed, which is also a method for predicting
physical strength consumption based on the heart rate dur-
ing moderate and vigorous exercise. Work in [10] shows that
the relationship between physical strength consumption
and speed is nonlinear. In [7], researchers investigate how
the cumulative consumption of physical strength affects
the evacuation time of individuals. Guy et al. [15] propose
the principle of least effort (PLE) to compute the physical
strength consumption required by various movements. Fur-
thermore, Guy et al. [50] propose a less energy-consuming,
conflict-free crowd movement method based on the criterion
of minimal physical strength consumption [15]. These ap-
proaches are focused on the relationship between physical
strength and other physiological parameters (heart rate and
oxygen uptake, for example) or individual movement. In
[13], the authors choose other four basic physiological char-
acteristics, including gender, age, health, and body shape,
and map them to a navigation method.

Inspired by prior approaches, we focus on physical
strength consumption, which is a very important phys-
iological factor. Physical strength consumption is central
to research in human biology and biological anthropology
[51] and is closely related to a variety of factors such as
heart rate, oxygen consumption, etc. [49]. It directly affects
the moving speed of an individual [7]. Other physiologi-
cal factors (such as gender, age, health, and body shape)
can influence movement through physical strength con-
sumption. we also describe the effect of physical strength
consumption on the physical movements of individuals.
Moreover, we analyze the relationship between physical
strength consumption and panic emotion by emphasizing
the interaction of individual physiological, psychological,
and physical states.

3 CUBEP-CROWDS MODEL

The crowd simulation model proposed is named CubeP-
Crowds Model (CubeP for short), and it comprehensively
considers the physiological, psychological, and physical fac-
tors that influence crowd movement in a unified manner.
The flowchart of the CubeP model is presented in Figure
2. Strenuous movements are often observed in individuals
in emergency or evacuation situations, and the relationship
among these factors is more obvious in such situations.
Therefore, we mainly focus on simulating crowd move-
ments in such emergency situations.

The CubeP model consists of three important compo-
nents: physical strength consumption, panic emotion, and
individual movement. Human physical strength consump-
tion is computed with a physics-based method (Section
3.2). The panic emotion is determined through an enhanced
emotional contagion model that leverages the inherent
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Fig. 2: The flowchart of the CubeP model. (a) Changes in the external environment can cause emotional fluctuations. For
example, a hazard occurs and the red area represents the range of influence of the hazard. (b) The emotional changes of
one individual are calculated according to the direct impact of the hazard and emotional contagion of his or her neighbors
(Section 3.3). (c) The desired speed and direction of each individual are calculated based on an updated panic emotion
(Section 3.4). (d) Due to the limit of physical strength consumption, the actual speed is further determined [10] (Section 3.4).
(e) The calculation of physical strength consumption affected by the actual speed (Section 3.2). In contrast, the cumulative
physical strength consumption also determines the actual maximal speed of the individual at the next time step (Section
3.4). The current physical strength consumption reflects the emotional experience of an individual (Section 3.3). (f) The
position of the individual is updated according to its actual speed. If the individual is panicked, we return to step (b);
otherwise, the flowchart ends (Section 3.3).

relationship between physical strength consumption and
panic emotion (Section 3.3). The CubeP model computes
the movement of an individual by modeling the physical
influence of the physical strength consumption and the
panic emotion (Section 3.4).

3.1 Symbols and Notations

For convenience, the important parameters and their de-
scriptions used in the CubeP model are listed in Table 1.

3.2 Physical strength consumption calculation

Physical strength consumption is one of the most commonly
used physiological indicators and closely related to individ-
ual movement. It is defined in the following equation:

P (t) = Phor (t) + Pver (t) (1)

where P (t) denotes the total physical strength consumption
at time t and Phor (t), Pver (t) denote the physical strength
consumption along the horizontal and the vertical direc-
tions, respectively. They are defined as follows:

Phor (t) =

t∑
i=1

F xi · di (2)

Pver (t) =

t∑
i=1

F yi · hi (3)

F xi is the driving force of the individual along the horizontal
direction. This force overcomes friction. di is the moving
distance of the individual at time t. F xi · di represents the

TABLE 1: The parameters used in the CubeP model.

Notation Description

P (t) Physical strength consumption at time t

Phor (t)
Physical strength consumption along the horizontal
direction at time t

Pver (t)
Physical strength consumption along the vertical
direction at time t

Fx Driving force of individual along the horizontal
direction

F y Pulling force of individual along the vertical direc-
tion

E Panic emotion

Eo Emotional cognitive component

Ep Emotional experience component

Eh
o The emotion is effected from hazard.

Ec
o Emotional contagion

EE Energy expenditure

Vi (t) Moving direction of the individual i at time t

V s
i (P, t)

Safety evacuation direction of the individual i at
position P and at time t

V round
i (t)

Combined moving directions of individuals who are
in the perceived range of the individual i at time t

vdesiredi
The desired speed vdesiredi of the individual i con-
siders only the emotion factor.

vactuali
The actual speed vactuali of the individual i is lim-
ited by his own physical strength consumption.

vp
Maximum speed vp according to current physical
strength consumption

vMAX
i Maximum speed that the individual i can run

vNOR
i

Speed of the individual i in the normal case (emo-
tion value is equal to zero)
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Fig. 3: Schematic of the physical strength consumption cal-
culation. vxi is the velocity component of an individual in the
horizontal direction at time i, and the length of each time
step is τ . The horizontal speed of the individual changes
from vxi−1 to vxi in time interval τ .

work done by the individual along the horizontal direction.
F yi is the pulling force of the individual along the vertical
direction. This force overcomes gravity. hi is the rising
height of the individual at time t, and F yi · hi represents the
work done by the individual along the vertical direction.

According to the laws of physics, F xi is defined as
follows:

F xi = fi +
(vxi − vxi−1)m

τ
(4)

A diagram of the physical strength consumption calculation
is shown in Figure 3.

The friction fi is defined in Equation 5, ki is defined in
Equation 6, and ti is defined in Equation 7 according to [52],
[53]. µ is the friction factor, which is related to the shoes
and the ground. In our implementation, µ=0.58 is adopted,
which is also recommended in [54]. vi is the current velocity
magnitude, vmin is the minimal velocity magnitude, and
vmax is the maximal velocity magnitude.

fi = ti · µ ·mg · ki (5)

ki = 1.5 + 0.5 · vi − vmin
vmax − vmin

(6)

ti = 0.6− 0.2 · vi − vmin
vmax − vmin

(7)

where ki is the coefficient of the weight, ti is the time of the
individual’s foot touching the ground, ki ∝ vi, ti ∝−1 vi,
fi ∝ ki, and fi ∝ ti. If one stands with both feet on a force
plate, ti = ki = 1.

The physical strength consumption in the horizontal
direction is defined by:

Phor (t) = 1
2 ·

t∑
i=1

{(
(vxi )

2 −
(
vxi−1

)2)
m+ ti · µ ·mg · ki

(
vxi + vxi−1

)
τ
}
(8)

According to the laws of physics, F yi is defined by the
following equation:

F yi = mg +
(vyi − v

y
i−1)m

τ
(9)

where vyi is the velocity component in the vertical direction
at time i.

The physical strength consumption in the vertical direc-
tion is defined by:

Pver (t) = 1
2 ·

t∑
i=1

{(
(vyi )

2 −
(
vyi−1

)2)
m+

(
vyi + vyi−1

)
mgτ

}
(10)

3.3 Panic emotion calculation affected by physical
strength consumption
This section presents the calculation method for the panic
emotion of an individual. The panic emotion E ∈ [0, 1],
which indicates the level of panic approximatively. The
panic emotion E consists of two components. The first
is the emotional cognitive component Eo, which relates
to the hazard and encompasses emotional contagion. The
second is the emotional experience component Ep, which
is calculated using physical strength consumption and heart
rate. Therefore, the final emotion value is defined as follows:

E = w · Eo + (1− w) · Ep (11)

where w is a weighting parameter, and 0 < w < 1.

3.3.1 The emotional cognitive component
In this section, we present the calculation method of Eo. Eo
consists of three terms: effect from hazard Eho , emotional
contagion Eco, and emotional attenuation Edo .

Effect from hazard EhoE
h
oE
h
o : When individuals are able to

perceive a hazard, they may become panicked.Eho is defined
as follows:

Eho (P, t) =

n−1∑
s=0

Γs (P, t) (12)

Γs (P, t) =


α√

2π·rs
e
− (P−Ps)2

2rs2 if ‖P − ps‖ < rs and t ∈ U

0 otherwise

(13)

where P is the position of an individual, Ps is the position
of a hazard, rs is the radius of the influence range of the
hazard, U is the duration of the hazard, and α(α > 0)
represents the strength of the hazard.

Effect from emotional contagion EcoE
c
oE
c
o : There are two

kinds of representative models of emotional contagion: the
Neto model [36] and the Durupinar model [11]. They use
fundamentally different mechanisms, but both can generate
good results. However, the Neto model defines too many
parameters for each pairwise interaction [55] and it is hard
to compute these parameters automatically. Moreover, per-
sonality is also a very important, long-term, stable psycho-
logical factor and it is important for simulating heteroge-
neous crowd behavior [11]. The Neto model simplifies the
personality factor while the Durupinar model pays more
attention to that factor and is effective at capturing the
differences between individuals. Personality is an important
part of our CubeP model. We consider the effect of person-
ality on panic emotion. According to this analysis, the Du-
rupinar model is more suitable for the CubeP model. In the
Virtual scenario of Section 4.2, we implement a comparable
experiment to verify our motivation. Next, we present the
emotional contagion method in the CubeP model.

During evacuation, individuals can be in one of two
states: susceptible or infected. When the panic emotion of
an individual exceeds a certain threshold T1, the individual
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will be infected. If the panic emotion intensity of an indi-
vidual surpasses another threshold T2, then the individual
can spread the panic emotion to his or her neighbors. In
a general case, T1 < T2. T1 and T2 are correlated with
individual personalities. Here we represent the personalities
of individuals using the “OCEAN” personality model [11].
The personality of an individual is represented by a five-
dimensional vector < O,C,E,A,N >. Each factor is ran-
domly distributed with a Gaussian distribution N(0, 0.25)
[11]. T1 ∝−1 N, T1 ∝ C [43]. T2 ∝−1 E [11], [43]. T1 and T2
are defined by the following:

T1 = α · C − β ·N + γ (14)

where α = 0.1, β = 0.1, and γ = 0.15.

T2 = δ − ξ · E (15)

where δ = 0.35, and ξ = 0.1. These parameters are deter-
mined according to the methods in [56], [57].

Within the perceived range, when a susceptible indi-
vidual i sees an expressive individual j (the panic emo-
tion value is higher than threshold T2), i gets exposed by
receiving a random dose di from a specified probability
distribution multiplied by the panic emotion intensity of
j. The dose values are randomly distributed with a Gaus-
sian distribution N(0.3, 0.01). We denote the panic emotion
value of individual j at the time t′ as ej (t′). The panic
emotion value of individual i due to emotional contagion
is defined in Equation 16.

Eci,o (P, t) =
t∑

t′=0

∑
∀j|j∈Visibility(i)∧j is expressive

di (t′) ej (t′) (16)

Effect from emotional attenuation EdoE
d
oE
d
o : Emotional at-

tenuation is defined in Equation 17.

Edo (P, t) = Eo (P pre, t− 1) · ηt (17)

where Edo (P, t) is an emotion decay function and ηt is
the decay rate. ηt is positively related to the individual
personality factor N , and it is defined as follows:

η (t) =


0 t < t1

eβ2(t−t2)−eβ2(t−1−t2)

1+eβ2(t−t2) + α ·N t ≥ t1

(18)

where β2 > 0, η ∝ N , and α = 0.1.
The change of emotional cognitive component

∆Eo (P, t) is defined in Equation 19. The Eo is defined in
Equation 20.

∆Eo (P, t) = Eho (P, t) + Eco (P, t)− Edo (P, t) (19)

Eo (P, t) = Eo (P pre, t− 1) + ∆Eo (P, t) (20)

3.3.2 The emotional experience component
In this section, we present the calculation method of Ep.
Individual emotions undergo three stages: cognition, action,
and experience. First, a event occurs, and the individual
perceives the current scene (emotional cognitive stage). Sub-
sequently, the individual acts in a way that corresponds with
physiological changes (action stage). Finally, the individual
has the emotional experience (experience stage) [5].

Under emergency situations, once a hazard occurs, the
individuals around it immediately take different actions.
This will require the physical strength consumption. The
energy expenditure (physical strength consumption in a
minute) is chosen as the measure of physiological changes.
The current heart rate is calculated using the energy ex-
penditure. Then, the increment of the emotional experience
value is calculated based on the heart rate increment. There-
after, the current emotional experience value Ep is obtained.
The details of the calculation method are as follows.

Equation 21 describes the relationship between energy
expenditure (KJ/min) and heart rate (beat/min) when in-
dividuals experience panic and attempt to escape from the
hazard [49]. According to Equation 21, we can calculate the
current heart rate (HR) based on EE.

EE = gender × (−55.0969 + 0.6309×HR + 0.1988× weight+
0.2017× age) + (1− gender)× (−20.4022 + 0.4472×HR−
0.1263× weight+ 0.074× age)

(21)
where gender=1 for males and 0 for females, age (year) ∈
[19,45], and weight (kg) ∈ [47,116].

Furthermore, according to [58], heart rate (HR) and
intensity of anxiety or fear (emotional experience) are pos-
itively correlated. In [58], the heart rate per minute is
recorded before and after an electric shock, and emotional
experience is reported once per minute. 4Ep and 4HR are
the increments of emotional experience and heart rate com-
pared with the values when individuals are not panicked.

Using a linear curve fitting method, we can obtain the
relationship between 4HR and 4Ep.

4 Ep = 0.03669 · 4HR− 0.0724 (22)

Ep is defined in Equation 23 and Ep (0) = 0.

Ep (t) = Ep (t− 1) + ∆Ep (t) (23)

3.4 Individual movement model
Based on the results of physical strength consumption and
panic emotion, the movement of each individual can be de-
termined accurately through two aspects: moving direction
and moving speed.

3.4.1 Moving direction
When a hazard occurs, individuals who can perceive the
hazard directly will be panicked and calculate their own
safety evacuation directions V si (P, t). V roundi (t) is the com-
bined moving directions of individuals who are in the
perceived range of the individual i.

→
V si (P, t) =


n−1∑
s=0

Γs (P, t) ·
→
PsP if‖P − Ps‖ < rs and t ∈ U

→
V otherwise

(24)
V roundi (t) =

∑
∀j|j∈Visibility(i)∧j is expressive

Vj (t) (25)

Finally, the moving direction Vi (t) of actual velocity of an
individual who directly perceives the hazard is defined as
follows:

Vi (t) = E · V si (P, t) + (1− E) · V roundi (t) (26)
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TABLE 2: Dependence of speed decay rate and maximal-limit speed on physical strength consumption. As the physical
strength consumption increases, the maximal-limit speed decreases.

Physical strength consumption p (J) Decay rate ξ (%) Maximal-limit speed vp (m/s)

0.0000 – 20154.0000 100.0000 vMAX
i

20154.0000 – 40279.6713 99.8500 vMAX
i · 0.9985

40279.6713 – 81121.0042 89.4200 vMAX
i · 0.8942

81121.0042 – 166258.8920 75.8000 vMAX
i · 0.7580

166258.8920 – 181569.6090 69.8200 vMAX
i · 0.6982

181569.6090 – 196355.1760 65.7200 vMAX
i · 0.6572

where E is the panic emotion value. The moving direction
of an individual i is influenced by panic emotion, safety
evacuation direction, and other neighboring panicked indi-
viduals.

Individual i can perceive the hazard indirectly through
the surrounding panicked individuals. The individual i
moves in the direction of Vi (t), as shown in Equation 27.
V oldi (t) is the moving direction of the individual i at the
last moment when he is not panicked. The more panicked
the individual is, the more easily he moves with other neigh-
boring panicked individuals. Nonetheless, if the individual
i is not panicked, he or she still moves in his or her original
direction.

Vi (t) = (1− E) · V oldi (t) + E · V roundi (t) (27)

3.4.2 Moving speed
In a panic situation, the speed of an individual i is expressed
by the following equation [12]:

vdesiredi = (1− E) · vNOR
i + E · vMAX

i (28)

where vdesiredi is the speed considering only the emotion
factor, and 0 ≤ E ≤ 1. The speed of an individual in the
normal case (the panic emotion value is equal to zero) is
vNOR
i , and the maximal speed is vMAX

i . The more panicked
an individual is, the faster his or her speed.

However, an individual is limited by his or her own
physical strength consumption. In some cases, the moving
speed of an individual cannot reach the desired speed due
to the maximum limit dictated by current physical strength
consumption. The actual speed cannot exceed the maximal
speed vp.

vactuali = min
(
vdesiredi , vp

)
(29)

The dependence of the decay rate and maximal speed on
physical strength consumption is presented in Table 2.

The actual speed can be calculated using Equation 30.

vactuali = min
(
(1− E) · vNOR

i + E · vMAX
i , vMAX

i · ξ
)

(30)

4 EXPERIMENTS

Our proposed algorithm is used to simulate crowd move-
ment in various scenarios and we demonstrate the benefits
of it in these different scenarios. The simulation results
show that our proposed method can generate realistic group
behavior. It can also reliably predict the changes of physical
strength consumption and panic emotion of a crowd in an
emergency.

(a) Positions of the individuals at the 10th frame when the
hazard occurs

(b) Positions of the individuals at the 80th frame after the
hazard occurred

Fig. 4: A virtual simulation scene. The green cube represents
the obstacle. The red ellipse is Individual No. 10, the yellow
one is No. 35, and the blue one is No. 56. Individual
No. 10 can directly perceive the hazard, Individual No. 35
can indirectly perceive the hazard through the emotional
contagion, and Individual No. 56 will not be affected by the
hazard directly or indirectly.

Fig. 5: Panic emotion values of Individuals No. 10 and
No. 35. Ep is larger than Eo. The panic emotion value of
Individual No. 10 is larger than that of Individual No. 35.
The duration of the panic emotion in Individual No. 10 is
also longer than that in Individual No. 35.
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Fig. 6: Panic emotions of Individuals No. 10 and No. 35 with
and without considering the physical strength consumption.
The panic emotion value of individuals whose physical
strength consumption is considered is higher than that of
individuals whose physical strength consumption is not
considered.

Fig. 7: Panic emotions of individuals with different initial
values of physical strength consumption. The panic emotion
of the individual with 100,000J initial value of physical
strength consumption is less than the panic emotion of
the individual with 0J initial value of physical strength
consumption. Individual No. 35 can perceive the hazard
indirectly through the emotional contagion. The individuals
around him have a large influence on his panic emotion.
Therefore, the solid blue curve (for 100,000J initial value)
behaves abnormally, as when it exhibits several valleys.

4.1 Relationship evaluation among these three factors

To validate our model, we analyze the panic emotion and
moving speed of different individuals with and without
considering an individual’s physical strength consumption
in a virtual crowd scene (shown in Figure 4). Then we
analyze the impact of different initial values of physical
strength consumption on the panic emotion and speed.

Three individuals in this scene, No. 10, No. 35, and
No. 56, are taken as examples. The emotional changes of
Individuals No. 10 and No. 35 in the above scene are

Fig. 8: Physical strength consumption of individuals. Indi-
vidual No. 10 is more frightened than the other two and
his moving speed is faster, so he consumes more physical
strength than the other two. Moreover, the slope of his
physical strength consumption is also larger than that of the
other individuals. Since Individual No. 56 is not panicked,
the slope of his physical strength consumption does not
change.

Fig. 9: The moving speeds of different individuals. Individ-
ual No. 56 is not panicked. Thus, his moving speed does
not change. The remaining two individuals start to move
faster when they become panicked. Since Individual No. 10
is more panicked than Individual No. 35, he moves faster.

presented in Figure 5. Compared with Individual No. 35,
Individual No. 10 can perceive the hazard directly and is
closer to the hazard, so he is more panicked than Individual
No. 35.

The panic emotions of different individuals with and
without considering the physical strength consumption are
shown in Figure 6. As mentioned, physical strength con-
sumption affects emotional experience. Therefore, without
considering the physical strength consumption, the emo-
tional experience becomes zero and the final panic emotion
does not accumulate this component. Thus, panic emo-
tion values considering physical strength consumption are
higher.
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Fig. 10: The speeds of individuals with different initial
values of physical strength consumption. The individual
with 0J initial value of physical strength consumption
moves faster than the individual with 100,000J initial value
of physical strength consumption. The more panicked an
individual is, the faster his moving speed is. Therefore,
the solid blue curve (for 100,000J initial value) behaves
abnormally, similar to the panic emotion of Individual No.
35 in Figure 7.

The panic emotions of individuals with different initial
values of physical strength consumption are presented in
Figure 7. If an individual has consumed too much physical
strength (initial value of physical strength consumption is
100,000J ), the rest of his physical strength will be reduced.
Thus, the individual moves slower than before, and physical
strength consumption per unit of time for this individual
is reduced. When his heart rate drops, according to the
James-Lange theory, the emotional experience is reduced.
Therefore, the panic emotion of an individual with 100,000J
initial value of physical strength consumption is less than
the panic emotion of the individual with 0J initial value of
physical strength consumption.

As shown in Figure 8, the physical strength consump-
tions of all three individuals change over time. Before the
hazard occurs, all the individuals move at the same speed
and the speeds of their physical strength consumption are
the same. However, when individuals become panicked,
the speeds of their physical strength consumption increase
significantly. The more panicked the individual is, the more
physical strength consumption there is.

The moving speeds of all three individuals with the
same initial values of physical strength consumption are
presented in Figure 9. The moving speeds with different ini-
tial values of physical strength consumption are presented
in Figure 10. Both panic emotion and physical strength con-
sumption affect the moving speeds of individuals. The more
panicked an individual is, the faster his/her moving speed
is. The less physical strength consumption an individual
has experienced, the faster his/her moving speed is. Panic
emotion affects individuals’ moving directions by driving
them to run away from the hazard. When individuals are
far from the hazard and arrive in a safe place, they are not
panicked, and their moving speed is restored to a normal

level.

4.2 Comparisons
To validate our approach, we compare the simulation results
obtained by different methods with real-world crowd evac-
uation videos. The trend in the simulation results obtained
by our CubeP model is that they are more similar to real-
world videos than other approaches.

Comparisons between real scenes and the corresponding
simulation results are presented in Figure 11. We take two
different real-world scenarios (chosen from the public UMN
dataset [61]) as examples, and detailed results can be seen
in the supplementary video. The CubeP model is compared
with the Durupinar model [11] and the Neto model [36].
We annotate the trajectories of all the individuals in the
real-world video using the video annotation tool in [62]
and assign initial movement states to the CubeP, Neto, and
Durupinar models. Therefore, we can predict the trajectories
of these individuals and compare them with the actual ones.

In the Grass scenario, Individual No. 1 moves faster than
Individual No. 2, and Individual No. 1 moves closer to In-
dividual No. 2 (Figure 11a). The simulation result obtained
by the CubeP model in the Grass scenario is more realistic
than that obtained by the Durupinar and Neto models. The
reason is that the speed is influenced by physical strength
consumption in the CubeP model. If an individual has
consumed more physical strength than other individuals,
his moving speed decreases and other individuals move
faster than he does. Thus, simulating the situation is easier
when one individual gets closer to another individual.

TABLE 3: Entropy metric for different simulation algorithms
on different scenarios. A lower value of entropy metric
implies improved similarity with respect to the real-world
crowd videos.

Scenario CubeP Durupinar Neto SFM

Grass 3.3868 3.4290 3.4097 4.2955
Room 5.3939 5.4632 5.4933 6.1767

In the Room scenario, some individuals are marked
with red circles in the simulation results obtained by the
Durupinar and Neto models (Figures 11g and 11h). The
moving directions and moving speeds of these individuals
are almost the same. The collectiveness of the trajectories
by the Durupinar and Neto models is much higher than
that of the real scene. The simulation result by the CubeP
model conforms to the real-world video. The is because
the emotion mechanism of the CubeP model changes the
moving directions of individuals and drives them to move
away from the hazard. Meanwhile, the physical strength
consumption influences the individual’s speed.

We use the entropy metric [63] to evaluate the trajectories
of different simulation algorithms on different scenarios (see
Table 3). The social force model is denoted as SFM.

For each scenario, a user study is performed. There are
39 participants (51.28% female, 66.67% in the age group of
20-30) in this study and participants are asked to compare
the movement states in the original video clips with the
movement states in the crowd simulation results (Figure
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: Comparisons between real scenes and simulation results by different models: (a) and (e) are real-world videos, (b)
and (f) are simulated by the CubeP model, (c) and (g) are simulated by the Durupinar model, (d) and (h) are simulated by
the Neto model. Each row represents one scene. (a) The red ellipse is Individual No. 1 and the yellow one is Individual No.
2. Individual No. 1 gets closer to Individual No. 2. We present the line charts to show the distance between Individual No.
1 and Individual No. 2 at different time steps (Figure 12a). (b) As the speed is influenced by physical strength consumption,
simulating the situation where Individual No. 1 gets closer to Individual No. 2 is easier using the CubeP model. In (g)
and (h), the simulation trajectories of different individuals in the red circle by the Durupinar and Neto model are similar
and individuals easily get together, which is different from the real-world video. We provide the line charts to show
the collectiveness (the collectiveness indicates the degree of individuals in the whole scene acting as a unit in collective
motion [59], [60]) of simulation results and the real-world video at different time steps (Figure 12b). The collectiveness of
simulations by the Durupinar and Neto models is much higher than that of the real-world video.

(a) (b)

Fig. 12: Quantitative comparisons between real scenes and simulation results by different models: (a) Distance between
Individual No. 1 and Individual No. 2 in the Grass scenario of Figure 11. (b) Collectiveness in the Room scenario of Figure
11.

13). Table 3 and Figure 13 show that the simulated moving
trends of the CubeP model are closer to those in the real-
world videos than other models. A rational approach is to
combine physical strength consumption and panic emotion
to determine the movement of each individual.

We take two real scenarios as examples to verify our pro-

posed crowd simulation method. Crowd simulation by the
CubeP model of the scene after the mobile phone explosion
on the subway in the Shanghai Metro Line 8 is presented
in Figures 14a and 14b. Crowd simulation of the shooting
at the British Parliament building on March 22, 2017 by
the CubeP model is presented in Figures 14c and 14d. We
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Fig. 13: Comparison of similarity scores for movement
states (higher values indicate greater similarity). We com-
pare the movement states in the original videos with those
in crowd simulation results achieved by different algo-
rithms.

(a) (b)

(c) (d)

Fig. 14: Comparisons between real-world videos and simu-
lation results by our approach. (a) The mobile phone explo-
sion incident on the subway in the Shanghai Metro Line 8;
(c) The shooting incident at the British Parliament building
on March 22, 2017; (b,d) our corresponding simulation re-
sults with the CubeP model. At first, the individuals in the
red circle aren’t panicked. Because of emotional contagion,
they are then influenced by the panicked crowd around
them, become panicked, and run away from the hazards.

show the spread of the panic emotion in both scenarios.
The color of the cylinders represents the emotional intensity
of the individuals. From our simulation results and Figure
15, we can see that both the overall moving trend and the
process of emotional contagion are similar to those found in
the recorded real-world crowd video clips.

In the Virtual scenario, we compare our simulation result
with those of the Durupinar [11], Neto [36], and CubeP
with Neto models. In both the CubeP and Durupinar mod-
els, each factor of personality satisfies normal distribution
N(0, 0.25) [11]. In the Neto and CubeP with Neto models,
ε = 0.5, δ = 0.5, η = 0.5, and β = 1 [36]. In Figure
16a (the simulation result by the Durupinar model), the
speeds of individuals are variable and their locations are

Fig. 15: Comparison of similarity scores for movement
states and the process of emotional contagion (higher values
indicate greater similarity). A user study is performed and
participants are asked to compare the movement states and
processes of emotional contagion in the original videos with
those in crowd simulation results achieved by different
algorithms.

(a) (b)

(c) (d)

Fig. 16: Crowd simulation results by different models in the
Virtual scenario at the 1000th frame: (a) Durupinar model,
(b) Neto model, (c) CubeP with neto model, and (d) CubeP
model.

scattered. Because of different thresholds and personality
mechanisms, the Durupinar model can simulate hetero-
geneous crowd behavior. However, there are too many
individuals who are not affected by the panicked crowd
and this result is unreasonable. In Figure 16b, individuals
move much slower than the individuals in the simulation
results by other models. The reason is that the emotion
calculated by the Neto model is much smaller. Moreover, the
individual movement is too regular, which is unsuitable for
emergency situations. In Figure 16c (simulation result by the
CubeP with Neto model) and Figure 16d (simulation result
by the CubeP model), most of the individuals are affected
by the hazard and run away from it. Because of physical
strength consumption and personality factors, the speeds of
individuals in the simulation result by the CubeP model are
more variable than those shown in the CubeP with Neto
model. Therefore, the simulation result by the CubeP model
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is more suitable for emergency situations than other models.

4.3 Application of the CubeP model in various virtual
scenarios

(a)

(b)

Fig. 17: Crowd simulation results at a subway station: (a)
the higher level of the subway station, (b) the lower level of
the subway station. After the hazard occurs, the emotional
contagion in our model begins to work. Although the direct
impact of the hazard is limited, the hazardous area grows
through emotional contagion among individuals and the
number of individuals who run away from the hazard
increases.

The CubeP model can be applied in different virtual
scenarios. Subway station and crosswalk are crowded and
the probability of hazard occurrence in these scenarios is
very high. We simulate a hazard occurring in these scenarios
and three examples are shown. Figure 17(a) shows crowd
simulation at the higher level of the subway station. Figure
17(b) shows crowd simulation at the lower level of the
subway station. Figure 18 shows crowd simulation at a
crosswalk. We show each step of the process: hazard occur-
ring, individuals running away from the hazard, emotional
contagion, and the attenuation of moving speed. More de-
tails can be seen in the supplementary video. Our simulation
results provide information about decision-making to deal
with emergency situations.

The heat maps of panic emotion in the Virtual scene
are presented in Figure 19. Although the direct impact of
the hazard is limited, the panic area grows through the
emotional contagion mechanism in the CubeP model. When
individuals are far from the hazard, panic emotion attenu-
ates. As accidents may happen in public places randomly,
we can take preventive action in advance and reduce loss
by accurately predicting the panic area.

Fig. 18: Crowd simulation result at a crosswalk. At the lower
left corner, a car explodes. Then individuals run away from
the hazard.

(a) (b)

(c) (d)

Fig. 19: Panic emotion heat maps of the Virtual scene: (a)
heat map at the 13th frame, (b) heat map at the 29th frame,
(c) heat map at the 57th frame, (d) heat map at the 120th

frame. The red area is more panicked than the green area
in the heat map. The deeper the color is, the more panicked
the area is.

(a) (b)

Fig. 20: The heat maps of panic emotion at the 185th frame
of the crosswalk scenario: (a) heat map of the CubeP model
crowd simulation result, and (b) heat map of the Durupinar
model crowd simulation result. The red area is more pan-
icked than the green area in the heat map. The deeper the
color is, the more panicked the area is. We highlight the
same area of the two simulation results. The individuals in
the CubeP model simulation result are more panicked than
the individuals in the Durupinar model simulation results.
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The heat maps of panic emotion in crowd simulations in
the crosswalk scenario by the CubeP and Durupinar models
are presented in Figure 20. The individuals in the CubeP
model simulation results are more panicked than those in
the Durupinar model simulation results. The intensity of the
panic emotion calculated by the Durupinar model is lower
than that calculated by the CubeP model. The reason is that
the CubeP model considers not only emotional contagion
among individuals, but also the impact of physical strength
consumption on panic emotion. The CubeP model repre-
sents a comprehensive description of individual panic emo-
tion and is more conducive to the spread of panic emotion
than the Durupinar model. Therefore, the simulation results
by the CubeP model are more reasonable for emergency
situations.

5 CONCLUSION AND LIMITATIONS

In contrast to traditional individual behavior models that
consider only physiological, psychological, or physical as-
pects, we propose a comprehensive model for emergency
crowd simulation by combing these three aspects. We not
only present a physical strength consumption calculation
and a panic emotion calculation, but also delineate the
relationship between them. We comprehensively analyze
physical strength consumption and panic emotion. Finally,
both physical strength consumption and panic emotion
determine the movement of each individual. In addition,
individual movements affect individual physical strength
consumption and panic emotion by emphasizing the inter-
action of individual physiological, psychological, and phys-
ical factors. Our proposed model is verified by simulations,
and it is compared with real-world videos and previous
approaches. Results have shown that our proposed model
can reliably generate realistic group behavior. It can also
predict the changes of physical strength consumption and
panic emotion of a crowd in an emergency situation.

However, our model has several limitations. Although
the CubeP model can generate realistic crowd movement,
the panic emotion and physical strength consumption of the
crowd in an emergency scene cannot be obtained directly.
Our model can only infer them during the simulation. Thus,
the initial state of our model is difficult to determine and it
is usually time consuming to do so. In the future, we plan
to use the latest wearable equipment to collect these data
and provide a new method that can quickly and accurately
determine the initial state. Furthermore, at present, our
model mainly focuses on emergency scenarios. In future
work, we want to extend the CubeP model to a variety of
general situations.
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