
Authenticated Garbling and Efficient Maliciously Secure
Two-Party Computation

Xiao Wang
University of Maryland

wangxiao@cs.umd.edu

Samuel Ranellucci
University of Maryland

George Mason University

samuel@umd.edu

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Abstract

We propose a simple and efficient framework for obtaining efficient constant-round protocols for
maliciously secure two-party computation. Our framework uses a function-independent preprocessing
phase to generate authenticated information for the two parties; this information is then used to construct
a single “authenticated” garbled circuit which is transmitted and evaluated.

We also show how to efficiently instantiate the preprocessing phase by designing a highly optimized
version of the TinyOT protocol by Nielsen et al. Our overall protocol outperforms existing work in both
the single-execution and amortized settings, with or without preprocessing:

• In the single-execution setting, our protocol evaluates an AES circuit with malicious security in
37 ms with an online time of just 1 ms. Previous work with the best online time (also 1 ms)
requires 124 ms in total; previous work with the best total time requires 62 ms (with 14 ms online
time).

• If we amortize the computation over 1024 executions, each AES computation requires just 6.7 ms
with roughly the same online time as above. The best previous work in the amortized setting has
roughly the same total time but does not support function-independent preprocessing.

Our work shows that the performance penalty for maliciously secure two-party computation (as
compared to semi-honest security) is much smaller than previously believed.

1 Introduction

Protocols for secure two-party computation (2PC) allow two parties to compute an agreed-upon function of
their inputs without revealing anything additional to each other. Although originally viewed as impractical,
protocols for generic 2PC in the semi-honest setting based on Yao’s garbled-circuit protocol [Yao86] have
seen tremendous efficiency improvements over the past several years [MNPS04, HEKM11, ZRE15, KS08,
KMR14, ALSZ13, BHKR13, PSSW09].

While these results are impressive, semi-honest security—which assumes that both parties follow the
protocol honestly yet may try to learn additional information from the execution—is clearly not sufficient
for all applications. This has motivated researchers to construct protocols achieving the stronger notion
of malicious security. One popular approach for designing constant-round maliciously secure protocols is
to apply the “cut-and-choose” technique [LP07, sS11, sS13, KSS12, LP11, HKE13, Lin13, Bra13, FJN14,
AMPR14] to Yao’s garbled-circuit protocol. For statistical security 2−ρ, the best approaches using this
paradigm require ρ garbled circuits (which is optimal); the most efficient instantiation of this approach, by
Wang et al. [WMK17], securely evaluates an AES circuit in 62 ms.

The cut-and-choose approach incurs significant overhead when large circuits are evaluated precisely be-
cause ρ garbled circuits need to be transmitted (typically, ρ ≥ 40). In order to mitigate this, recent works
have explored secure computation in an amortized setting where the same function is evaluated multiple times

1

AES Evaluation (2.1 ms in the semi-honest setting)

Single-Execution Setting Amortized Setting (1024 executions)

[NST17] [WMK17] This paper [LR15] [RR16] [NST17] This paper

Function-ind. phase 89.6 ms - 10.9 ms - - 13.84 ms 4.9 ms
Function-dep. phase 13.2 ms 28 ms 4.78 ms 74 ms 5.1 ms 0.74 ms 0.53 ms

Online 1.46 ms 14 ms 0.93 ms 7 ms 1.3 ms 1.13 ms 1.23 ms

Total 104.26 ms 42 ms 16.61 ms 81 ms 6.4 ms 15.71 ms 6.66 ms

SHA-256 Evaluation (9.6 ms in the semi-honest setting)

Single-Execution Setting Amortized Setting (1024 executions)

[NST17] [WMK17] This paper [LR15] [RR16] [NST17] This paper

Function-ind. phase 478.5 ms - 96 ms - - 183.5 ms 64.8 ms
Function-dep. phase 164.4 ms 350 ms 51.7 ms 206 ms 48 ms 11.7 ms 8.7 ms

Online 11.2 ms 84 ms 9.3 ms 33 ms 8.4 ms 9.6 ms 11.3 ms

Total 654.1 ms 434 ms 157 ms 239 ms 56.4 ms 204.8 ms 84.8 ms

Table 1: Constant-round 2PC protocols with malicious security. All timings are based on an Amazon EC2
c4.8xlarge instance over a LAN, and are averaged over 10 executions. Single-execution times do not include
the base-OTs, which require the same time (∼20 ms) for all protocols. Timings for the semi-honest protocol
are based on the same garbling code used in our protocol, and also do not include the base-OTs. See Section 7
for more details.

(on different inputs) [HKK+14, LR14, LR15, RR16]. When amortizing over τ executions, only O(ρ
log τ) gar-

bled circuits are needed per execution. Rindal and Rosulek [RR16] report a time of 6.4 ms to evaluate an
AES circuit, amortized over 1024 executions.

More recently, Nielsen and Orlandi [NO16] proposed a protocol with constant amortized overhead, but
only when τ = Ω(|C|). Also, their protocol allows for amortization only over parallel executions done at the
same time, whereas the works cited above allow amortization even over sequential executions, where inputs
to the different executions need not be known all at once.

Other techniques for constant-round, maliciously secure two-party computation, with asymptotically bet-
ter performance than cut-and-choose (without amortization), have also been explored. The LEGO protocol
and subsequent optimizations [NO09, FJN+13, FJNT15, HZ15, NST17] are based on a gate-level cut-and-
choose approach that can be done during a preprocessing phase before the circuit to be evaluated is known.
This class of protocols has good asymptotic performance and small online time; however, the best reported
LEGO implementation [NST17] still has a higher end-to-end running time than the best protocol based on
the cut-and-choose approach applied at the garbled-circuit level.

The Beaver-Micali-Rogaway compiler [BMR90] provides yet another way to construct constant-round
protocols with malicious security [DI05, CKMZ14]. This compiler uses an “outer” secure-computation pro-
tocol to generate a garbled circuit that is then evaluated. Lindell et al. [LPSY15, LSS16] suggested applying
this idea using SPDZ [DPSZ12] (or based on somewhat homomorphic encryption) as the outer protocol, but
did not provide an implementation of the resulting scheme.

There are also protocols whose round complexity is linear in the depth of the circuit being evaluated.
The TinyOT protocol [NNOB12] extends the classical GMW protocol [GMW87] by adding information-
theoretic MACs to shares held by the parties; The IPS protocol [IPS08] has excellent asymptotic complexity,
but its concrete complexity is unclear since it has never been implemented (and appears quite difficult to
implement). We remark that the end-to-end time of these protocols suffers significantly from their large
round complexity: Even over a LAN, each communication round requires at least 0.5 ms; for evaluating an
AES circuit (with a depth of about 50), this means that the time for any linear-round protocol will be at

2

Protocol
Function-ind. Function-dep. Online Online (Comp.)

(Comm./Comp.) (Comm./Comp.) (Comm.) / Storage

Cut-and-choose [Lin13, AMPR14, WMK17] — O (|C|ρ) O(|I|ρ) O(|C|ρ)

Amortized [HKK+14, LR14] — O
(
|C|ρ
log τ

)
O

(
|I|ρ
log τ

)
O

(
|C|ρ
log τ

)
LEGO [NO09, FJN+13] O

(
|C|ρ

log τ+log |C|

)
O(|C|) O(|I|+ |O|) O

(
|C|ρ

log τ+log |C|

)
SPDZ-BMR [LPSY15, KOS16]∗ O(|C|κ) O(|C|) O(|I|+ |O|) O(|C|)

This paper (with Section 4.2) O
(

|C|ρ
log τ+log |C|

)
O(|C|) |I|+ |O| O(|C|)

This paper (with [IPS08]) O(|C|)

Table 2: Asymptotic complexity of constant-round 2PC protocols with malicious security. |C|, |I|, |O| are
the circuit size, input size, and output size respectively; low-order terms independent of these parameters
are ignored. The statistical security parameter is ρ, the computational security parameter is κ, and τ is
the number of protocol executions in the amortized setting. Communication (Comm.) is measured as the
number of symmetric-key ciphertexts, and computation (Comp.) is measured as the number of symmetric-
key operations. “Storage” is the number of symmetric-key ciphertexts generated by the offline stage.
∗Although the complexity of function-independent preprocessing can be reduced to O(|C|) using somewhat
homomorphic encryption [DPSZ12], doing so requires a number of public-key operations proportional to |C|.

Functionality FPre

• Upon receiving ∆A from PA and init from PB, and assuming no values ∆A,∆B are currently stored, choose uniform ∆B ∈
{0, 1}ρ and store ∆A,∆B. Send ∆B to PB.

• Upon receiving (random, r,M[r],K[s]) from PA and random from PB, sample uniform s ∈ {0, 1} and set K[r] := M[r] ⊕ r∆B

and M[s] := K[s]⊕ s∆A. Send (s,M[s],K[r]) to PB.

• Upon receiving (AND, (r1,M[r1],K[s1]), (r2,M[r2],K[s2]), r3,M[r3],K[s3]) from PA and (AND, (s1,M[s1],K[r1]),
(s2,M[s2],K[r2])) from PB, verify that M[ri] = K[ri] ⊕ ri∆B and that M[si] = K[si] ⊕ si∆A for i ∈ {1, 2} and send cheat
to PB if not. Otherwise, set s3 := r3 ⊕ ((r1 ⊕ s1) ∧ (r2 ⊕ s2)), set K[r3] := M[r3] ⊕ r3∆B, and set M[s3] := K[s3] ⊕ s3∆A.
Send (s3,M[s3],K[r3]) to PB.

Figure 1: The preprocessing functionality, assuming PA is corrupted. (It is defined symmetrically if PB is
corrupted. If neither party is corrupted, the functionality is adapted in the obvious way.)

least 25 ms. The situation will be even worse over a WAN.
In Tables 1 and 2, we summarize the efficiency of various constant-round 2PC protocols with malicious

security. Table 1 gives the performance of state-of-the-art implementations under fixed hardware and network
conditions, while Table 2 reports the asymptotic complexity of various approaches. Following [NST17], we
consider executions in three phases:

• Function-independent preprocessing. In this phase, the parties need not know their inputs or the
function to be computed (beyond an upper bound on the number of gates).

• Function-dependent preprocessing. In this phase, the parties know what function they will com-
pute, but do not need to know their inputs.

Often, the first two phases are combined and referred to simply as the offline or preprocessing phase.

• Online phase. In this phase, the parties evaluate the agreed-upon function on their respective inputs.

1.1 Our Contributions

We propose a new approach for constructing constant-round, maliciously secure 2PC protocols with ex-
tremely high efficiency. At a high level (further details are in Section 3), and following ideas of [NNOB12],

3

our protocol uses a function-independent preprocessing phase to realize an ideal functionality that we call FPre

(cf. Figure 1). This preprocessing phase is used to set up correlated randomness between the two parties
that they can then use during the online phase for information-theoretic authentication of different values.
In contrast to [NNOB12], however, the parties in our protocol use this information in the online phase to
generate a single “authenticated” garbled circuit. As in the semi-honest case, this garbled circuit can then
be transmitted and evaluated in just one additional round.

Regardless of how we realize FPre, our protocol is extremely efficient in the function-dependent prepro-
cessing phase and the online phase. Specifically, compared to Yao’s semi-honest garbled-circuit protocol,
the cost of the function-dependent preprocessing phase of our protocol is only about 2× higher (assuming
128-bit computational security and 40-bit statistical security), and the cost of the online phase is essentially
unchanged.

We show how to instantiate FPre efficiently by developing a highly optimized version of the TinyOT
protocol (adapting [NNOB12]), described in Section 4.2. Instantiating our framework in this way, we obtain
a protocol with the same asymptotic communication complexity as recent protocols based on LEGO, but
with two advantages. First, our protocol has much better concrete efficiency (see Table 1 and Section 7).
For example, it requires only 16.6 ms total to evaluate AES, a 6× improvement compared to a recent
implementation of a LEGO-style approach [NST17]. Furthermore, the storage needed by our protocol is
asymptotically smaller (see Table 2), something that is especially important when very large circuits are
evaluated.

Instantiating our framework with the realization of FPre described in Section 4.2 yields a protocol with
the best concrete efficiency, and is the main focus of this paper. However, we note that our framework can
also be instantiated in other ways:

• When FPre is instantiated using the IPS compiler [IPS08] and the bit-OT protocol by Ishai et al. [IKOS09],
we obtain a maliciously secure constant-round 2PC protocol with communication complexity O(|C|κ).
Up to constant factors, this matches the complexity of semi-honest 2PC based on garbled circuits.

The only previous work [JS07] that achieves similar communication complexity requires a constant
number of public-key operations per gate of the circuit, and would have concrete performance orders
of magnitude worse than our protocol.

• We can also realize FPre using an offline, (semi-)trusted server. In that case we obtain a constant-round
protocol for server-aided 2PC with complexity O(|C|κ). Previous work in the same model [MOR16]
achieves the same complexity but with number of rounds proportional to the circuit depth.

The results described in this paper—both the idea of constructing an “authenticated” garbled cir-
cuit as well as the efficient TinyOT protocol we developed—have already found application in subsequent
work [WRK17, HSSV17] on constant-round multiparty computation with malicious security.

2 Notation and Preliminaries

We use κ to denote the computational security parameter (i.e., security should hold against attackers running
in time ≈ 2κ), and ρ for the statistical security parameter (i.e., an adversary should succeed in cheating with
probability at most 2−ρ). We use = to denote equality and := to denote assignment. We denote the parties
running the 2PC protocol by PA and PB.

A circuit is represented as a list of gates having the format (α, β, γ, T), where α and β denote the indices
of the input wires of the gate, γ is the index of the output wire of the gate, and T ∈ {⊕,∧} is the type of
the gate. We use I1 to denote the set of indices of PA’s input wires, I2 to denote the set of indices of PB’s
input wires, W to denote the set of indices of the output wires of all AND gates, and O to denote the set of
indices of the output wires of the circuit.

4

2.1 Information-theoretic MACs

We use the information-theoretic message authentication codes (IT-MACs) of [NNOB12], which we briefly
recall. PA holds a uniform global key ∆A ∈ {0, 1}κ. A bit b known by PB is authenticated by having PA hold
a uniform key K[b] and having PB hold the corresponding tag M[b] := K[b]⊕ b∆A. Symmetrically, PB holds
an independent global key ∆B; a bit b known by PA is authenticated by having PB hold a uniform key K[b]
and having PA hold the tag M[b] := K[b] ⊕ b∆B. We use [b]A to denote an authenticated bit known to PA

(i.e., [b]A means that PA holds (b,M[b]) and PB holds K[b]), and define [b]B symmetrically.
Observe that this MAC is XOR-homomorphic: given [b]A and [c]A, the parties can (locally) compute

[b⊕ c]A by having PA compute M[b⊕ c] := M[b]⊕M[c] and PB compute K[b⊕ c] := K[b]⊕ K[c].
It is possible to extend the above idea to authenticate secret values by using XOR-based secret sharing

and authenticating each party’s share. That is, we can authenticate a bit λ, known to neither party, by letting
r, s be uniform subject to λ = r ⊕ s, and then having PA hold (r,M[r],K[s]) and PB hold (s,M[s],K[r]). It
can be observed that this scheme is also XOR-homomorphic.

As described in the Introduction, we use a preprocessing phase that realizes a stateful ideal function-
ality FPre defined in Figure 1. This functionality is used to set up correlated values between the parties
along with their corresponding IT-MACs. The functionality chooses uniform global keys for each party,
with the malicious party being allowed to choose its global key. Then, when the parties request a random
authenticated bit, the functionality generates an authenticated secret sharing of the random bit λ = r ⊕ s.
(The adversary may choose the “random values” it receives, but this does not reveal anything about r⊕ s or
the other party’s global key to the adversary.) Finally, the parties may also submit authenticated shares for
two bits; the functionality then computes a (fresh) authenticated share of the AND of those bits. In the next
section we describe our protocol assuming some way of realizing FPre; we defer until Section 4 a discussion
of how FPre can be realized.

3 Protocol Intuition

We give a high-level overview of the core of our protocol in the FPre-hybrid model. Our protocol has the
parties compute a garbled circuit in a distributed fashion, where the garbled circuit is “authenticated” in
the sense that the circuit generator (PA in our case) cannot change the logic of the circuit. We describe the
intuition behind our construction in several steps.

We begin by reviewing standard garbled circuits. Each wire α of a circuit is associated with a random
“mask” λα ∈ {0, 1} known to PA. If the actual value of that wire (i.e., the value when the circuit is evaluated
on the parties’ inputs) is x, then the masked value observed by the circuit evaluator (namely, PB) on that
wire will be x̂ = x⊕ λα. Each wire α is also associated with two labels Lα,0 and Lα,1 := Lα,0 ⊕∆ (using the
free-XOR technique [KS08]) known to PA. If the masked bit on that wire is x̂, then PB learns Lα,x̂.

Let H be a hash function modeled as a random oracle. The garbled table for, e.g., an AND gate (α, β, γ,∧)
is given by:

x̂ ŷ truth table garbled table

0 0 ẑ00 = (λα ∧ λβ)⊕ λγ H(Lα,0, Lβ,0, γ, 00)⊕ (ẑ00, Lγ,ẑ00)

0 1 ẑ01 = (λα ∧ λβ)⊕ λγ H(Lα,0, Lβ,1, γ, 01)⊕ (ẑ01, Lγ,ẑ01)

1 0 ẑ10 = (λα ∧ λβ)⊕ λγ H(Lα,1, Lβ,0, γ, 10)⊕ (ẑ10, Lγ,ẑ10)

1 1 ẑ11 = (λα ∧ λβ)⊕ λγ H(Lα,1, Lβ,1, γ, 11)⊕ (ẑ11, Lγ,ẑ11)

PB, holding (x̂, Lα,x̂) and (ŷ, Lβ,ŷ), evaluates this garbled gate by picking the (x̂, ŷ)-th row and decrypting
using the garbled labels it holds, thus obtaining (ẑ, Lγ,ẑ).

The standard garbled circuit just described ensures security against a malicious PB, since (in an intuitive
sense) PB learns no information about the true values on any of the wires. Unfortunately, it provides no
security against a malicious PA who can potentially cheat by corrupting rows in the various garbled tables.
One particular attack PA can carry out is a selective-failure attack. Say, for example, that a malicious PA

corrupts only the (0, 0)-row of the garbled table for the gate above, and assume PB aborts if it detects an

5

x⊕ λα y ⊕ λβ PA’s share of garbled table PB’s share of garbled table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], Lγ,0 ⊕ r00∆A ⊕ K[s00]) (s00 = ẑ00 ⊕ r00,K[r00],M[s00])
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], Lγ,0 ⊕ r01∆A ⊕ K[s01]) (s01 = ẑ01 ⊕ r01,K[r01],M[s01])
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], Lγ,0 ⊕ r10∆A ⊕ K[s10]) (s10 = ẑ10 ⊕ r10,K[r10],M[s10])
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], Lγ,0 ⊕ r11∆A ⊕ K[s11]) (s11 = ẑ11 ⊕ r11,K[r11],M[s11])

Table 3: Our final construction of an authenticated garbled table for an AND gate.

error during evaluation. If PB aborts, then PA learns that the masked values on the input wires of the gate
above were x̂ = ŷ = 0, from which it learns that the true values on those wires were λα and λβ .

The selective-failure attack just mentioned can be prevented if the masks are hidden from PA. (In that
case, even if PB aborts and PA knows the masked wire values, PA learns nothing about the true wire values.)
Since knowledge of the garbled table would leak information about the masks to PA, the garbled table must
be hidden from PA as well. That is, we now want to set up a situation in which PA and PB hold secret shares
of the garbled table, as follows:

x̂ ŷ PA’s share of garbled table PB’s share

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00, LA
γ,ẑ00

) (s00 = ẑ00 ⊕ r00, LB
γ,ẑ00

)

0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01, LA
γ,ẑ01

) (s01 = ẑ01 ⊕ r01, LB
γ,ẑ01

)

1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10, LA
γ,ẑ10

) (s10 = ẑ10 ⊕ r10, LB
γ,ẑ10

)

1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11, LA
γ,ẑ11

) (s11 = ẑ11 ⊕ r11, LB
γ,ẑ11

)

(Here, LA
γ,z, L

B
γ,z represent abstract XOR-shares of Lγ,z, i.e., Lγ,z = LA

γ,z ⊕ LB
γ,z.) Once PA sends its shares of

all the garbled gates, PB can XOR those shares with its own and then evaluate the garbled circuit as before.
Informally, the above ensures privacy against a malicious PA since (intuitively) the results of any changes

PA makes to the garbled circuit are independent of PB’s inputs. However, PA can still affect correctness by,
e.g., flipping the masked value in a row. This can be addressed by adding an information-theoretic MAC on
PA’s share of the masked bit. The shares of the garbled table now take the form as shown in the table below.

x̂ ŷ PA’s share of garbled table PB’s share of garbled table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], LA
γ,ẑ00

) (s00 = ẑ00 ⊕ r00,K[r00], LB
γ,ẑ00

)

0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], LA
γ,ẑ01

) (s01 = ẑ01 ⊕ r01,K[r01], LB
γ,ẑ01

)

1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], LA
γ,ẑ10

) (s10 = ẑ10 ⊕ r10,K[r10], LB
γ,ẑ10

)

1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], LA
γ,ẑ11

) (s11 = ẑ11 ⊕ r11,K[r11], LB
γ,ẑ11

)

Once PA sends its shares of the garbled circuit to PB, the garbled circuit can be evaluated as before. Now,
however, PB will verify the MAC on PA’s share of each masked bit that it learns. This limits PA to only
being able to cause PB to abort; as before, though, any such abort will occur independently of PB’s actual
input.

Note that PA’s shares of the wire labels need not be authenticated, since a corrupted wire label will only
cause input-independent abort. On the other hand, if PB does not abort, the MACs added on r values ensure
that PB learns correct masked wire value, i.e., ẑ.

Efficient realization. Although the above idea is powerful, it still remains to design an efficient protocol
that allows the parties to distributively compute shares of a garbled table of the above form even when one
of the parties is malicious.

One important observation is that if we set ∆ = ∆A then we can secret share Lγ,ẑ00 as

Lγ,ẑ00 = Lγ,0 ⊕ ẑ00∆A

= Lγ,0 ⊕ (r00 ⊕ s00)∆A

6

= Lγ,0 ⊕ r00∆A ⊕ s00∆A

= (Lγ,0 ⊕ r00∆A ⊕ K[s00])︸ ︷︷ ︸
LA
γ,ẑ00

⊕ (K[s00]⊕ s00∆A)︸ ︷︷ ︸
LB
γ,ẑ00

.

In our construction thus far, PA knows Lγ,0 and r00 (in addition to knowing ∆A). Our key insight is that if
s00 is an authenticated bit known to PB, then PA can locally compute the share LA

γ,ẑ00
:= Lγ,0⊕r00∆A⊕K[s00]

from the information it has, and then the other share LB
γ,ẑ00

:= K[s00]⊕s00∆A is just the MAC on s00 that PB

already holds! So if we rewrite the garbled table as in Table 3, shares of the table become easy to compute
in a distributed fashion.

One final optimization is based on the observation that the masked output values take the following form:

ẑ00 = (λα ∧ λβ)⊕ λγ
ẑ01 = (λα ∧ λβ)⊕ λγ = ẑ00 ⊕ λα
ẑ10 = (λα ∧ λβ)⊕ λγ = ẑ00 ⊕ λβ
ẑ11 = (λα ∧ λβ)⊕ λγ = ẑ01 ⊕ λβ ⊕ 1.

Thus, the parties can locally compute authenticated shares {rij , sij} of the {ẑi,j} from authenticated shares
of λα, λβ , λγ , and λα ∧ λβ .

4 Our Framework and Its Instantiations

4.1 Protocol in the FPre-Hybrid Model

In Figure 2, we give the complete description of our main protocol in the FPre-hybrid model. For clarity, we
set ρ = κ, but in Section 6 we describe how arbitrary values of ρ can be supported. Note that the calls to FPre

can be performed in parallel, so the protocol runs in constant rounds. Moreover, FPre can be instantiated
efficiently in constant rounds. We prove security of this protocol in the FPre-hybrid model in the Section 5.

Although our protocol calls FPre in the function-dependent preprocessing phase, it is easy to push
this to the function-independent phase using standard techniques similar to those used with multiplication
triples [Bea92].

4.2 Efficiently Realizing FPre

We realize FPre efficiently using an optimized version of the TinyOT protocol, achieving a 2.7× improvement.
Recall that FPre can be used to output authenticated values [x1]A, [y1]A, [z1]A, [x2]B, [y2]B, and [z2]B to the
parties such that z1⊕ z2 = (x1⊕ x2)∧ (y1⊕ y2); we refer to these as an AND triple. In the original TinyOT
protocol, the four terms that result from expanding the right-hand side (namely, x1y1, x1y2, x2y1, and x2y2)
are computed individually, and then combined. This approach is conceptually simple, but increases the
complexity of the protocol. In our new approach, we instead compute AND triples directly. In what follows,
we discuss the key ideas of our new protocol; more details can be found in Section 8.

At a high level, we use three steps to compute an AND triple.

1. The parties jointly compute [x1]A, [y1]A, [z1]A, [x2]B, [y2]B, [z2]B, such that if both parties are honest,
these form a correct AND triple; if some party cheats, that party can change the value of z2 but cannot
learn the other party’s bits.

2. The parties perform a checking protocol that ensures the correctness of every AND triple, while letting
the malicious party try to guess the value of x1 (resp., x2). Each guess is correct with probability 1/2;
any incorrect guess is detected and will cause the other party to abort.

As a consequence, we can argue that (conditioned on no abort) the malicious party obtains information
on at most ρ AND triples except with probability a most 2−ρ.

7

Protocol Π2pc

Inputs: In the function-dependent phase, the parties agree on a circuit for a function f : {0, 1}|I1| × {0, 1}|I2| → {0, 1}|O|.
In the input-processing phase, PA holds x ∈ {0, 1}|I1| and PA holds y ∈ {0, 1}|I2|.
Function-independent preprocessing:

1. PA and PB send init to FPre, which sends ∆A to PA and ∆B to PB.

2. For each wire w ∈ I1 ∪ I2 ∪W, parties PA and PB send random to FPre. In return, FPre sends (rw,M[rw],K[sw]) to PA and
(sw,M[sw],K[rw]) to PB, where λw = sw ⊕ rw. PA also picks a uniform κ-bit string Lw,0.

Function-dependent preprocessing:

3. For each gate G = (α, β, γ,⊕), PA computes (rγ ,M[rγ],K[sγ]) := (rα ⊕ rβ ,M[rα] ⊕ M[rβ],K[sα] ⊕ K[sβ]) and Lγ,0 :=
Lα,0 ⊕ Lβ,0. PB computes (sγ ,M[sγ],K[rγ]) := (sα ⊕ sβ ,M[rβ]⊕M[rβ],K[rα]⊕ K[rβ]).

4. Then, for each gate G = (α, β, γ,∧):

(a) PA (resp., PB) sends (and, (rα,M[rα],K[sα]), (rβ ,M[rβ],K[sβ])) (resp., (and, (sα,M[sα],K[rα]), (sβ , M[sβ], K[rβ]))) to
FPre. In return, FPre sends (rσ,M[rσ],K[sσ]) to PA and (sσ,M[sσ],K[rσ]) to PB, where sσ ⊕ rσ = λα ∧ λβ .

(b) PA computes the following locally:

(rγ,0,M[rγ,0],K[sγ,0]) := (rσ ⊕ rγ , M[rσ]⊕M[rγ], K[sσ]⊕ K[sγ])
(rγ,1,M[rγ,1],K[sγ,1]) := (rσ ⊕ rγ ⊕ rα, M[rσ]⊕M[rγ]⊕M[rα], K[sσ]⊕ K[sγ]⊕ K[sα])
(rγ,2,M[rγ,2],K[sγ,2]) := (rσ ⊕ rγ ⊕ rβ , M[rσ]⊕M[rγ]⊕M[rβ], K[sσ]⊕ K[sγ]⊕ K[sβ])
(rγ,3,M[rγ,3],K[sγ,3]) := (rσ ⊕ rγ ⊕ rα ⊕ rβ , M[rσ]⊕M[rγ]⊕M[rα]⊕M[rβ], K[sσ]⊕ K[sγ]⊕ K[sα]⊕ K[sβ]⊕∆A)

(c) PB computes the following locally:

(sγ,0,M[sγ,0],K[rγ,0]) := (sσ ⊕ sγ , M[sσ]⊕M[sγ], K[rσ]⊕ K[rγ])
(sγ,1,M[sγ,1],K[rγ,1]) := (sσ ⊕ sγ ⊕ sα, M[sσ]⊕M[sγ]⊕M[sα], K[rσ]⊕ K[rγ]⊕ K[rα])
(sγ,2,M[sγ,2],K[rγ,2]) := (sσ ⊕ sγ ⊕ sβ , M[sσ]⊕M[sγ]⊕M[sβ], K[rσ]⊕ K[rγ]⊕ K[rβ])
(sγ,3,M[sγ,3],K[rγ,3]) := (sσ ⊕ sγ ⊕ sα ⊕ sβ ⊕ 1, M[sσ]⊕M[sγ]⊕M[sα]⊕M[sβ], K[rσ]⊕ K[rγ]⊕ K[rα]⊕ K[rβ])

(d) PA computes Lα,1 := Lα,0 ⊕∆A and Lβ,1 := Lβ,0 ⊕∆A, and then sends the following to PB.

Gγ,0 := H(Lα,0, Lβ,0, γ, 0)⊕ (rγ,0, M[rγ,0], Lγ,0 ⊕ K[sγ,0]⊕ rγ,0∆A)
Gγ,1 := H(Lα,0, Lβ,1, γ, 1)⊕ (rγ,1, M[rγ,1], Lγ,0 ⊕ K[sγ,1]⊕ rγ,1∆A)
Gγ,2 := H(Lα,1, Lβ,0, γ, 2)⊕ (rγ,2, M[rγ,2], Lγ,0 ⊕ K[sγ,2]⊕ rγ,2∆A)
Gγ,3 := H(Lα,1, Lβ,1, γ, 3)⊕ (rγ,3, M[rγ,3], Lγ,0 ⊕ K[sγ,3]⊕ rγ,3∆A)

Input processing:

5. For each w ∈ I1, PA sends (rw,M[rw]) to PB, who checks that (rw,K[rw],M[rw]) is valid. PB then sends yw ⊕ λw :=
sw ⊕ yw ⊕ rw to PA. Finally, PA sends Lw,yw⊕λw to PB.

6. For each w ∈ I2, PB sends (sw,M[sw]) to PA, who checks that (sw,K[sw],M[sw]) is valid. PA then sends xw ⊕ λw :=
sw ⊕ xw ⊕ rw and Lw,xw⊕λw to PB.

Circuit evaluation:

7. PB evaluates the circuit in topological order. For each gate G = (α, β, γ, T), PB initially holds (zα ⊕ λα, Lα,zα⊕λα) and
(zβ ⊕ λβ , Lβ,zβ⊕λβ), where zα, zβ are the underlying values of the wires.

(a) If T = ⊕, PB computes zγ ⊕ λγ := (zα ⊕ λα)⊕ (zβ ⊕ λβ) and Lγ,zγ⊕λγ := Lα,zα⊕λα ⊕ Lβ,zβ⊕λβ .

(b) If T = ∧, PB computes i := 2(zα ⊕ λα) + (zβ ⊕ λβ) followed by (rγ,i,M[rγ,i], Lγ,0 ⊕ K[sγ,i] ⊕ rγ,i∆A) := Gγ,i ⊕
H(Lα,zα⊕λα , Lβ,zβ⊕λβ , γ, i). Then PB checks that (rγ,i,K[rγ,i],M[rγ,i]) is valid and, if so, computes zγ ⊕ λγ :=

(sγ,i ⊕ rγ,i) and Lγ,zγ⊕λγ := (Lγ,0 ⊕ K[sγ,i]⊕ rγ,i∆A)⊕M[sγ,i].

Output determination:

8. For each w ∈ O, PA sends (rw,M[rw]) to PB, who checks (rw,K[rw],M[rw]) is valid. If so, PB computes zw := (λw ⊕ zw)⊕
rw ⊕ sw.

Figure 2: Our protocol in the FPre-hybrid model. Here ρ = κ for clarity, but this is not needed (cf. Section 6).

3. So far we have described a way for the parties to generate many “leaky” AND triples such that the
attacker may have disallowed information on at most ρ of them. We then show how to distill these

8

into a smaller number of “secure” AND triples, about which the attacker is guaranteed to have no
additional information beyond what it is allowed.

In the following, we provide more intuition on each of these steps.

Computing the initial AND triples. We begin by having the parties generate authenticated random
bits y1, z1, y2 known to the appropriate party. All that remains is to generate x1, x2, and for PB to learn
z2 = (x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ z1. To compute this, we use a functionality FHaAND that takes as input
unauthenticated values of y1, y2 and outputs [x1]A, [x2]B as well as XOR-shares of x1y2 ⊕ x2y1 to both
parties. The parties can then compute an authenticated version of z2 easily. Details of FHaAND, and a
protocol realizing it, appear in Section 8.1. (The above steps corresponds to steps (1)–(3) in Figure 8.)

Note that a malicious party can easily misbehave by, for example, sending an incorrect value for y1 (or
y2) to FHaAND. We deal with this in the next step. Looking ahead, however, we note that this also introduces
a selective-failure attack that can leak information to the attacker: if the attacker flips a y-value but the
checking step described next does not abort, then it must be the case that x1 ⊕ x2 = 0.

Verifying correctness. Both parties next check correctness of AND triples generated in the previous
step. If x2 ⊕ x1 = 0, then we want to check that z2 = z1; if x2 ⊕ x1 = 1, then we want to to check that
y1 ⊕ z1 = y2 ⊕ z2. However, an obvious problem is that no party knows the value of x1 ⊕ x2, therefore there
is no way to know which relationship should be checked. We thus need to construct a checking procedure
such that the computation of PA is oblivious to x2, while the computation of PB is oblivious to x1. In
Section 8.2, we provide complete description of the protocol as well as a detailed proof. (This corresponds
to steps (4)–(5) in Figure 8.)

Combining leaky ANDs. The above check is vulnerable to a selective-failure attack, from which a
malicious party can learn the value of x1/x2 with one-half probability of being caught. In order to get rid
of the leakage, bucketing is performed. Note that in the previous work [NNOB12], bucketing were done on
different objects, therefore the key here is to devise a way to combine our new leaky objects. Assuming
that two triples are ([x′1]A, [y

′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B) and ([x′′1]A, [y

′′
1]A, [z

′′
1]A, [x

′′
2]B, [y

′′
2]B, [z

′′
2]B), we set

[x1]A := [x′1]A ⊕ [x′′1]A, [x2]B := [x′2]B ⊕ [x′′2]B. By doing this, [x1]A, [x2]B are non-leaky as long as one triple is
non-leaky. We can also set [y1]A := [y′1]A, [y2]B := [y′2]B and reveal the bit d := y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2 , since y’s
bits are all private. Now observe that

(x1 ⊕ x2)(y1 ⊕ y2) = (x′1 ⊕ x′2 ⊕ x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′′1 ⊕ y′′2)

⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2)

= (z′1 ⊕ z′2)⊕ (z′′1 ⊕ z′′2)⊕ d(x′′1 ⊕ x′′2)

= (z′1 ⊕ z′′1 ⊕ dx′′1)⊕ (z′2 ⊕ z′′2 ⊕ dx′′2)

Therefore, we could just set [z1]A := [z′1]A⊕ [z′′1]A⊕ d[x′′1]A, [z2]B := [z′2]B⊕ [z′′2]B⊕ d[x′′2]B. (This corresponds
to the protocol in Figure 9.)

4.3 Other Ways to Instantiate FPre

We briefly note other ways FPre can be instantiated.

IPS-based instantiation. We obtain better asymptotic performance by instantiating the protocol with
the work by Ishai, Prabhakaran and Sahai [IPS08] to realize FPre. In the function-dependent preprocessing
phase, we need to produce a sharing of λi for each wire i, and a sharing of λσ = (λα ∧ λβ) ⊕ λγ for each
AND gate (α, β, γ,∧). These can be computed by a constant-depth circuit with O(|C|κ) gates. For securely
evaluating a circuit of depth d and size `, the IPS protocol uses communication complexity (in terms of
number of bits) O(`)+poly(κ, d, log `) and O(d) rounds of communication. When applied to our setting, this

9

translates to a communication complexity of O(|C|κ) + poly(κ, log |C|) bits; for sufficiently large circuits, it
can be simplified to O(|C|κ) bits.

Using a (semi-)trusted server. It is straightforward to instantiate FPre using a (semi-)trusted server.
By applying the techniques of Mohassel et al. [MOR16], the offline phase can also be decoupled from the
identity of other party; we refer to their paper for further details.

5 Proof of Security

Theorem 5.1. If H is modeled as a random oracle, the protocol in Figure 2 securely computes f against
malicious adversaries with statistical security 2−ρ in the FPre-hybrid model.

Proof. We consider separately the case where PA or PB is malicious.

Malicious PA. Let A be an adversary corrupting PA. We construct a simulator S that runs A as a
subroutine and plays the role of PA in the ideal world involving an ideal functionality F evaluating f . S is
defined as follows.

1-4 S interacts with A acting as an honest PB, where S also plays the role of FPre, recording all values
that are sent to A.

5 S interacts with A acting as an honest PB using input y = 0.

6 S interacts with A acting as an honest PB. For each wire w ∈ I1, S receives x̂w and computes
xw = x̂w ⊕ rw ⊕ sw, where rw, sw are values S used to play the role of FPre in previous steps. S sends
x = {xw}w∈I1 to F .

7-8 S interacts with A acting as an honest PB. If PB would abort, S outputs whatever A outputs and
aborts; otherwise S sends continue to F .

We now show that the joint distribution over the outputs of A and the honest PB in the real world is
indistinguishable from the joint distribution over the outputs of S and PB in the ideal world. We prove this
by considering a sequence of experiments, the first of which corresponds to the execution of our protocol and
the last of which corresponds to execution in the ideal world, and showing that successive experiments are
computationally indistinguishable.

Hybrid1. This is the hybrid-world protocol, where S plays the role of an honest PB using PB’s actual
input y. S also plays the role of FPre.

Hybrid2. Same as Hybrid1, except that in step 6, for each wire w ∈ I1 the simulator S receives x̂w
and computes xw = x̂w ⊕ rw ⊕ sw, where sw, rw are values S used when playing the role of FPre. S
sends x = {xw}w∈I1 to F . If an honest PB would abort, S outputs whatever A outputs and aborts;
otherwise S sends continue to F .

The distributions on the view of the adversary in the two experiments above are exactly identical.
Lemma 5.1 shows that PB generates the same output in both experiments with probability 1− 2−ρ.

Hybrid3. Same as Hybrid2, except that S computes {sw}w∈I2 as follows: S first randomly pick {uw}w∈I2 ,
and then computes sw := uw ⊕ yw.

The above two experiments are identically distributed.

Hybrid4. Same as Hybrid3, except that S uses y = 0 as inputs throughout the protocol.

Note that although the value of y in Hybrid3 and Hybrid4 are different, the distributions of sw⊕ yw
are exactly the same. The view of the adversary in the two experiments are therefore the same. We
next show that PB aborts with the same probability in two experiments.

10

Observe that the only place where PB’s abort can possibly depends on y is in step 7(b). However,
this abort depends on which row is selected to decrypt, that is the value of λα ⊕ zα and λβ ⊕ zβ ,
which are chosen uniformly and independently in both experiments. Therefore, the two experiments
are identically distributed.

Note that Hybrid4 corresponds to the ideal-world execution, so this completes the proof for a malicious PA.

Malicious PB. Let A be an adversary corrupting PB. We construct a simulator S that runs A as a
subroutine and plays the role of PB in the ideal world involving an ideal functionality F evaluating f . S is
defined as follows.

1-4 S interacts with A acting as an honest PA and plays the functionality of FPre. If an honest PA would
abort, S output whatever A outputs and aborts.

5 S interacts with A acting as an honest PA, receives ŷwfrom A, and computes yw := ŷw ⊕ sw ⊕ rw,
where sw, rw are values S used when playing the role of FPre. S sends y = {yw}w∈I2 to F , which sends
z = f(x, y) to S.

6 S interacts with A acting as an honest PA using input x = 0. If an honest PA would abort, S output
whatever A outputs and aborts.

8 S computes z′ = f(0, y). For each w ∈ O, if z′w = zw, S sends (rw,M[rw]); otherwise, S sends
(rw ⊕ 1,M[rw]⊕∆B), where ∆B is the value S used when playing the role of FPre.

We now show that the joint distribution over the outputs of A and the honest PA in the real world is
indistinguishable from the joint distribution over the outputs of S and PA in the ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the role of an honest PA using the actual
input x.

Hybrid2. Same as Hybrid1, except that, in step 5, S receives yw ⊕ λw from A, and computes yw :=
ŷw⊕sw⊕rw, where sw, rw are values S used when playing the role of FPre. S then sends y = {yw}w∈I2
to F , and receives z = f(x, y). In Step 8, for each w ∈ O, S computes r′w := zw ⊕ sw, and sends
(r′w,K[r′w]⊕ r′w∆B), where ∆B is the value S used to play the role of FPre.

PA does not have output; furthermore the view of A does not change between the two Hybrids since
the value z that S obtains from F is the same as the one A obtains in Hybrid1.

Hybrid3. Same as Hybrid2, except that in step 6, S uses x = 0 as input.

Note that since S uses different values for x between two Hybrids, we also need to show that the
garbled rows PB opened are indistinguishable between two Hybrids. According to Lemma 5.2, PB is
able to open only one garble rows in each garbled table Gγ,i. Therefore, given that {λw}w∈I1∪W values
are not known to PB, masked values and garbled keys are indistinguishable between the two Hybrids.

As Hybrid3 is the ideal-world execution, the proof is complete.

Lemma 5.1. Consider an A corrupting PA and denote xw := x̂w ⊕ sw ⊕ rw, where x̂w is the value A sent
to PB, sw, rw are the values from FPre. With probability 1− 2−ρ, PB either aborts or only learns z = f(x, y).

Proof. Define z∗w as the correct wire values computed using x defined above and y, zw as the actual wire
values PB holds in the evaluation.

We will first show that PB learns {zw ⊕ λw = z∗w ⊕ λw}w∈O by induction on topology of the circuit.

Base step: It is obvious that {z∗w ⊕ λw = zw ⊕ λw}w∈I1∪I2 , unless A is able to forge an IT-MAC.

Induction step: Now we show that for a gate (α, β, γ, T), if PB has {z∗w ⊕ λw = zw ⊕ λw}w∈{α,β}, then PB

also obtains z∗γ ⊕ λγ = zγ ⊕ λγ .

11

• T = ⊕: It is true according to the following: z∗γ⊕λγ = (z∗α⊕λα)⊕(z∗β⊕λβ) = (zα⊕λα)⊕(zβ⊕λβ)zγ⊕λγ

• T = ∧: According to the protocol, PB will open the garbled row defined by i := 2(zα⊕λα) + (zβ⊕λβ).
If PB learns zγ ⊕ λγ 6= z∗γ ⊕ λγ , then it means that PB learns r∗γ,i 6= rγ,i. However, this would mean
that A forges a valid IT-MAC, which only happens with negligible probability.

Now we know that PB learns correct masked output. PB can therefore learn correct output f(x, y) unless
A is able to flip {rw}w∈O, which, again, happens with negligible probability.

Lemma 5.2. Consider an A corrupting PB, with negligible, probability, PB learns both garbled keys for some
wire.

Proof. The proof is very similar to the proof of security for garbled circuits in the semi-honest setting.

Base step: PB can only learn one garbled keys for each input wire, since PA only sends one garbled wire,
and PB cannot learn ∆A in the protocol.

Induction step: It is obvious that PB cannot learn the other label for an XOR gate and so we focus on
AND gates. Note that PB only learns one garbled key each for input wires α and β. However, each row
is encrypted using different combinations of {Lα,b}b∈{0,1} and {Lβ,b}b∈{0,1} . In order for PB to open two
rows in the garbled table, PB needs to learn both garbled keys for some input wire, which contradict with
assumptions in the induction step.

Global key queries. When instantiated based on the TinyOT protocol, the adversary is also allowed to
perform a global key queries: the adversary can, at any time, send (p,∆′) to FPre and be told if ∆′ = ∆p. It
is easy to incorporate this to the simulation above, by simply letting the simulator act as FPre and answer
all global key queries honestly. This is feasible since the simulator plays the role of FPre and knows all global
keys. In both real and idea world, the probability that an adversary can guess the global key correctly after
q queries is always q/2κ (since global keys are random κ-bit strings). Therefore, the global key query only
gives the adversary negligible advantage and the rest of the proof follows.

6 Extensions and Optimizations

Reducing the size of the authenticated garbled table. In the original protocol, all MACs and keys are
κ-bit values, which may not always be necessary. For ρ-bit statistical security, M[r00] encrypted in step 4(d)
only needs to be of length ρ. Further, the bits rγ,i need not be put in the garbled table, since the MAC
M[rγ,i] is already enough for PB to learn and validate the bit. This reduces the size of a garbled table from
8κ+ 4 bits to 4(κ+ ρ) bits.

Partial garbled row reduction. Even with the above optimization, the value Lγ,0 is still uniform, which
means we can further reduce the size of garbled tables using ideas similar to garbled row reduction [PSSW09].
In detail, instead of picking Lγ,0 randomly, it will be set such that Lγ,0 = H(Lα,0, Lβ,0, γ, 0)[0 : κ], where
X[0 : κ] refers to the κ least-significant bits of a string X.

Pushing computation to earlier phases. For clarity of presentation, in our description of the protocol
we send {rw,M[rw]}w∈I1 and {sw,M[sw]}wI2 in steps 5 and 6. However, they can be sent in step 4 before
knowing the input, which reduces the online communication from |I|(κ+ ρ) + |O|ρ to |I|κ+ |O|ρ.

7 Evaluation

7.1 Implementation and Evaluation Setup

We implemented our protocol using the EMP-toolkit [WMK16] to verify its efficiency. We will make our
implementation publicly available. In the evaluation below, the computational security parameter is set

12

Bucket size 3 4 5

ρ = 40 280K 3.1K 320
ρ = 64 1.2B 780K 21K
ρ = 80 300B 32M 330K

Table 4: Least number of AND gates needed in the bucketing, for different bucket sizes and statistical
security parameters.

Circuit n1 n2 n3 |C|

AES 128 128 128 6800
SHA-128 256 256 160 37300
SHA-256 256 256 256 90825

Hamming Dist. 1048K 1048K 22 2097K
Integer Mult. 2048 2048 2048 4192K

Sorting 131072 131072 131072 10223K

Table 5: Circuits used in our evaluation.

to κ = 128, and the statistical security parameter is set to ρ = 40. Garbling and related operations are
implemented using fixed-key AES-NI operations as in Bellare et al. [BHKR13]. Note that our protocol is
proven secure in the random oracle model. However, it is merely used to encrypt garbled rows. We could
describe everything in terms of abstract encryption. One way to realize the encryption is using H as we
describe it (for simplicity), and another way is the JustGarble approach that we use in our implementation.
Multithreading, Streaming SIMD Extensions (SSE), and Advanced Vector Extensions (AVX) are also used
to improve performance whenever possible. To minimize the bucket size, we calculate the least number of
AND gate required for each bucket size and statistical security based on the exact formula, shown in Table 4.
We plan to open source the implementation in the near future.

Our implementation consists mainly of three parts:

1. Authenticated bits. The protocol to compute authenticated bits is very similar to random OT exten-
sion [NNOB12]. Therefore, we adopt the most recent OT extension protocol by Keller et al. [KOS15]
along with the optimization of Nielsen et al. [NST17]. The resulting protocol requires κ + ρ bits of
communication per authenticated bit.

2. FPre functionality. In order to improve the running time, we spawn multiple threads that each
generate a set of leaky AND gates. After all leaky AND gates are generated, bucketing and combining
are done in a single thread.

3. Our protocol. The function-independent phase invokes the above two parts to generate random
AND triples with IT-MACs. In the function-dependent phase, these random AND triples are used
to construct a single garbled table. Note that in the single-execution setting, we use only one thread
to construct the garbled circuit; in the amortized setting, we use multiple threads, each constructing
a different garbled circuit for the same function but different executions. The online phase is always
done using a single thread.

Evaluation setup. Our evaluation focuses on two settings:

• LAN: Amazon EC2 with instance c4.8xlarge machines both in the North Virginia region connected
with 10 Gbps bandwidth and less than 1ms roundtrip time.

• WAN: One machine in North Virginia and one in Ireland, both of which are of the type c4.8xlarge.
Single thread communication bandwidth is about 224 Mbps; the maximum total bandwidth is about
3 Gbps with multiple threads.

13

LAN WAN

Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

AES [WMK17] - 28 ms 14 ms 42 ms - 425 ms 416 ms 841 ms
AES [NST17] 89.6 ms 13.2 ms 1.46 ms 104.3 ms 1882 ms 96.7 ms 83.2 ms 2061.9 ms

Here 10.9 ms 4.78 ms 0.93 ms 16.6 ms 821 ms 461 ms 77.2 ms 1359.2 ms

SHA1 [WMK17] - 139 ms 41 ms 180 ms - 1414 ms 472 ms 1886 ms
Here 41.4 ms 21.3 ms 3.6 ms 66.3 ms 1288 ms 603 ms 78.4 ms 1969.4 ms

SHA256 [WMK17] - 350 ms 84 ms 434 ms - 2997 ms 514 ms 3511 ms
SHA256 [NST17] 478.5 ms 164.4 ms 11.2 ms 654.1 ms 2738 ms 350 ms 93.9 ms 3182 ms

Here 96 ms 51.7 ms 9.3 ms 157 ms 1516 ms 772 ms 88 ms 2376 ms

Table 6: Comparison in the single-execution setting

LAN WAN

τ Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

32 - 45 ms 1.7ms 46.7 ms - 282 ms 190 ms 472 ms
[RR16] 128 - 16 ms 1.5 ms 17.5 ms - 71 ms 191 ms 262 ms

1024 - 5.1 ms 1.3 ms 6.4 ms - 34 ms 189 ms 223 ms

32 54.5 ms 0.85 ms 1.23 ms 56.6 ms 235.8 ms 5.2 ms 83.2 ms 324.2 ms
[NST17] 128 21.5 ms 0.7 ms 1.2 ms 23.4 ms 95.8 ms 3.9 ms 83.7 ms 183.4 ms

1024 14.7 ms 0.74 ms 1.13 ms 16.6 ms 42.1 ms 2.1 ms 83.2 ms 127.4 ms

32 8.9 ms 0.6 ms 0.97 ms 10.47 ms 75.2 ms 8.7 ms 76 ms 160 ms
Here 128 5.4 ms 0.54 ms 0.99 ms 6.93 ms 36.6 ms 8.4 ms 75 ms 120 ms

1024 4.9 ms 0.53 ms 1.23 ms 6.66 ms 30.0 ms 7.5 ms 76 ms 113.5 ms

Table 7: Evaluation of AES in the amortized setting. τ is the number of executions.

LAN WAN

Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

Hamming Dist. 1867 ms 1226 ms 74 ms 3167 ms 11531 ms 6592 ms 133 ms 18256 ms
Integer Mult. 2860 ms 1921 ms 301 ms 5081 ms 20218 ms 9843 ms 376 ms 30437 ms

Sorting 7096 ms 5508 ms 1021 ms 13625 ms 45155 ms 25582 ms 1918 ms 72655 ms

Table 8: More examples with a much larger range of input/circuit size.

In Section 7.2, we first compare the performance of our protocol with previous protocols in similar settings;
here we focus on three circuits commonly used by other works, including AES, SHA-1, and SHA-256 (details
in Table 5). Our results show that these circuits may no longer be large enough to serve as the benchmark
circuits for malicious 2PC. Therefore, in Section 7.3, we also show the performance of our protocol on some
larger circuits (see Table 5). We will make these circuit files publicly available upon publication of our
work. In Section 7.4 and Section 7.5, we study the scalability of the protocol and compare the concrete
communication complexity of our protocol with prior work.

7.2 Comparison with Previous Work

Single-execution setting. First we compare the performance of our protocol to state-of-the-art 2PC pro-
tocols in the single-execution setting. In particular, we compare with the protocol of Wang et al. [WMK17],
which is based on circuit-level cut-and-choose and is tailored for the single-execution setting, as well as
the protocol of Nielsen et al. [NST17], which is based on gate-level cut-and-choose and is able to perform
function-independent preprocessing. To make a fair comparison, we ran the implementation by Wang et al.
using the same hardware; the results by Nielsen et al. are obtained from their paper, since the hardware
configuration is the same. Our reported timings do not include the time for the base-OTs for the same reason
as in [NST17]: the performance of base-OTs depends on the details of how the base-OTs are instantiated and
is not the focus of our work. For completeness, though, we note that our base-OT implementation (based on
the protocol by Chou and Orlandi [CO15]) takes about 20 ms in the LAN setting and 240 ms in the WAN

14

... 221 222 223 224

Number of Bits in P1’s Input

0 0

5 5

10 10

15 15

20 20

25 25

30 30

R
un

ni
ng

T
im

e
(s

ec
on

d)
WAN, 1.56µs / bit
LAN, 0.35µs / bit

(a) Increasing PA’s input size (n1).

... 221 222 223 224

Number of Bits in P2’s Input

0 0

5 5

10 10

15 15

20 20

25 25

30 30

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 1.57µs / bit
LAN, 0.35µs / bit

(b) Increasing PB’s input size (n2).

... 221 222 223 224

Number of Bits in the Output

0.0 0.0

0.5 0.5

1.0 1.0

1.5 1.5

2.0 2.0

2.5 2.5

3.0 3.0

3.5 3.5

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 0.13µs / bit
LAN, 0.03µs / bit

(c) Increasing output size (n3).

... 221 222 223 224

Number of AND Gates

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 4.48µs / gate
LAN, 1.19µs / gate

(d) Increasing circuit size (|C|).

Figure 3: Scalability of our protocol. Initially input sizes and output size are all set to 128 bit with a circuit
of size 1024 gate. For each figure, one of the following values increases monotonically: PA’s input size, PB’s
input size, output size, circuit size.

setting.
As shown in Table 6, our protocol performs better than previous protocols in terms of both overall cost

and online time. Compared with the protocol by Wang et al., we achieve a speed up of 2.7× overall and an
improvement of about 10× for online time. Compared with the protocol by Nielsen et al., the online cost
is roughly the same but our offline time is significantly better: we are 4–7× better in the LAN setting, and
1.3-1.5× better in the WAN setting.

Amortized Setting. We observed that in the amortized setting, our protocol is also better than previous
protocols. In particular, we achieve an improvement about 4.5× to 5.5× if only amortized over 32 executions.
When the number of executions grows to 1024, [NST17] is no longer better than [RR16] in terms of total
time but our protocol still outperforms both protocols: in the LAN setting, the total cost is about the same
as [RR16], but most of the computation are done in function-independent phase; in the WAN setting, we
are 2× better than [RR16] in terms of total cost and 3× better in terms of online cost.

Comparison with Lindell et al. [LPSY15]. Compared to the recent work of Lindell et al. [LPSY15], our
protocol is asymptotically more efficient in the function-independent preprocessing phase; more importantly,
the concrete efficiency of our protocol is much better for several reasons: (1) our work is compatible with
free-XOR and we do not suffer from any blowup in the size of the circuit being evaluated; (2) Lindell et
al. require five SPDZ-style multiplications per AND gate of the underlying circuit, while we only need one
TinyOT-style AND computation per AND gate.

Since the protocol by Lindell et al. is not implemented, we perform a back-of-the-envelope calculation to
argue that our protocol is faster. For a circuit of size |C|, their protocol requires 5|C| SPDZ multiplications.

15

Over a 10 Gbps network, the recent work of Keller et al. [KOS16] can generate in principle 55,000 triples per
second using an ideal implementation that fully saturates the network. Therefore, the best end-to-end speed
their protocol can achieve in the two-party setting is 11,000 AND gates per second. On the other hand, our
actual implementation computes 833,333 AND gates per second as shown by the scalability evaluation in
Section 7.4. Therefore, our protocol is at least 75× better than the best possible implementation of their
protocol.

Comparison with linear-round protocols. The AES circuit has depth 50 [LR15]. Therefore, even in the
LAN setting with 0.5 ms roundtrip time, and ignoring all computation and communication, any linear-round
protocol for securely computing AES would require at least 25 ms, which is already 1.5× slower than our
protocol.

Damg̊ard et al. [DLT14] has the best end-to-end running time among all linear-round protocols. Their
protocol only supports amortization by parallel execution (where inputs to all executions need to be known
at the same time). They report an amortized time for evaluating AES of 14.65 ms per execution, amortized
over 680 execution. This is roughly in par with our single-execution performance without any preprocessing.
When comparing their results to our amortized performance, we are more than 2× faster, and we are not
limited to parallel execution.

A more recent work by Damg̊ard et al. [DNNR16] proposed a protocol with a very efficient online phase.
In the LAN setting with similar hardware, it takes 1.09 ms online time to evaluate an AES, which is similar
to ours (0.93 ms). They also report 0.47µs online time in the parallel execution setting, which is different
from our amortized setting as we discussed above. We cannot compare end-to-end running time since their
preprocessing time is not reported. However, we notice that their preprocessing is based on TinyOT, and our
optimized TinyOT protocol is much more efficient, which, on the other hand, can also be used to improve
their preprocessing phase too.

7.3 Larger Circuits

As we can see from the previous section, evaluating an AES circuit takes less time than generating the
base-OT. This means that due to recent advances in 2PC, existing benchmark circuits are no longer large
enough for a meaningful evaluation. We propose three new examples and evaluate their performance. The
configuration of the circuits are shown in Table 5; we will briefly discuss the functionality of them:

• Hamming Dist. Each party inputs a bit string of length 1048576 bits; the output of the circuit is
a 22-bit number containing the hamming distance of the two bit string from each party. The circuit
complexity is O(n) for n-bit strings.

• Integer Mult. Each party inputs a 2048-bit number; the circuit compute the multiplication of them,
ignoring the high 2048 bits of the result. The circuit complexity is O(n2) for n bit numbers.

• Sorting. Each party inputs XOR-share of 4096 32-bit numbers; the circuit first XOR them to recover
the underlying numbers and then sort the these numbers. The circuit complexity is O(nl log2 n) to
sort n numbers each with l bits.

Table 8 shows the performance of new examples described above. We can see that the difference of online
time between LAN and WAN is about 75 ms, which is roughly the roundtrip time of the WAN network we
used. This is also consistent with the fact that our protocol requires only one round of online communication
(one message from each party). According to the Table, our protocol is able to sort 4096 32-bit numbers
in less than 14 seconds with an online time only 1 second. We would like to note that, the state-of-the-art
garbling scheme can evaluate about 20 million AND gate per second. Therefore the same circuit would take
about 0.5 second online time even in the semi-honest setting. Other timings can be interpreted similarly.

7.4 Scalability

To explore the concrete performance of our protocol for circuits with different input, output and circuit
sizes, we conduct a scalability evaluation: we start with a circuit with input and output sizes of 128 bits and

16

Circuit n1 n2 n3 |C|
LAN 0.35 0.35 0.03 1.19
WAN 1.56 1.57 0.13 4.48

Table 9: Scalability of the protocol. All numbers in microseconds.

Protocol τ Ind. Phase Dep. Phase Online

[RR16]
32 - 3.8 MB 25.8 KB
128 - 2.5 MB 21.3 KB
1024 - 1.6 MB 17.0 KB

[NST17]

1 14.9 MB 0.22 MB 16.1 KB
32 8.7 MB 0.22 MB 16.1 KB
128 7.2 MB 0.22 MB 16.1 KB
1024 6.4 MB 0.22 MB 16.1 KB

1 2.86 MB 0.57 MB 4.86 KB
This 32 2.64 MB 0.57 MB 4.86 KB

Paper 128 2.0 MB 0.57 MB 4.86 KB
1024 2.0 MB 0.57 MB 4.86 KB

Table 10: Comparison of communication per execution for evaluating an AES circuit. Numbers presented
are for the amount of data sent from garbler to evaluator; this reflects the speed in a duplex network. In
the setting with a simplex network, the total communication of this work and [RR16] should be doubled for
a fair comparison.

1024 AND gates and, at each time, increase one size monotonically up to 224 bits/gates. The result of the
evaluation is shown in Figure 3. Trend lines are also included to show the asymptotical performance. Since
the bucket size of our protocol reduces as the circuit size increases, these lines are regression of the points
when the bucket size is 3.

According to the figures, our implementation scales linearly in the input, output and circuit sizes as
expected. We observe that, in the LAN setting, our protocol requires only 0.35 µs to process each input
bit and 0.03 µs to process each output bit. Note that this is much better than circuit-level cut-and-choose
protocols, mainly for two reasons: 1) Since only one garbled circuit is constructed, only one set of garbled
labels need to be transferred; this is an improvement of ρ times. 2) We do not need XOR-Tree or ρ-probe
matrix to prevent selective failure, which can incur a huge cost when the input is large [WMK17].

The figures also show that, in the WAN setting, the ratios are about 3–4× lower than the ratios in the
LAN setting. This roughly matches the ratio of network bandwidth between LAN and WAN settings.

7.5 Communication Complexity

We also record the amount of communication used in the protocol based on our implementation. In Table 10
we compare the amount of data sent from garbler to the evaluator with other related works. In detail, we
focused on the AES circuit with different number of executions. Our total communication is 3× to 5× less
than Nielsen et al.’s protocol. Furthermore, our cost in the single-execution setting is even half the cost of
Nielsen et al.’s protocol when amortized with 1024 executions. Note that for protocols based on cut-and-
choose, the total communication to send 40 AES garbled circuit is 8.7 MB, which is already higher than the
total communication of our protocol in the single execution setting.

We also observe that our function dependent preprocessing is higher than Nielsen et al.; this is due to
the fact that we need to send 3κ+ 4ρ bits per gate while they only need to send 2κ bits. On the other hand,

17

our online communication is extremely small: it is about 3× smaller than in the protocol of Nielsen et al.
and 3.5–5.3× smaller than the protocol of Rindal and Rosulek.

Acknowledgments

This material is based upon work supported by NSF awards #1111599 and #1563722; Samuel Ranellucci
is also supported by NSF award #1564088. The author would like to thank Roberto Trifiletti, Yan Huang
and Ruiyu Zhu for their helpful comments.

References

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In 20th ACM Conf. on Computer and
Communications Security (CCS), pages 535–548. ACM Press, 2013.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure compu-
tation based on cut-and-choose. In Advances in Cryptology—Eurocrypt 2014, volume 8441 of
LNCS, pages 387–404. Springer, 2014.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, Advances in Cryptology—Crypto ’91, volume 576 of LNCS, pages 420–432. Springer, 1992.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling
from a fixed-key blockcipher. In 2013 IEEE Symposium on Security & Privacy, pages 478–492.
IEEE, 2013.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
503–513. ACM, 1990.

[Bra13] Lúıs T. A. N. Brandão. Secure two-party computation with reusable bit-commitments, via a
cut-and-choose with forge-and-lose technique - (extended abstract). In Advances in Cryptology—
Asiacrypt 2013, Part II, volume 8270 of LNCS, pages 441–463. Springer, 2013.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-party
computation from cut-and-choose. In Advances in Cryptology—Crypto 2014, Part II, volume
8617 of LNCS, pages 513–530. Springer, 2014.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Progress in
Cryptology - LATINCRYPT 2015, LNCS, pages 40–58. Springer, 2015.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Victor Shoup, editor, Advances in Cryptology—Crypto 2005, volume
3621 of LNCS, pages 378–394. Springer, 2005.

[DLT14] Ivan Damg̊ard, Rasmus Lauritsen, and Tomas Toft. An empirical study and some improvements
of the MiniMac protocol for secure computation. In 9th Intl. Conf. on Security and Cryptography
for Networks SCN, volume 8642 of LNCS, pages 398–415. Springer, 2014.

[DNNR16] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. Gate-scrambling
revisited - or: The TinyTable protocol for 2-party secure computation. Cryptology ePrint
Archive, Report 2016/695, 2016. http://eprint.iacr.org/2016/695.

18

http://eprint.iacr.org/2016/695

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Advances in Cryptology—Crypto 2012, volume 7417 of
LNCS, pages 643–662. Springer, 2012.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian Nord-
holt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party computation from general
assumptions. In Advances in Cryptology—Eurocrypt 2013, volume 7881 of LNCS, pages 537–
556. Springer, 2013.

[FJN14] Tore Kasper Frederiksen, Thomas P. Jakobsen, and Jesper Buus Nielsen. Faster maliciously
secure two-party computation using the GPU. In 9th Intl. Conf. on Security and Cryptography
for Networks SCN, volume 8642 of LNCS, pages 358–379. Springer, 2014.

[FJNT15] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Trifiletti.
TinyLEGO: An interactive garbling scheme for maliciously secure two-party computation. Cryp-
tology ePrint Archive, Report 2015/309, 2015. http://eprint.iacr.org/2015/309.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229. ACM Press, May 1987.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation
using garbled circuits. In 20th USENIX Security Symposium. USENIX Association, 2011.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Advances in Cryptology—Crypto 2013, Part II, volume 8043 of
LNCS, pages 18–35. Springer, 2013.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Malozemoff.
Amortizing garbled circuits. In Advances in Cryptology—Crypto 2014, Part II, volume 8617 of
LNCS, pages 458–475. Springer, 2014.

[HSSV17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round mpc
combining bmr and oblivious transfer. Cryptology ePrint Archive, Report 2017/214, 2017.
http://eprint.iacr.org/2017/214.

[HZ15] Yan Huang and Ruiyu Zhu. Revisiting LEGOs: Optimizations, analysis, and their limit. Cryp-
tology ePrint Archive, Report 2015/1038, 2015. http://eprint.iacr.org/2015/1038.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Extracting correlations. In
50th Annual Symposium on Foundations of Computer Science (FOCS), pages 261–270. IEEE,
2009.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David Wagner, editor, Advances in Cryptology—Crypto 2008, volume 5157 of
LNCS, pages 572–591. Springer, 2008.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed
inputs. In Moni Naor, editor, Advances in Cryptology—Eurocrypt 2007, volume 4515 of LNCS,
pages 97–114. Springer, 2007.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling for XOR
gates that beats free-XOR. In Advances in Cryptology—Crypto 2014, Part II, volume 8617 of
LNCS, pages 440–457. Springer, 2014.

19

http://eprint.iacr.org/2015/309
http://eprint.iacr.org/2017/214
http://eprint.iacr.org/2015/1038

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215 of LNCS, pages 724–741.
Springer, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic se-
cure computation with oblivious transfer. In 23rd ACM Conf. on Computer and Communications
Security (CCS), pages 830–842. ACM Press, 2016.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In 35th Intl. Colloquium on Automata, Languages, and Programming (ICALP),
Part II, volume 5126 of LNCS, pages 486–498. Springer, 2008.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with
malicious adversaries. In USENIX Security, 2012.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In
Advances in Cryptology—Crypto 2013, Part II, volume 8043 of LNCS, pages 1–17. Springer,
2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the
presence of malicious adversaries. In Moni Naor, editor, Advances in Cryptology—Eurocrypt 2007,
volume 4515 of LNCS, pages 52–78. Springer, 2007.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious
transfer. In 8th Theory of Cryptography Conference—TCC 2011, volume 6597 of LNCS, pages
329–346. Springer, 2011.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round
multi-party computation combining BMR and SPDZ. In Advances in Cryptology—Crypto 2015,
Part II, volume 9216 of LNCS, pages 319–338. Springer, 2015.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the online/offline
and batch settings. In Advances in Cryptology—Crypto 2014, Part II, volume 8617 of LNCS,
pages 476–494. Springer, 2014.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with security for
malicious adversaries. In 22nd ACM Conf. on Computer and Communications Security (CCS),
pages 579–590. ACM Press, 2015.

[LSS16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-round
multi-party computation from BMR and SHE. In 13th Theory of Cryptography Conference—
TCC 2016, LNCS, pages 554–581. Springer, 2016.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a secure two-party
computation system. In 13th USENIX Security Symposium, 2004.

[MOR16] Payman Mohassel, Ostap Orobets, and Ben Riva. Efficient server-aided 2pc for mobile phones.
Proceedings on Privacy Enhancing Technologies, 2016(2):82–99, 2016.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In 6th
Theory of Cryptography Conference—TCC 2009, volume 5444 of LNCS, pages 368–386. Springer,
2009.

20

[NO16] Jesper Buus Nielsen and Claudio Orlandi. Cross and clean: Amortized garbled circuits with
constant overhead. In 13th Theory of Cryptography Conference—TCC 2016, LNCS, pages 582–
603. Springer, 2016.

[NST17] Jesper Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant-round maliciously secure
2PC with function-independent preprocessing using LEGO. In Network and Distributed System
Security Symposium (NDSS), 2017.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party
computation is practical. In Advances in Cryptology—Asiacrypt 2009, volume 5912 of LNCS,
pages 250–267. Springer, December 2009.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with online/offline
dual execution. In 25th USENIX Security Symposium (USENIX Security 16), pages 297–314,
Austin, TX, 2016. USENIX Association.

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious adversaries. In
Advances in Cryptology—Eurocrypt 2011, volume 6632 of LNCS, pages 386–405. Springer, 2011.

[sS13] abhi shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assumptions.
In 20th ACM Conf. on Computer and Communications Security (CCS), pages 523–534. ACM
Press, 2013.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty com-
putation toolkit. https://github.com/emp-toolkit, 2016.

[WMK17] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster two-party computation secure
against malicious adverstries in the single-execution setting. In Advances in Cryptology—
Eurocrypt 2017, LNCS. Springer, 2017.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation.
Cryptology ePrint Archive, Report 2017/189, 2017. http://eprint.iacr.org/2017/189.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science (FOCS), pages 162–167. IEEE, October 1986.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer
in garbled circuits using half gates. In Advances in Cryptology—Eurocrypt 2015, LNCS, pages
220–250. Springer, 2015.

A Improved TinyOT protocol

In this section, we describe an improvement to the TinyOT protocol. For a bucket size of B = ρ
log |C| + 1, the

original protocol requires 14B + 2 authenticated bits for each AND gate. In the following, we will introduce
an improved version where only 6B authenticated bits are needed for each AND gate. For a circuit of size
220, with ρ = 40, this is an improvement of 2.7×.

A.1 Half Authenticated AND

Before describing the main protocol, we will first show how to compute an AND triple with only x’s being
authenticated (FHaAND). This will serve as a building block for the following sections. The functionality
FHaAND is described in Figure 4. It outputs authenticated bits [x1]A and [x2]B to the two parties, it also
gets y1 from PA and y2 from PB without authentication. The functionality then outputs random shares of
x1y2 ⊕ x2y1. Looking ahead to the next subsection, this prevents parties from flipping x’s, which would

21

https://github.com/emp-toolkit
http://eprint.iacr.org/2017/189

Functionality FHaAND

1. The box picks random [x1]A and [x2]B and sends them to the two parties.

2. Upon receiving y1 from PA and y2 from PB, the box samples two random bits v1, v2 such that v1 ⊕ v2 = x1y2 ⊕ x2y1. The
box sends v1 to PA, v2 to PB.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 4: Functionality FHaAND that computes a half authenticated AND triple.

Protocol ΠHaAND

Protocol:

1. PA and PB call Fabit to obtain [x1]A and [x2]B.

2. PA picks random bit s1 and computes H0 := Lsb(H(K[x2]))⊕ s1, H1 := Lsb(H(K[x2]⊕∆A))⊕ s1 ⊕ y1. PA sends (H0, H1)
to PB, who computes s2 := Hx2 ⊕ Lsb(H(M[x2])).

3. PB picks random bit t1 and computes H0 := Lsb(H(K[x1])) ⊕ t1, H1 := Lsb(H(K[x1] ⊕ ∆B)) ⊕ t1 ⊕ y2. PB sends (H0, H1)
to PA, who computes t2 := Hx1 ⊕ Lsb(H(M[x1])).

4. PA computes v1 := s1 ⊕ t2, PB computes v2 := s2 ⊕ t1.

Figure 5: Protocol ΠHaAND instantiating FHaAND.

cause a selective failure attack on y, but would still allows parties to flip y’s, which would cause a selective
failure attack on x. The protocol that instantiates this functionality is simple due to the fact that not all
bits are authenticated. In the proof, we will essentially show that if an adversary “corrupts” any message,
it is equivalent to using some other input.

Lemma A.1. Assuming H is a random oracle, the protocol in Figure 5 securely implements the functionality
in Figure 4 in the Fabit-hybrid model.

Proof. First we will show the correctness of the protocol. We will show that s1 ⊕ s2 = x2y1 and that
t1 ⊕ t2 = x1y2. Without loss of generality, we will show the first equation. There are two cases:

• x2 = 0. In this case, PB obtains s2 = s1.

• x2 = 1. In this case, PB obtains s2 = s1 ⊕ y1.

In both cases, the equation we want to show holds. The other equation can be proven in exactly the same
way. The correctness of the protocol follows immediately from these two equations.

In a part below, we will continue to the simulation proof. The proof is straightforward, mainly due to
the fact that each party’s input is not authenticated and therefore S can extract the values easily.
Malicious PA. The simulator works as follows:

1. S plays the role of Fabit, and stores [x1]A, [x2]B.

2. S receives (H0, H1) fromA, and computes s1 := H0⊕Lsb(H(K[x2])), y1 := H1⊕s1⊕Lsb(H(K[x2]⊕∆A)).
S sends y1 to FHaAND on behalf of PA and receives v1.

3. S computes Hx1
:= Lsb(H(K[x1]⊕x1∆B))⊕ v1⊕ s1 and picks H1⊕x1

randomly, and sends (H0, H1) to
PA.

Honest PB has the same output according to the correctness proof. It is easy to see that the first two steps
are perfect simulation. The last step is also a perfect simulation: the joint distribution of (H0, H1) and PB’s
output is perfectly indistinguishable. 1) PA only knows either K[x1] or K[x1] ⊕ ∆B , which means Hx1⊕1

22

Functionality FLaAND

Honest parties: The box picks random [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1 ⊕ x2) ∧ (y1 ⊕ y2) = z1 ⊕ z2.

Corrupted parties:

1. A corrupted PA gets to choose all its randomness. Furthermore, it can send g to the box trying to guess x2. If g 6= x2 the
box output fail and terminates, otherwise the box proceeds as normal.

2. A corrupted PB gets to choose all its randomness. Furthermore, it can send g to the box trying to guess x1. If g 6= x1 the
box output fail and terminates, otherwise the box proceeds as normal.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 6: Functionality FLaAND for leaky AND triple generation.

Functionality FaAND

Honest parties: The box picks random [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1 ⊕ x2) ∧ (y1 ⊕ y2) = z1 ⊕ z2.

Corrupted parties: A corrupted PA gets to choose all its randomness.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 7: Functionality FaAND for generating AND triples

remains random as long as H is a random oracle. 2) PA obtains from Hx1
v1 ⊕ s1, which is the same for

both hybrids.
Malicious PB. The simulation is essentially the same as the case when PA is malicious (observing that

step 2 and step 3 can be done in any order).

A.2 New TinyOT Protocol

Assuming that two parties hold [x1]A, [y1]A, [x2]B, [y2]B. In the original TinyOT protocol, to compute (x1 ⊕
x2)(y1⊕y2), PA and PB compute [x1y1]A, [x2y2]B, [x1y2+r]A and [x2y1+r]B separately, with some random r ∈
{0, 1}, using various authenticated constructions proposed in their paper. Computing each entry separately
incurs a lot of unnecessary cost. We observe that it is possible to compute a whole AND gate directly.
Similar to the original TinyOT protocol, we propose a “leaky AND” protocol (ΠLaAND), where the adversary
is allowed to perform selective-failure attack on one input, and later use bucketing to eliminate such leakage
(ΠaAND). In the following, we will first discuss the intuition of the leaky AND protocol. The full protocol
description is in Figure 8 and Figure 9.

Intuition of our checking protocol. We describe things from the point of view of an honest PB holding
x2 = 0. Abstractly, the first step is for PB to compute values T0 and U0 and to send U0 to PA; PA will then
compute V0 such that if x1 = 0 then V0 = T0, but if x1 = 1 then V0 ⊕ U0 = T0. We set things up such that
if the AND triple is incorrect, then PA cannot compute V0 correctly. Similar constructs (namely V1, U1, and
T1) are also computed for the case when x2 = 1. Now depending on the value of x1 and x2, parties need to
perform equality comparison between different values, as summarized below.

x1 = 0 x1 = 1
x2 = 0 V0 = T0 V0 ⊕ U0 = T0

x2 = 1 V1 = T1 V1 ⊕ U1 = T1

Unfortunately, a direct comparison is not possible since PA does not know the value of x2 and therefore does
not know which comparison to perform. Our idea is to transform PA’s computation such that it is oblivious
to x2. In detail, if x1 = 0, PA will compute V0 as if x2 = 0 and computes V1 as if x2 = 1. PA then encrypts V0

and V1 such that PB with authenticated x2 can only decrypt Vx2
. PB can then compare locally if Vx2

= Tx2
.

In the case when PA has x1 = 1, PA computes and encrypts V0 ⊕ U0 and V1 ⊕ U1 in a similar manner.

23

Protocol ΠLaAND

Protocol:

1. PA and PB obtain random authenticated bits [y1]A, [z1]A, [y2]B, [r]B. PA and PB also calls FHaAND, receiving [x1]A and [x2]B.

2. PA sends y1 to FHaAND, PB sends y2 to FHaAND, which sends v1 to PA and v2 to PB.

3. PA computes u = v1 ⊕ x1y1 and sends to PB. PB computes z2 := u⊕ x2y2 ⊕ v2 and sends d := r ⊕ z2 to PA. Two parties
compute [z2]B = [r]B ⊕ d.

4. PB checks the correctness as follows:

(a) PB computes:

T0 := H(K[x1],K[z1]⊕ z2∆B)
U0 := T0 ⊕H(K[x1]⊕∆B,K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
T1 := H(K[x1],K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
U1 := T1 ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B)

(b) PB sends Ux2 to PA.

(c) PA randomly picks a κ-bit string R and computes

V0 := H(M[x1],M[z1]) V1 := H(M[x1],M[z1]⊕M[y1])
W0,0 := H(K[x2])⊕ V0 ⊕ R W0,1 := H(K[x2]⊕∆A)⊕ V1 ⊕ R
W1,0 := H(K[x2])⊕ V1 ⊕ U ⊕ R W1,1 := H(K[x2]⊕∆A)⊕ V0 ⊕ U ⊕ R

(d) PA sends Wx1,0
,Wx1,1

to PB and sends R to FEQ.

(e) PB computes R′ := Wx1,x2
⊕H(M[x2])⊕ Tx2 and sends R′ to FEQ.

5. PA checks the correctness as follows:

(a) PA computes:

T0 := H(K[x2],K[z2]⊕ z1∆A)
U0 := T0 ⊕H(K[x2]⊕∆A,K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
T1 := H(K[x2],K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
U1 := T1 ⊕H(K[x2]⊕∆A,K[z2]⊕ z1∆A)

(b) PA sends Ux1 to PB.

(c) PB randomly picks a κ-bit string R and computes

V0 := H(M[x2],M[z2]) V1 := H(M[x2],M[z2]⊕M[y2])
W0,0 := H(K[x1])⊕ V0 ⊕ R W0,1 := H(K[x1]⊕∆B)⊕ V1 ⊕ R
W1,0 := H(K[x1])⊕ V1 ⊕ U ⊕ R W1,1 := H(K[x1]⊕∆B)⊕ V0 ⊕ U ⊕ R

(d) PB sends Wx2,0
,Wx2,1

to PA and sends R to FEQ,

(e) PA computes R′ := Wx2,x1
⊕H(M[x1])⊕ Tx1 and sends R′ to FEQ.

Figure 8

Now the only problem is that although a malicious PA cannot cheat, a malicious PB will not be caught
for an incorrect AND relationship because PB compare the results locally and PA does not know the outcome
of the comparison! To solve this, we let PA instead send encrypted V0 ⊕ R and V1 ⊕ R for some random R
such that PB can obtain Vx2 ⊕ R, and learns R from it. Now PA and PB can check the equality on R using
the FEQ functionality that allows both parties get the outcome. Finally, the same check will be done in the
opposite direction to convince both party the correctness of the triples.

Note that this allows an adversary to perform selective-failure attacks, by sending some corrupted en-
crypted values. This does not introduce additional leakage, since x’s are allowed to be learned by A anyway
. The fact that A can guess x multiple times also does not help A in obtaining more information.

A.3 Proof

In the following, we will discuss from a high-level view how the proof works for the new TinyOT protocol.
We will focus on the security of ΠLaAND protocol, since the security of ΠaAND is fairly straightforward given
the proof in the original paper [NNOB12].

24

Protocol ΠaAND

Protocol:

1. PA and PB call FLaAND `′ = `B times and obtains {[xi1]A, [y
i
1]A, [z

i
1]A, [x

i
2]B, [y

i
2]B, [z

i
2]B}`

′
i=1.

2. PA and PB randomly partition all objects into ` buckets, each with B objects.

3. For each bucket, two parties combine B Leaky ANDs into one non-leaky AND. To combine two leaky ANDs, namely
([x′1]A, [y

′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B) and [x′′1]A, [y

′′
1]A, [z

′′
1]A, [x

′′
2]B, [y

′′
2]B, [z

′′
2]B

(a) Two parties reveal d′ := y′1 ⊕ y
′′
1 , d
′′ = y′2 ⊕ y

′′
2 with their MAC checked, and compute d := d′ ⊕ d′′.

(b) Set [x1]A := [x′1]A ⊕ [x′′1]A, [x2]B := [x′2]B ⊕ [x′′2]B, [y1]A := [y′1]A, [y2]A := [y′2]A, [z1]A := [z′1]A ⊕ [z′′1]A ⊕ d[x′′1]A,
[z2]B := [z′2]B ⊕ [z′′2]B ⊕ d[x′′2]B.

Two parties iterate all B leaky objects, by taking the resulted object and combine with the next element.

Figure 9: Protocol ΠaAND instantiating FaAND.

Correctness

Without loss of generality, we want to show that if both players followed the protocol then in step 4.e that
Wx1,x2

⊕M[x2]⊕ Tx2
= R. Checks in step 5 are perfectly symmetric to ones in step 4. We will proceed on

a case per case basis.

Case 1: x1 = 0, x2 = 0
The value of x1, x2 means that M[x1] = K[x1] and that M[x2] = K[x2]. Since x1 ⊕ x2 = 0, we know that
z1 = z2, which further implies that

M[z1] = K[z1]⊕ z1∆B = K[z1]⊕ z2∆B

The equation holds based on the following:

Wx1,x2
⊕H(M[x2])⊕ Tx2

= H(K[x2])⊕ V0 ⊕R⊕H(M[x2])⊕H(K[x1],K[z1]⊕ z2∆B)

= V0 ⊕ T0 ⊕R
= H(M[x1],M[z1])⊕H(K[x1],K[z1]⊕ z2∆B)⊕R
= R

Case 2: x1 = 0, x2 = 1

Similar to the previous case, we know that M[x1] = K[x1] and that M[x2] = K[x2] ⊕∆B. x1 ⊕ x2 = 1 also
implies that

M[z1]⊕M[y1]

= K[y1]⊕ K[z1]⊕ (y1 ⊕ z1)∆B

= K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B

The equation holds based on the following:

Wx1,x2
⊕H(M[x2])⊕ Tx2

= Wx1,x2
⊕H(M[x2])⊕ T1

= H(K[x2]⊕∆A)⊕ V1 ⊕R⊕H(M[x2])⊕ T1

= V1 ⊕ T1 ⊕R
= H(M[x1],M[z1]⊕M[y1])

⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B)⊕R
= R

25

Case 3: x1 = 1, x2 = 0

Similar to the previous cases, we know that M[x1] = K[x1] ⊕∆B, M[x2] = K[x2] and that M[z1] ⊕M[y1] =
K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B, which will be used to prove the following:

Wx1,x2
⊕H(M[x2])⊕ Tx2

= Wx1,x2
⊕H(M[x2])⊕ T0

= H(K[x2])⊕ V1 ⊕ U ⊕R⊕H(M[x2])⊕ T0

= V1 ⊕ U ⊕R⊕ T0

= H(M[x1],M[z1]⊕M[y1])⊕R⊕ T0

⊕ T0 ⊕H(K[x1]⊕∆B,K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)

= R

Case 4: x1 = 1, x2 = 1

Similar to the previous cases, we know that M[x1] = K[x1] ⊕ ∆B, M[x2] = K[x2] ⊕ ∆B and that M[z1] =
K[z1]⊕ z2∆B, which will be used to prove the following:

Wx1,x2
⊕H(M[x2])⊕ Tx2

= Wx1,x2
⊕H(M[x2])⊕ T1

= H(K[x2]⊕∆A)⊕ V0 ⊕ U ⊕R⊕H(M[x2])⊕ T1

= V0 ⊕ U ⊕R⊕ T1

= H(M[x1],M[z1])⊕R⊕ T1

⊕ T1 ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B)

= R

Unforgeability

Lemma A.2. If (x1⊕x2)∧(y1⊕y2) 6= (z1⊕z2) then the protocol will result in an abort except with negligible
probability.

We will proceed on a case per case basis. We assume that PB is honest and that the adversary corrupts
PA. By symmetry, this would also show that the protocol would abort when PB is corrupt and PA is honest.

Case 1: x1 = 0, x2 = 0

The adversary to pass the test would have to produce a pair R and W0,0 such that:

W0,0 = H(M[x2])⊕ Tx2
⊕R

W0,0 = H(M[x2])⊕R
⊕H(K[x1],K[z1]⊕ z2∆B)

Since z1 ⊕ z2 = 1, the last line requires the adversary to compute K[z1] ⊕ z2∆B = M[z1] ⊕ ∆B. This is
equivalent to forging a mac and is thus infeasible. Alternatively, the adversary could try to compute T0 from
U0 = T0 ⊕H(K[x1]⊕∆B,K[y1]⊕K[z1]⊕ (y2 ⊕ z2)∆B). Fortunately, since K[x1]⊕∆B = M[x1]⊕∆B. This is
also infeasible. This implies that an adversary cannot pass the test.

Case 2: x1 = 0, x2 = 1

The adversary to pass the test would have to produce a pair R and W0,1 such that:

W0,1 = H(M[x2])⊕ Tx2
⊕R

W0,1 = H(M[x2])⊕R
⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B)

26

However, since z1⊕z2⊕y1⊕y2 = 1, the last line requires the adversary to compute K[y1]⊕K[z1]⊕(z2⊕y2)∆B =
M[y1] ⊕ M[z1] ⊕ ∆B. This is equivalent to forging a mac tag which is infeasible. Alternatively, the
adversary could try to compute T1 from U1 = T1 ⊕ H(K[x1] ⊕ ∆B,K[z1] ⊕ z2∆B). Fortunately, since
K[x1]⊕∆B = M[x1]⊕∆B. This is also infeasible. This implies that an adversary cannot pass the test.

Case 3: x1 = 1, x2 = 0

The adversary to pass the test would have to produce R, W1,0 such that:

W1,0 = H(M[x2])⊕ Tx2 ⊕R
W1,0 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B)

Since x1 = 1, the last line requires the adversary to compute K[x1] = M[x1] ⊕ ∆B. This is equiva-
lent to forging a mac tag which is infeasible. Alternatively, the adversary could try to compute T0 from
U0 = T0 ⊕ H(K[x1] ⊕ ∆B,K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B). Fortunately, since y1 ⊕ y2 ⊕ z1 ⊕ z2 = 1 then
K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B = M[y1] ⊕M[z1] ⊕ ∆B This is also infeasible. This implies that an adversary
cannot pass the test.

Case 4: x1 = 1, x2 = 1

The adversary to pass the test would have to produce R and W1,1 such that:

W1,1 = H(M[x2])⊕ Tx2
⊕R

W1,1 = H(M[x2])⊕R
⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B)

Since x1 = 1, the last line requires the adversary to compute K[x1] = M[x1] ⊕ ∆B. This is equivalent
to forging a mac tag which is infeasible. Alternatively, the adversary could try to compute T1 from U1 =
T1 ⊕H(K[x1] ⊕∆B,K[z1] ⊕ z2∆B). Fortunately, since z1 ⊕ z2 = 1 then K[z1] ⊕ z2∆B = M[z1] ⊕∆B. Thus,
this is also infeasible.

Completed proof

Now we will proceed with the complete proof.

Lemma A.3. The protocol in Figure 8 securely implements the functionality in Figure 6 against corrupted
PA in the (Fabit,FHaAND,FEQ)-Hybrid model.

Proof. We will construct a simulator as follows:

1 S interacts with A and receives (x1,M[x1]), (y1,M[y1]), (z1,M[z1]), K[x2], K[y2], K[r], and ∆A that A
sent to Fabit. S picks a random bit s, sets K[z2] := K[r]⊕s∆A, and sends (x1,M[x1]), (y1,M[y1]), (z1,M[z1]),
K[x2],K[y2],K[z2],∆A) to FLaAND, which sends (x2,M[x2]),(y2,M[y2]), (z2,M[z2]), K[x1], K[y1], K[z1],
∆B to PB.

2-3 S plays the role of FHaAND obtaining the inputs from A, namely y′1 and the value A sent, namely u′. S
uses y1 and u to denote the value that an honest PB would use. If y′1 6= y1, u

′ 6= u, S sets g0 = 1⊕ x1,
if y′1 6= y1, u

′ = u, S sets g0 = x1.

4 S sends a random U∗ to A, and receives some W0,W1 and computes some R0, R1, such that, if x1 = 0,
W0 := H(K[x2])⊕V0⊕R0,W1 := H(K[x2]⊕∆A)⊕V1⊕R1; otherwise, W0 := H(K[x2])⊕V1⊕U∗⊕R0

and W1 := H(K[x2]⊕∆A)⊕ V0 ⊕ U∗ ⊕R1.

S also obtains R that A sent to FEQ. If R does not equal to either R0 or R1, S aborts; otherwise S
computes g1 such that R 6= Rg1 for some g1 ∈ {0, 1}.

27

5 S receives U , picks random W ∗0 ,W
∗
1 and sends them to A. S obtains R′ that A sent to FEQ.

• If both U,R′ are honestly computed, S proceeds as normal.

• If U is not honestly computed and that R′ = W ∗x1
⊕H(M[x1])⊕ Tx1

is honestly computed, S set
g2 = 0

• If either of the following is true: 1) x1 = 0 and R′ = W ∗x1
⊕H(M[x1])⊕U ⊕H(K[x1]⊕∆B,K[y1]⊕

(y2 ⊕ z2)∆B); 2) x1 = 1 and R′ = W ∗x1
⊕ H(M[x1]) ⊕ U ⊕ H(K[x1] ⊕ ∆B,K[z1] ⊕ z2∆B), S sets

g2 = 1.

• Otherwise S aborts.

6 For each value g ∈ {g0, g1, g2}, if g 6= ⊥, S sends g to FLaAND. If FLaAND abort after any guess, S
aborts.

Note that the first 3 steps are perfect simulations. However, an malicious PA can flip the value of y1 and/or
u used. According to the unforgeability proof, the protocol will abort if the relationship (x1 ⊕ x2) ∧ (y1 ⊕
y2)⊕ (z1 ⊕ z2) = 0 does not hold. Therefore, if A flip y1, it is essentially guessing that x1 ⊕ x2 = 0; if A flip
both y1 and u, it is guessing that x1 ⊕ x2 = 1. Such selective failure attack is extracted by S and answered
accordingly.

In step 4, U∗ is sent in the simulation, while Ux2
is sent. This is a perfect simulation unless both of the

input to random oracle in Ux2
get queried. This does not happen during the protocol, since ∆B in not known

to A. In step 5, W ∗0 ,W
∗
1 are sent in the simulation, while Wx2,0,Wx2,0 are sent in the real protocol. This is

also a perfect simulation unless PA gets ∆B: both R and one of H(K[x1]) and H(K[x1]⊕∆B) are random.
Another difference is that PB always aborts in the simulation if Gx2,y2 is not honestly computed. This is

also the case in the real protocol unless A learns ∆B.

Lemma A.4. The protocol in Figure 8 securely implements the functionality in Figure 6 against corrupted
PB in the (Fabit,FHaAND,FEQ)-Hybrid model.

Proof. We will construct a simulator as follows:

1. S interacts with A and receive (x2,M[x2]), (y2,M[y2]), (r,M[r]), K[x1], K[y1], K[z1], ∆B that A sent to
Fabit. S picks a random bit s, sets (z2,M[z2]) := (r⊕s,M[z2]⊕s∆B), and sends (x2,M[x2]), (y2,M[y2]),
(z2,M[z2]), K[x1], K[y1], K[z1]) to FLaAND, which sends (x1,M[x1]), (y1,M[y1]), (z1,M[z1]),K[x2], K[y2],K[z2])
to PB.

2-3 S plays the role of FHaAND and obtains y′2 A sent. S also obtains d′ sent by PB. Denoting y′2, d as
values an honest PB would use, if y′2 6= y2, d

′ 6= d, S sets g0 = 1⊕ x2, if y′2 6= y2, d
′ = d, S sets g0 = x2.

4-6 Note that step 4 and step 5 of the protocol are the same with the exception that the roles of PA and
PB are switched. We denote S′ the simulator that was defined for the case where PA is corrupted. S
will employ in step 4 the same strategy that was employed by S′ in step 5. S will employ in step 5,
the same strategy that was employed by S′ in step 4.

The first three steps are perfect simulation, with a malicious PB having a chance to perform a selective failure
attack similar to when PA is malicious. If PB flip y2, it is guessing that x1 ⊕ x2 = 0; if PB flip y2 and d, PB

is guessing x1 ⊕ x2 = 1. The proof for step 4 and 5 are the same as the proof for malicious PA (with order
of steps switched).

A.4 More optimizations.

Note that the protocol description in Figure 8 does not include all possible optimizations for ease of under-
standing. In the following we will briefly discuss additional optimizations.

1. For clarity, R was chosen randomly in ΠLaAND. It is possible to perform garbled row reduction so that
W0,0,W1,0 are zero. This saves two ciphertexts per leaky AND.

2. Only ρ bits of the R and U values need to be sent.

28

	Introduction
	Our Contributions

	Notation and Preliminaries
	Information-theoretic MACs

	Protocol Intuition
	Our Framework and Its Instantiations
	Protocol in the [Pre]-Hybrid Model
	Efficiently Realizing [Pre]
	Other Ways to Instantiate [Pre]

	Proof of Security
	Extensions and Optimizations
	Evaluation
	Implementation and Evaluation Setup
	Comparison with Previous Work
	Larger Circuits
	Scalability
	Communication Complexity

	Improved TinyOT protocol
	Half Authenticated AND
	New TinyOT Protocol
	Proof
	More optimizations.

