
User Interactions and Permission Use on Android
Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos Kofinas,

Michelle L. Mazurek, and Jeffrey S. Foster
University of Maryland, College Park

{micinski, dvotipka, rstevens, nkofinas, mmazurek, jfoster}@cs.umd.edu

ABSTRACT
Android and other mobile operating systems ask users for au-
thorization before allowing apps to access sensitive resources
such as contacts and location. We hypothesize that such au-
thorization systems could be improved by becoming more
integrated with the app’s user interface. In this paper, we
conduct two studies to test our hypothesis. First, we use App-
Tracer, a dynamic analysis tool we developed, to measure to
what extent user interactions and sensitive resource use are
related in existing apps. Second, we conduct an online sur-
vey to examine how different interactions with the UI affect
users’ expectations about whether an app accesses sensitive
resources. Our results suggest that user interactions such as
button clicks can be interpreted as authorization, reducing the
need for separate requests; but that accesses not directly tied
to user interactions should be separately authorized, possibly
when apps are first launched.

ACM Classification Keywords
H.5.m Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Android; Permissions; Contextual Security; Apps

INTRODUCTION
Android has a permission system that asks users for authoriza-
tion before an app uses sensitive resources such as contacts or
GPS location. A key challenge in such authorization systems
is balancing user interruptions with making sensitive resource
use transparent. We hypothesize that Android’s existing au-
thorization systems (install-time permission lists or run-time
dialog boxes, depending on the version) could achieve a bet-
ter balance by integrating with the app’s user interface (UI),
because the UI deeply informs the user’s mental model of the
app’s behavior, including security-relevant behavior.

In particular, in this paper we ask whether user interactions—
button clicks, page changes, dialog boxes, etc.—can be taken
as evidence of authorization to use certain sensitive resources.
If so, this could reduce the need for separate authorization
requests. Conversely, we ask whether sensitive resource use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06–11, 2017, Denver, CO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05 ... $15.00
DOI: http://dx.doi.org/10.1145/3025453.3025706

without an associated interaction suggests a need for additional
authorization requests. Note that while our studies are heavily
influenced by Android, we believe our results will generalize
to related mobile OS’s and similar settings like web apps.

To answer these questions, we conducted two related studies.
First, we reviewed 150 popular Android apps to determine
whether sensitive resource uses are related to user interactions
in existing apps. If so, an authorization mechanism integrated
with the UI could work well with existing app designs. To
carry out this study, we developed AppTracer, a dynamic
analysis tool that instruments Android apps to log UI actions
and resource uses, and then visualizes the logs as graphs that
show temporal ordering of logged events. We used AppTracer
to determine whether each observed resource use in each app
was interactive, meaning either it was immediately preceded
by a related UI event (e.g., accessing contacts after clicking
a button marked “contacts”), or it was the main focus of the
current screen (e.g., using location on a map screen).

We found that, across our subject apps, several resources (mi-
crophone, camera, external storage, and calendar) are used
almost exclusively interactively; several others (including
bluetooth and phone state) are used mostly non-interactively
(which we call in the background even if the app itself is on
screen); and several resources (most notably contacts and loca-
tion) exhibit a mix of interactive and background uses. These
results suggest interactive and background uses may call for
different authorization mechanisms, and that these mecha-
nisms cannot necessarily be divided strictly by resource.

These results informed the design of our second study, a 961-
participant online survey investigating participants’ expecta-
tions about interactive and background permission uses. Each
participant viewed a slideshow of two usage scenarios for a
mock mobile app, where each scenario shows a short interac-
tion (e.g., launching the app, clicking a button, etc.) and then
asks if the participant expects microphone, location, and/or
contacts to be used after the interaction. We chose these re-
sources to reflect a range of interactivity as measured in our
app study. We aimed to gain insight into how different factors
affect user expectations, and therefore which authorization
mechanisms might be appropriate for different usage patterns.

As we anticipated, we found that users are much more likely
to expect resources to be accessed after a related interaction
than in the background. However, we also found that seeing
one interactive use does not prime the user to expect a fu-
ture background use, indicating a potential weakness in the
Android M request-on-first-use authorization model. In con-
trast, our findings show that an authorization request at launch

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

362

does increase expectations for both interactive and background
accesses, perhaps because it better conveys the idea that the
resource could be accessed at any time.

Drawing on the results of our studies, we make three design
recommendations. First, resource uses should be made after
associated interactions as much as possible. Given the current
makeup of apps, this should be achievable for many commonly
used resources without extensive effort. Second, separate
authorization dialogs might be unnecessary for resources that
are accessed mostly interactively (see, e.g., [27]). Finally,
authorization for background resource uses should be distinct
from authorization for interactive uses, and these background
authorizations may be most effective when the app is launched.

BACKGROUND AND RELATED WORK
In earlier versions of Android, users were presented with a list
of permissions requested by an app at install time. The user
could then either grant the app full use of those permissions
or not install the app at all. This model had a number of
problems: few users comprehended or even read the list of
permissions [12], and many apps requested more permissions
than they used [10]. Because of these issues, Android M [14]
switched to a model where apps ask for a permission the first
time it is needed; the permission is then granted indefinitely.

In our work, we ask whether authorization systems similar to
Android’s can be improved by taking the user interface into
account. Note that our work is orthogonal to the question of
whether permissions are at the right level of granularity [6,17]
or protect the right resources [11].

Contextual Security on Mobile Devices
The motivation for our work, that authorization can be better
integrated with the UI, exemplifies contextual security [22],
which suggests security decisions should take the context into
account. Several researchers have studied contextual security
on mobile devices. Almuhimedi et. al [3] showed users his-
torical data about how apps accessed their locations. They
found 95% of users reassessed the apps’ need for location,
with 58% of those users further restricting location access.
King [19] found users are more likely to expect sensitive re-
source accesses when suggested by the context. Felt et. al [1]
proposed a process for deciding the appropriate authorization
mechanism for a permission based on the a permissions’ use
in context. Several researchers [5, 13, 33] found users are sur-
prised by some sensitive resource accesses that occur when
apps are in the background. Most closely related to this paper,
in a field study Wijesekera et al. [33] found that context is an
important factor in determining expectation of resource use.
Our work builds on this finding by using a controlled experi-
ment to distinguish how different contextual factors, including
consecutive interactions, contribute to user expectations.

The works just mentioned mainly define context as whether
the app is on or off the screen. In contrast, we use a much
richer notion of context based on sequences of UI actions.

Enforcing Contextual Security
Many systems have been proposed to enforce contextual secu-
rity in apps. Chen et. al [8] present Pegasus, a static analysis

Figure 1: App Measurement Survey Procedure.

system for analyzing apps and enforcing policies based on
permission event graphs (PEGs). For example, Pegasus can
check that contacts are only accessed after clicking a certain
button. PEGs inspired the design of AppTracer. However,
AppTracer uses dynamic (rather than static) analysis to reduce
issues of false positives—every behavior AppTracer logs oc-
curred in an actual run, whereas static analysis may report
sensitive resource accesses that can never actually occur.

Yang et al. [34] presented AppIntent, which uses symbolic
execution to determine sequences of UI events that lead to
information leakage. Micinski et. al [21] use symbolic ex-
ecution to enforce secure information-flow properties based
on UI events. While both systems are promising, in practice
symbolic execution is difficult to run at scale on Android apps
due to the complexity of modeling the Android framework.

Stiegler et al. developed CapDesk [30] and later Polaris [29],
two capability-based desktop system that utilize user interac-
tion to drive access control. However, CapDesk and Polaris’s
focus is limited to file access. Roesner et. al [27] expand user-
driven access control with Access Control Gadgets (ACGs),
which tie resource accesses to certain UI elements, e.g., an
ACG might allow location to be used only after a specific but-
ton is clicked. ACGs were later expanded to work on Android,
with and later without modifying the operating system [25,26].
The original ACG paper includes a user study measuring ex-
pectations related to interactive permission uses; our work
expands on this idea to study a broader variety of factors and
use cases. While the current paper does not directly implement
or measure ACGs, our findings do support the use of ACGs.

APP MEASUREMENT SURVEY METHODOLOGY
In our first study, we reviewed a set of popular Android apps
to determine how UI actions and resource uses are related.
Figure 1 gives a high-level overview of our review process,
which ultimately produces a set of resource use codes that
indicate, for each resource use, what event (if any) caused
the use. For example, we might determine that in some app,
contacts were accessed just after a button click, or location
was used immediately when the app launched.

The next subsections walk through the review process in detail.

Binary Rewriting and Execution Logging
The first step of our process uses AppTracer, a dynamic analy-
sis tool we developed. AppTracer instruments the subject app

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

363

(a) Click (b) Uncertain

(c) Startup (d) Background-External

Figure 2: AppTracer graphs and corresponding resource ac-
cess patterns in our codebook.

so that, when run, it writes a log of UI events and permission
uses. AppTracer adds instrumentation using Redexer [17],
a rewriting tool for Dalvik bytecode (the language to which
Android apps are compiled). Generally speaking, AppTracer
instruments code by appending a log method to the bytecode
and inserting calls to log at the beginning of UI-related call-
backs (e.g., onClick handlers for button events) and just before
calls to permission-protected methods (e.g., getLastLocation).

We identified methods associated with the UI using the An-
droid documentation. We identified permission-protected
methods using the PScout dataset [4], which attempts to list
every security-sensitive method and its associated permis-
sion. PScout also includes information about sensitive content
providers, intents, etc. Note that while PScout is reasonably
thorough, we found several cases it missed. For example, we
observed several visual indicators of SD card use that had no
corresponding log entry AppTracer. After investigating the
apps’ decompiled code, we found the SD card was used via
Java IO methods omitted by PSCout. Whenever we found
such cases, we added the missing methods to our copy of the
PScout database and reran our evaluated apps.

Once an app has been instrumented, a tester runs it to generate
a log. (Note that one log is usually sufficient because in most
apps, any app state is reachable from any other app state.) We
elide the details of the log, but at a high level, for each UI event,
AppTracer records the type of event and the corresponding
parameters (e.g., what button was clicked, which menu option
was selected, etc.). For each permission use, AppTracer logs
the name of the called method and its arguments.

Log Visualization
After the tester produces a log, the next step is log visualization.
Figures 2a–2b show example portions of AppTracer’s graph-

based visualization, redrawn for compactness and to omit most
package names. Here, light blue boxes represent activities,
which are the “screens” of the app. Within each activity, gray
ovals represent the beginning of that activity (“entry,” which
usually corresponds to the onStart handler), UI events (e.g.,
“click”), or system events (e.g., BATTERY_CHANGED). Red
rectangles indicate calls to methods protected by the named
permission. There is an edge from node A to node B if A
occurs immediately before B in the log. For example, in
Figure 2a, contacts were read immediately after the Import-
ContactActivity activity was started.

Since logs can be quite lengthy, AppTracer heuristically
merges nodes that arise from the same position in the byte-
code. This sometimes results in ambiguity. For example, in
Figure 2b, the single onReceive node actually represents calls
to an Android broadcast receiver that AppTracer coalesced.
We discuss this more below.

Finally, AppTracer also allows the user to directly view the
log file entries corresponding to a node in the graph. This is
useful to retrieve more detailed information about the node.
For example, when reviewing Figure 2a, we looked in the log
to determine that the clicked button had text associated with
contacts. As another example, we used the logs to distinguish
SD card accesses to user files from accesses to the app’s own
storage. We do not count the latter as a sensitive resource
access because it accesses data owned by the app.

Resource Uses
The next step is to examine the AppTracer graph and record
a set of codes that accurately categorize various resource ac-
cesses. More precisely, for each red node in the graph, the
coder assigns a pair of the form (resource,pattern), where
resource indicates what is protected by the permission and
pattern is one of six different UI patterns, discussed next.

To keep our results understandable, we grouped together re-
sources according to Google’s permission groups [24]. For
example, the single SMS resource includes more fine-grained
permissions such as READ_SMS and SEND_SMS.

We developed an initial codebook for UI patterns based on our
knowledge of Android app development. We then iteratively
applied our codebook to sets of five apps (not in our evaluation
set) at a time and adjusted the codes as necessary. After
evaluating a total of twenty apps, we felt we had reached a
codebook with a minimal set of orthogonal patterns.

The six access patterns in our codebook are grouped into
three categories. First are the interactive patterns Click and
Page. The code Click indicates resource use preceded by a UI
event (including non-clicks such as swipes). For example, in
Figure 2a, we coded READ_CONTACTS as Click because the
contacts were accessed on a straight-line path from the click
of a button labeled as importing contacts. Page codes uses that
are clearly associated with an activity but are not associated
with exactly one click. For example, Page would code the use
of location during an activity that shows a list of nearby stores.

Second, in the background patterns Startup, Bg-App, and Bg-
Ext, the resource use has no obviously connected user action.

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

364

Startup codes a resource accessed right after app launch but
before any screen appears (and is thus disjoint from Page),
e.g., the use of accounts in Figure 2c, which occurs in a thread
created at app launch. Bg-App codes a resource used while
the app is in the foreground, but with no clearly related user
action. For example, a graph similar to Figure 2a would be
coded as Bg-App if a button labeled for importing contacts
was followed by the GET_ACCOUNTS permission rather
than READ_CONTACTS. Bg-Ext denotes a resource used due
to a system event, meaning it would be used whether or not
the app is on screen. For example, in Figure 2d, accounts are
read after the BATTERY_CHANGED system event.

Finally, Uncertain denotes a resource access that did not fit
any of the previous patterns. In Figure 2b, we see a path from
a system event to onReceive to READ_CONTACTS, which
should be coded as Bg-Ext. But, the onReceive node also
has an incoming edge from the click handler and the back
button. These uses would be coded as Bg-App. (The Click and
Page codes do not apply because the associated buttons do not
indicate contacts will be used.) Because there are multiple
possibilities, we code this case as Uncertain.

If desired, an AppTracer user can subsequently review the
logs to try to resolve the uncertainty. For example, here the
log entry associated with BATTERY_CHANGED is followed
by a call to onReceive and then READ_CONTACTS. Thus,
the permission use is coded as Bg-Ext. We then separately
looked at the log entries for click and back_button, and found
they were followed by an onReceive that was not followed by
READ_CONTACTS. Thus, examining the logs allowed us to
distinguish paths that we merged in AppTracer.

Note that for each app we only count each (resource,pattern)
pair once, no matter how often it occurs in the log. A stronger
notion of frequency would be hard to interpret, since it would
depend on how AppTracer heuristically coalesces graph nodes
as well as to how the tester explored the app.

Coding Apps and Resolving Differences
Coding the resource uses of an app is inherently complex.
Thus, two coders reviewed apps independently in sets of 15
and met after each set to resolve differences. Coders took
approximately 10–20 minutes to code each app, and resolving
differences for a set of 15 apps took approximately 30 minutes.

Most differences between coders were due to one coder over-
looking a path or a resource in the AppTracer graph. In almost
all such cases, when the other coder pointed out the omission,
the first coder would quickly reach the same conclusion as
the other coder. The remaining differences were caused by
disagreements about whether the resource use was interac-
tive. For example, one app read a user’s accounts within an
activity for filling a form. One coder recorded this as Click,
since the accounts were read after a click. The other coder
recorded this as Bg-App, because there was no observable use
of the account data, such as pre-filling the form with data from
the user’s existing accounts. After encountering several such
cases, the coders decided on a general principle of coding uses
as Bg-App unless the UI explicitly mentioned that the resource
could be used—hence, this example was resolved as Bg-App.

Inter-rater reliability between our coders for the non-
visualization-error disagreements was Krippendorff’s α =
0.897, indicating close agreement [15].

App Selection
We drew our subject apps from a larger set comprising the 20
top downloaded free apps1 from the 27 non-gaming categories
on Google Play. We excluded gaming apps because they
typically use native code that AppTracer cannot analyze. This
yielded 503 apps (note there is overlap between categories).

We then randomly selected 150 apps to evaluate, subject to
the constraint that no more than two apps were from the same
developer. (We wanted to avoid bias due to overrepresentation
of apps coded in the same style.). We excluded any apps that
could not be run with AppTracer, replacing them with new
randomly drawn apps to maintain an evaluation set of 150.

We excluded 48 apps because Redexer fails when rewriting
them and 23 apps because either they refuse to run if modified
(due to internal or system signature checks) or they are pri-
marily implemented in native code. In most cases, we created
accounts when signup was required to fully exercise an app,
but we excluded 16 apps because they require accounts that
are hard to set up online or require a fee (e.g., bank accounts).

Limitations
There are several potential limitations to this study. First, the
tester may miss some app behavior, leading to a log that omits
some possible resource uses and contexts. We tried to alleviate
this concern by exercising as much of the app as possible.
However, we did not use app features that required payment.

Second, AppTracer has limitations mentioned above: it may
miss UI events or permission-protected methods, and it merges
nodes that correspond to the same position in the bytecode.
We tried to address the former issue by looking for cases where
we expected an event to be in a log but it was not, and then
adding the missing events or methods. We addressed the latter
issue by manually disambiguating some of the uncertain cases.

Third, our study reviewed only popular Android apps. Observ-
ing that a resource is already accessed interactively in popular
apps would indicate that changing the Android framework or
system to implement interactivity-related protections for those
accesses may be reasonable. These apps also represent the
common case and likely help to set user expectations about
apps and permissions. However, we note that the apps we ex-
amine likely differ from the long tail of other apps in important
ways; popular apps are likely implemented to high standards
and unlikely to be malicious. We leave similar measurements
on a broader set of apps as future work.

APP MEASUREMENT SURVEY RESULTS
Figure 3 summarizes the resource use patterns we found. For
example, across all apps, the camera was used in the Click pat-
tern 57 times. Orange-shaded bars indicate interactive use pat-
terns, and blue shades represent background uses. Resources
are sorted by percent of interactive patterns.

1as of June 11, 2016

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

365

Figure 3: Percent of observed patterns of each type, per re-
source. Bar labels indicate how many apps we observed using
each pattern, non-normalized.

We see that, to a rough approximation, the more sensitive the
resource the more likely it is used interactively. Indeed, mi-
crophone, media, camera, and calendar were accessed almost
exclusively interactively. We investigated the background and
Uncertain uses for these resources. One calendar use and the
two SD card uses were due to periodic background tasks (cal-
endar syncing or scanning for files). One camera use took a
picture after the passcode was entered incorrectly three times.
One camera use and one calendar use did not seem to access
sensitive resources—the camera use accessed configuration
information, and the calendar use got the current date (which
could be done without accessing the calendar). Finally, after
disassembling and reading the bytecode, we found one Uncer-
tain camera use could actually only happen interactively.

We next see that contacts, SMS, tasks, location, and calls are
used in a mix of interactive and non-interactive ways. We
investigated the background and Uncertain uses of these re-
sources as well. Contacts were used in the background mainly
to pre-fetch or sync the contact list. Two apps used SMS in
the background to listen for a registration code after the user
signed up for an account. Currently running tasks were polled
in the background to monitor battery usage, scan for malicious
apps, look for apps by the same developer (to communicate
with them), or for analytics and tracking purposes. Call-related
permissions were used in the background to block calls from
a user-supplied blacklist. While there were too many back-

Resource # Apps

Location 75
Media/SD Card 69
Camera 69
Phone State 43
Accounts 39
Bluetooth 31
Contacts 30

Resource # Apps

Microphone 14
Tasks 13
Power/Diag. 12
Calendar 5
SMS 4
Calls 2

Table 1: Number of apps that used each resource.

ground location uses to examine them all, those we did ex-
amine frequently had no obvious reason (as expected [3, 13]),
even in apps that elsewhere used location for a clear purpose.

Finally, four resources—accounts, power, bluetooth, and
phone state information—were mostly accessed in the back-
ground. We believe this is either because developers believe
users care less about these accesses [11], the uses are hard to
explain clearly to non-experts, or the uses are not naturally
associated with an immediately preceding interaction.

Looking in more detail at the breakdown between Click and
Page, we see that for most resources, Click is a clear majority
of the interactive uses. The exception is location, which has
more Page uses. This was mostly due to location use for
map screens or lists of nearby places. Breaking down the
background uses, we see the use of resources at Startup and in
Bg-Ext becomes much more common lower in the chart.

Resource Usage Across Apps
We also measured the number of apps that used each resource
at least once, as a rough approximation for how familiar each
resource is to users. Table 1 shows the results. We found a
wide range across resources, with little correlation between
frequency of appearance in apps and usage patterns. For exam-
ple, location was used frequently, and Figure 3 shows that it
was often used in the background, whereas media/SD card was
also used frequently, but was rarely seen in the background.

Discussion
The results of our app survey suggest several possibilities.
Given the large amount of interactive resource use overall,
there seems to be a clear opportunity for better integrating
authorization into the UI. However, the question remains to
what extent interactions make resource use apparent to users.
We try to answer this question in the next two sections.

Our app survey also shows that many resources are used in
the background, and many of these uses seem reasonable, at
least to the authors. Moreover, apps sometimes use the same
resource both in the foreground and in the background, to
different purposes. This suggests interactive and background
uses should be authorized separately. Thus, in the next two
sections, we also try to answer questions about how back-
ground uses should be authorized, and about whether users’
expectations of interactive and non-interactive uses are related.

USER EXPECTATIONS STUDY METHODOLOGY
After our app survey, we conducted an online study to elicit
users’ expectations about resource use as different user actions

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

366

Figure 4: User expectations study procedure. Lower portion
shows partial examples of user actions and survey questions.

are performed on a smartphone. Our goal was to understand
to what extent user expectations align with the interactivity
patterns we observed in our app study. Concretely, our user
study examined the following three hypotheses:

H1. Users are more likely to expect resource accesses with an
interactive use pattern than without.

H2. The more apps that use a resource (as measured in our
app survey), the more likely users are to expect less-interactive
uses of that resource.

H3. Users are more likely to expect resource accesses they
have seen before.

Note that H1 and H3 have implications for the Android M
permission system. Specifically, if H1 is true, users already
expect a resource to be accessed due to user action, so an ex-
plicit authorization request may be unnecessary. Additionally,
if H3 is false, then users granting authorization for a resource
in one access pattern does not cause them to expect that re-
source to be used later in a different pattern. Thus, requesting
authorization only on first use may be insufficient.

H2 is a proxy for a more general hypothesis: that users are
more likely to expect accesses to resources with which they
are familiar. Familiarity is likely affected by many factors
including how many apps use the resource and how often
they do so, whether passive notifications are present (as for
location), coverage in the news media, etc. For simplicity, we
use the frequencies in Table 1 as a metric of familiarity.

Study Overview
We recruited participants through Amazon’s Mechanical Turk
crowdsourcing service. All participants were at least 18 years
old and located in the United States. Participants were paid
$1.00 for completing the survey. The survey was approved by
the University of Maryland IRB. Participants were instructed
that we wanted their opinions about an app; privacy and sensi-
tive resources were not explicitly mentioned.

Figure 4 gives a flowchart of the procedure followed by each
study participant. First, the participant reads a short descrip-
tion of an app. We used two mock apps in our study: Find-
MeCoffee (Coffee) and HealthyFit Tracker (Fitness). FindMe-
Coffee locates nearby coffee shops, allows users to share the
location of favorite coffee shops with friends, and supports
ordering coffee via voice command. HealthyFit Tracker tracks
workouts, allows sharing workouts with friends, and allows
posting audio “smack talk” on the user’s profile. Note while
these apps demonstrate different categories, we do not attempt
to fully study the effect of app type on user perceptions.

Next the participant views one sequence of user interactions
with the app, shown as a slideshow of app screenshots. To
avoid confusion with terminology in the next section, we refer
to such a sequence as a user action. For example, in the user
action in Figure 4A, the user clicks the bottom-most button
(outlined in red), and the app then displays an authorization
request dialog. In Figure 4C, which is only shown partially,
the user exits the app and returns to the device home screen.

After viewing a user action, the participant answers five-point
Likert questions such as those in Figure 4B, which ask whether
a resource is “Definitely not” to “Definitely yes” accessed
immediately after the user action. To avoid priming the user,
the survey asks about camera, SMS, flashlight, “accessing
credit card information,” and “looking up coffee shop reviews”
(Coffee) or “reading your heart rate” (Fitness) as well as the
three resources we study.

Next, the participant answers five distractor questions, views
another user action, and answers the same Likert questions
about the second user action. The distractors are designed to
induce a cognitive break and ensure the two access patterns
are treated as separate events. For example, one distractor asks
users “Which button would you press if you wanted to find a
new coffee shop?” We did not measure the effectiveness of
distractors. The participant concludes the survey by answering
demographic questions. Participants took 4 minutes and 45
seconds on average to complete the survey.

To understand the effect of resource access patterns on user
expectation, we analyze responses about the first user action
each participant viewed. We use responses about the second
user action to examine how prior exposure affects expectation.

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

367

Conditions
Participants were assigned round-robin to one of 42 conditions,
which varied across four variables: the app, the resource being
accessed, the authorization pattern, and the pair of interaction
(int) patterns.2 Table 2 lists possible values for each variable,
and conditions comprise one value from each column.

As mentioned earlier, our study used two mock apps, FindMe-
Coffee and HealthyFitTracker, and three resources, chosen to
cover a range of int. patterns observed in our app survey: Mi-
crophone (Mic, only interactive accesses observed), Contacts
(Con, mixed interactive and background uses observed), and
Location (Loc, also mixed).

Our study considered three different authorization patterns.
First use (Fst) mimics Android M, presenting an authorization
dialog during the first user action but not the second. Launch
(Lch) presents an authorization dialog immediately after the
app’s home page is shown, but before any further screenshots.
We noticed anecdotally that a few apps in our study used this
strategy. Never (Nvr) does not show any authorization dialog
at run time. This mimics older versions of Android.

We examined three different int. patterns, also drawn from the
app survey: Button Click (Clk), Background with Notification
(Bn, uses a resource without interaction, but displays an icon
and short message in the notification drawer indicating some
condition is met, such as being located near a coffee shop) and
Background Only (Bg, uses a resource in a way not clearly
shown in the UI). We can order these from most (Clk) to least
(Bg) interactive. We always label the button clearly for its use
(no deception). We do not test UI widgets besides buttons.

Regardless of a participant’s assigned condition, the survey
always asks about expectations for all resources and auxiliary
actions. As a result, we implicitly collect data about users’
expectations for the Bg-Bg int. pattern pair, with authoriza-
tion pattern Nvr, for the two non-targeted resources in each
condition. For example, a participant assigned to the Cof-
fee-Mic-Fst-Clk-Clk condition also answers Likert questions
about contacts and location that are analyzed within the Cof-
fee-Con-Nvr-Bg-Bg and Coffee-Loc-Nvr-Bg-Bg conditions.

Testing the full-factorial combination of all variables was in-
feasible, so we eliminated conditions that were redundant or

2Through this section we will use the abbreviation int. pattern to
avoid confusion with the interactions in our regression analysis.

App Resource1 Authorization2 Int. Patterns3

Coffee Mic Fst Clk-Clk 4

Fitness Con 4 Lch Clk-Bg
Loc Nvr Bn-Bg

Bg-Bg 4,5

1 Mic - Microphone, Con - Contacts, Loc - Location
2 Fst - First, Lch - Launch, Nvr - Never
3 Clk - Click, Bn - Background w/Notif., Bg - Background Only
4 Only used with Coffee
5 Only used with Lch

Table 2: Possible values for each variable in tested conditions.

less relevant to our hypotheses, resulting in 42 final conditions.
In more detail: We exclude conditions where the second int.
pattern is more interactive than the first, as we assume the
participant’s second expectation would be dominated by the
second int. pattern, rather than by the combination of patterns.
We use Bn only in the first user action, because we are primar-
ily interested in its effect on user expectations for the second
user action. We assume expectations for Bn itself will depend
entirely on whether the participant notices the passive cue,
a topic that has been well studied [28, 31] but is somewhat
orthogonal to our work. These two rules limit the int. pattern
pairs we study to those in the last column of Table 2.

We exclude Nvr-Bg-Bg conditions because they provide no
evidence of resource use, and are therefore identical to the im-
plicit scenarios discussed above. We also exclude Fst-Bg-Bg
because, in our experimental design, they are indistinguishable
from Lch-Bg-Bg. In Table 2, Bg-Bg is highlighted in blue to
indicate that it is only used with the Lch authorization pattern.

Because we do not comprehensively consider the effect of
app type, we limit Fitness conditions to those we anticipated
would have the largest variation in expectations. Specifically,
we consider only Loc and Mic and only conditions where the
two user actions exhibit different int. patterns. The Fitness
scenarios therefore include all combinations of variables in
Table 2 that not are not highlighted in blue or yellow.

Statistical Analysis
To test H1 and H2, we primarily consider the expectations
expressed by participants after the first user action. We use
a logistic regression, appropriate for ordinal Likert data, to
estimate the effect of the app, resource, authorization pattern,
and int. pattern on participants’ expectation. To test H3,
which concerns the effect of the prior user action, we also
use a logistic regression, with participants’ expectation for the
second user action as the outcome variable. We use the same
input factors as before, this time including both int. patterns.

Each regression includes multiple observations of each par-
ticipant: the explicit condition plus two implicit Nvr-Bg-Bg
responses. As is standard, we include a mixed-model random
effect that groups observations from the same participant [16].

Our initial model for each regression included the input vari-
ables plus all possible two-way interaction terms. To prevent
overfitting, we tested all possible combinations of these inputs
and selected the model with minimum Akaike Information
Criterion (AIC), a standard measure of model quality [2]. We
present only the final model for each regression.

Ecological Validity and Limitations
We use a controlled experiment with mock apps. While this
limits ecological validity, it allows us to reason statistically
about the effect of specific factors on participants’ expecta-
tions, and to disregard factors such as participants’ history
with an app or reputation of the app’s developer. In a study
environment, participants may be less suspicious than if their
real data were at risk. To partially account for this, we ask
about expectation rather than comfort level [23].

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

368

By limiting our survey to two apps and restricting the int.
patterns and resources tested, we likely miss factors, and par-
ticularly combinations of factors, that influence expectations.
As one example, users likely expect SMS and Calls to have
different usage patterns, and these expectations may vary with
app type. However, based on the results of our app survey, we
believe the variables chosen still provide useful insights.

Each participant sees two user actions in a relatively short
time period. We do not study the effect of longer sequences of
actions or long-term use (e.g., over days or weeks) of an app.

As is typical for online studies and self-reported data, some
participants may not take the survey seriously, and some may
try to complete the survey multiple times. We limit repeat
participants using MTurk ID and browser cookies. While
MTurk has generally been validated for high-quality data [7,9,
20, 32], U.S. MTurkers are somewhat younger and more male,
tech-savvy, and privacy-sensitive than the general population,
which may limit the generalizability of our results [18].

These limitations apply similarly across all conditions; we
therefore consider comparisons among conditions to be valid.

USER EXPECTATIONS STUDY RESULTS
We now present the results of our online user study. We found
that H1 holds: users were the most likely to expect a resource
use when shown a more interactive int. pattern. In contrast, we
observed that while resource type does affect user expectation,
H2 was not strongly supported. Finally, we found that H3 does
not hold. However, our results indicate that both background
notification (Bn) and on-launch authorization requests (Lch)
increase user expectation of future resource accesses.

For each of our hypotheses, we present key findings from
our regression analysis. Summaries of our regressions are
shown in Tables 3 and 4. Each table shows the included in-
put variables and their values. Each variable includes a base
case value (identified by dashes in the remaining columns).
The odds ratio (OR) shows the observed effect of each value
relative to the base case, measured as odds of expectation in-
creasing one unit on our Likert scale. We also provide the 95%
confidence interval (CI) and p-value for each measurement.

For example, the third row of Table 3 shows that switching
from Bg to Clk in the first user action, all other variables held
constant, is associated with a 106.3× likelihood of increasing
one unit of expectation. The CI expresses 95% confidence that
the “true” odds ratio is between 63.6 and 177.7. A p-value
less than 0.05 is interpreted as statistically significant.

The second half of each table shows interactions between value
pairs, given as the two values separated by a colon. These
odds ratio indicate the change in likelihood when the two
variables co-occur, relative to considering them independently.
For example, the Loc:Clk odds ratio of 0.2 in Table 3 suggests
the combined effect of these two values is subadditive: only
20% as strong as predicted by their individual effects.

Demographics
A total of 961 participants completed the study. Participants’
ages ranged from 18 to 70+ years, with 37% age 18-29. Fifty-

Variable Value Odds Ratio CI p-value

App Coffee – – –
Fitness 1.3 [0.96, 1.78] 0.086

Int
Bg – – –
Clk 106.3 [63.6, 177.7] < 0.001*
Bn 4.1 [2.6, 6.7] < 0.001*

Res
Mic – – –
Loc 17.5 [13.4, 22.9] < 0.001*
Con 0.8 [0.6, 1.0] 0.056

Auth
Nvr – – –
Fst 2.2 [1.2, 4.0] 0.008*
Lch 1.9 [1.2, 3.2] 0.008*

App:Res
Coffee:Mic – – –
Fitness:Loc 0.4 [0.3, 0.6] < 0.001*
Fitness:Con 1.1 [0.8, 1.7] 0.546

Res:Auth

Mic:Nvr – – –
Con:Lch 3.2 [1.5, 6.7] 0.002*
Con:Fst 1.5 [0.6, 3.6] 0.41
Loc:Lch 0.8 [0.4, 1.6] 0.487
Loc:Fst 0.5 [0.2, 1.3] 0.166

Res:Int

Mic:Bg – – –
Loc:Bn 2.4 [1.2, 5.0] 0.021*
Con:Bn 5.0 [2.3, 11.3] < 0.001*
Loc:Clk 0.2 [0.1, 0.4] < 0.001*
Con:Clk 0.2 [0.1, 0.4] < 0.001*

*Significant effect – Base case (OR=1, definitionally)

Table 3: Summary of regression over participant expectations
after the first user action.

three percent reported being male and 47% female. (“Prefer
not to answer” and “other” options for gender were provided.)
Participants were required to be from the United States. Forty-
five percent of participants reported holding a college degree,
and 25% reported having “far above average” smartphone ex-
pertise. Each condition had at least 20 unique participants.
Twenty people dropped out partway through the survey, dis-
tributed evenly across conditions.

H1 – Interactivity v. Expectation
We found that H1 holds: the more interactive the int. pattern,
the more likely the user is to expect the resource access. In
fact, interactivity (specifically Clk) is the strongest indicator
of expectation we measured.

Table 3 shows that both Clk and Bn significantly increase
the likelihood the user expects a resource access compared
to Bg. The effect of Clk is particularly strong (OR 106.3,
p < 0.001). Because the confidence intervals of Clk and Bn do
not overlap, we can also conclude Clk generates significantly
more expectation than Bn. Table 4 confirms that the strong
association between Clk and expectation holds for the second
user action as well (OR 810.4, p< 0.001). Figure 5a illustrates
this finding, showing that 90% of participants who saw a Clk
int. pattern first definitely or probably expected the associated
resource use, compared to 72% for Bn and 25% for Bg.

Explicit authorization, which is by definition interactive, is
also associated with a significant increase in expectation. Com-
pared to Nvr, both Fst and Lch have odds ratio effects of about

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

369

Variable Value Odds Ratio CI p-value

Int 2 Bg – – –
Clk 810.4 [352.2, 1864.9] < 0.001*

Int 1
Bg – – –
Clk 1.0 [0.8, 1.4] 0.9
Bn 2.1 [1.5, 2.8] < 0.001*

Res
Mic – – –
Loc 20.0 [15.5, 25.9] < 0.001*
Con 1.0 [0.8, 1.3] 0.768

Auth
Nvr – – –
Fst 1.4 [0.9, 2.4] 0.174
Lch 1.7 [1.1, 2.7] 0.027*

Res:Auth

Mic:Nvr – – –
Con:Lch 4.4 [2.2,8.5] < 0.001*
Con:Fst 2.1 [1, 4.5] 0.056
Loc:Lch 0.8 [0.4, 1.5] 0.445
Loc:Fst 0.5 [0.2, 0.9] 0.029*

Res:Int 2
Mic:Bg – – –
Loc:Clk 0.1 [0.03, 0.3] < 0.001*
Con:Clk 0.03 [0.01, 0.1] < 0.001*

*Significant effect – Base case (OR=1, definitionally)

Table 4: Summary of regression over participant expectations
after the second user action.

2× for the first user action (Table 3), both significant. This
result makes intuitive sense, as the dialogs for both (Fst and
Lch) occur very closely in time to the first int. pattern.

H2 – Real-World Frequency v. Expectation
We observed an inconsistent relationship between real-world
frequency and expectation. Location was the most frequently
seen resource in the app study (75 apps according to Table 1)
and was also the most expected resource we tested. As shown
in Tables 3 and 4, Loc was associated with 17-22× higher
likelihood of expectation compared to Con (seen in 30 apps)
or Mic (seen in 14 apps). Non-overlapping CIs and p-values
less than 0.05 indicate these effects are significant. This is
consistent with H2; however, as our frequency measurement is
only a very rough approximation of user familiarity, we note
that this effect could relate to existing passive notifications for
location, the higher volume of academic and media coverage
of the location permission, or other factors.

Figure 5: Likert-scale expectation responses for (a) the first
user action, organized by int. pattern, and (b) the second user
action, organized by authorization pattern.

However, H2 does not hold when comparing Con and Mic.
While Con was seen about twice as often in the app study,
there was no significant difference in expectation between
the two resources, at either the first or second user action.
This could be because our app frequency metric does not
sufficiently capture differences (or in this case, similarities) in
users’ overall exposure to each resource.

While there was no significant difference between the main
effects of Con and Mic, we found evidence that users rarely
expected Mic to be used with Bg. Looking at the Res:Int inter-
action in Table 3, Loc:Bn and Con:Bn both show significant
superadditive results, indicating that these combinations are
even more expected, relative to the baseline Mic:Bg combi-
nation, than those factors’ main effects would predict. We
hypothesize this difference is driven more by low expectation
for background microphone access than high expectations for
the other combinations. The interactions involving Clk are
significantly subadditive, but we suspect this is a ceiling effect:
expectations for Clk, which as shown in Figure 5a are very
high, cannot increase beyond the end of our Likert scale. We
see similar effects for the Clk interactions in Table 4.

H3 – Effect of Previously Seen Accesses
To examine the effects of prior accesses on participants’ ex-
pectations, we focus on Table 4. Overall, we find that H3 does
not hold: participants are not more likely to expect resource
accesses they have seen before. In particular, the int. pattern
variable Int1:Int2 does not appear in the final model, suggest-
ing the combination of int. patterns does not meaningfully
influence expectation at the second user action.

However, participants did appear more likely to expect a back-
ground access if they had previously seen an indication that
background accesses might be used. Table 4 shows expecta-
tion at the second user action was significantly higher when
the first int. pattern was Bn (OR 2.1, p < 0.001) or the Lch
authorization request was shown (OR 1.7, p = 0.027), both of
which indicate that background access may occur. Figure 5b
illustrates this finding, showing that in the second user action,
more participants definitely or probably expected resource us-
age in Lch conditions (47%) than in Fst (42%) or Nvr (22%).
Additionally, the superadditive relationship between Lch and
Con in both regressions may suggest a Lch request primes
users to expect non-interactive accesses to contacts.

In contrast, we found evidence that the authorization pattern
Fst implies only a single access. Table 4 shows that Fst did not
have a significant effect (p = 0.174) compared to Nvr, indicat-
ing that an authorization associated with the first user action is
no more effective than no authorization when thinking about
a second user action. The subadditive relationship between
Loc and Fst (OR 0.5, p = 0.029) also suggests that authoriza-
tion requests associated with a specific event train users to
only expect a resource access after an authorization request.
This decreases the otherwise relatively high expectation of
background location access. These relationships, while not
particularly strong, are notable because they imply that the
Android M model may in some cases be counterproductive;
we explore this further in the Discussion section below.

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

370

App v. Expectation
Finally, we observed that the app type did have some effect on
the way other variables were perceived. We found no signifi-
cant difference between the two mock apps with respect to the
first user action (p = 0.086), and app effects did not appear
in the final model for the second user action, suggesting no
meaningful relationship with expectation. However, we do ob-
serve in Table 3 a significant, subadditive relationship between
Fitness and Loc, indicating that location accesses were less
expected in the fitness app than the coffee app. We expect that
across a wider variety of apps, further relationships between
app type and expected resource usage would be observable.

CONCLUSIONS AND DESIGN RECOMMENDATIONS
Based on our app survey and user study, we propose several
ways to improve Android’s and similar authorization systems.

Access Resources As Interactively As Possible
Our app study found that camera, microphone, media, and
calendar are already used almost exclusively interactively in
popular apps. Moreover, our user study found that users over-
whelmingly expect resource access after an explicit click on a
related item. We speculate that users would also have higher
expectations of resource access under other interactive uses.

Thus, we recommend expecting (or perhaps even requiring)
most or all accesses to these four resources to be interactive.
Other resources are more frequently used in the background,
and it is not always obvious how to associate their uses with
a foreground interaction. However, we argue that developers
should prioritize (and the Android framework should encour-
age) making background uses more interactive when possible.
For example, a social media app that periodically pulls the
user’s contacts to recommend new friends could tie this back-
ground access to a foreground interaction by asking the user
to “turn on” this feature at launch and provide a settings menu
where the user could turn the feature off at a later time. While
this design is similar to the authorization mechanism provided
by Android M, implementing it in the app provides context,
which we have found is important to decision making.

We also recommend that when resources that are more typi-
cally used interactively will be used in the background, these
uses should be documented explicitly in the app’s description
or a similar user-visible location.

Use Interactions to Grant Authorization
Our results further suggest that if a resource use is interac-
tive, then a separate authorization dialog can be eliminated.
We speculate that removing explicit authorization requests in
these cases could reduce potential user confusion (e.g., “I just
clicked ‘Import Contacts,’ why is it asking me if I want the
app to access contacts?”). In addition, removing these requests
could reduce annoyance and habituation, potentially helping
the user to focus on other, less clear authorization decisions.
Eliminating request dialogs for interactive use cases could
also help motivate developers to prioritize interactivity, as
mentioned above. Of course, to handle potentially malicious
apps we must be sure the preceding interaction is clearly re-
lated to the resource use. For example, clicking on a location
icon should not cause the camera to be used.

We envision two main approaches to enforce this principle.
One idea is access-control gadgets [26, 27], which we dis-
cussed with Related Work. Another approach would be to
leave apps as they are, but use a program analysis to ensure
they conform. For example, we could use AppTracer to do
so, in one of two possible modes. AppTracer could be run
ahead of time, e.g., by an app market gatekeeper, to examine
app behavior. Even though it would not necessarily observe
all app behavior, results from analyzing behaviors users ac-
tually encounter would still be useful. AppTracer could also
be used for auditing: power users and security experts could
use AppTracer to log an app’s behavior as they use it and then
retroactively check the AppTracer graphs for any suspicious
behavior, which could then be reported to the broader public.

Handle background authorization separately
We found that users were much less likely to expect back-
ground resource access if authorization dialogs were presented
after a prior user action or were not presented at all. Thus, we
recommend requesting authorization separately and explicitly
for background uses. Based on our study, it may be prefer-
able to do so when apps are first launched. However, because
our study showed the increase in expectation is small (espe-
cially compared to the expectation after a click), it may be
important to also show background notifications of use (which
also increased expectation) so users remain aware. We note
that while authorization on launch informs many users that
background accesses should be anticipated, Figure 5 suggests
there are others who do not recognize this possibility. Further
research into the best approach is still needed.

Resources that have a broad mix of interactive and background
uses—such as contacts—might particularly benefit from sepa-
rate background authorization and limited requests for inter-
active uses. This could help avoid potential misconceptions
about interactive uses being the only uses.

Future work could shed light on how differences in back-
ground use cases affect user expectations and preferences. For
example, users might be expected to react differently when
contacts are accessed in the background for pre-fetch (a use
case identified in our app survey) compared to advertising. We
also expect that the frequency of access will impact the user’s
decision. For example, it may be possible to tie high-frequency
background uses to some foreground passive notification (e.g.,
a notification tray icon), similarly to the design presented by
Balebako et al. for informing the user of data leakage [5]. This
could make the user aware of the accesses without requiring
additional authorization effort. Program analysis tools such as
AppTracer could potentially be used to separate these cases
and apply different authorization policies accordingly.

ACKNOWLEDGMENTS
We thank the anonymous reviewers, Sascha Fahl, Yasemin
Acar, and members of HCIL for their helpful feedback. This
research was supported in part by NSF CNS-1064997, a UMI-
ACS contract under the partnership between the University of
Maryland and DoD, and a Google Research Award.

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

371

REFERENCES
1. 2012. How to Ask for Permission. In Presented as part of

the 7th USENIX Workshop on Hot Topics in Security.
USENIX, Berkeley, CA.
https://www.usenix.org/conference/hotsec12/workshop-

program/presentation/Felt

2. Hirotugu Akaike. 1974. A new look at the statistical
model identification. Automatic Control, IEEE
Transactions on 19, 6 (06 Dec. 1974), 716–723. DOI:
http://dx.doi.org/10.1109/tac.1974.1100705

3. Hazim Almuhimedi, Florian Schaub, Norman Sadeh,
Idris Adjerid, Alessandro Acquisti, Joshua Gluck,
Lorrie Faith Cranor, and Yuvraj Agarwal. 2015. Your
Location Has Been Shared 5,398 Times!: A Field Study
on Mobile App Privacy Nudging. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 787–796. DOI:
http://dx.doi.org/10.1145/2702123.2702210

4. Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. 2012. PScout: Analyzing the Android
Permission Specification. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security (CCS ’12). ACM, New York, NY, USA, 217–228.
DOI:http://dx.doi.org/10.1145/2382196.2382222

5. Rebecca Balebako, Jaeyeon Jung, Wei Lu, Lorrie Faith
Cranor, and Carolyn Nguyen. 2013. "Little Brothers
Watching You": Raising Awareness of Data Leaks on
Smartphones. In Proceedings of the Ninth Symposium on
Usable Privacy and Security (SOUPS ’13). ACM, New
York, NY, USA, Article 12, 11 pages. DOI:
http://dx.doi.org/10.1145/2501604.2501616

6. Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi.
2013. Flexible and Fine-grained Mandatory Access
Control on Android for Diverse Security and Privacy
Policies. In Proceedings of the 22nd USENIX Security
Symposium (USENIX Security ’13). USENIX,
Washington, D.C., 131–146.
https://www.usenix.org/conference/usenixsecurity13/

technical-sessions/presentation/bugiel

7. Michael Buhrmester, Tracy Kwang, and Samuel D.
Gosling. 2011. Amazon’s Mechanical Turk: A New
Source of Inexpensive, Yet High-Quality, Data?
Perspectives on Psychological Science 6, 1 (2011), 3–5.
DOI:http://dx.doi.org/10.1177/1745691610393980

8. Kevin Zhijie Chen, Noah M. Johnson, Vijay D’Silva,
Shuaifu Dai, Kyle MacNamara, Thomas R. Magrino,
Edward XueJun Wu, Martin Rinard, and Dawn Xiaodong
Song. 2013. Contextual Policy Enforcement in Android
Applications with Permission Event Graphs. In 20th
Annual Network and Distributed System Security
Symposium, NDSS 2013. Internet Society, San Diego,
California, USA.
http://internetsociety.org/doc/contextual-policy-

enforcement-android-applications-permission-event-

graphs

9. Julie S. Downs, Mandy B. Holbrook, Steve Sheng, and
Lorrie Faith Cranor. 2010. Are Your Participants Gaming
the System?: Screening Mechanical Turk Workers. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 2399–2402. DOI:
http://dx.doi.org/10.1145/1753326.1753688

10. Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. 2011. Android Permissions
Demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS ’11).
ACM, New York, NY, USA, 627–638. DOI:
http://dx.doi.org/10.1145/2046707.2046779

11. Adrienne Porter Felt, Serge Egelman, and David Wagner.
2012a. I’ve Got 99 Problems, but Vibration Ain’t One: A
Survey of Smartphone Users’ Concerns. In Proceedings
of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM ’12). ACM,
New York, NY, USA, 33–44. DOI:
http://dx.doi.org/10.1145/2381934.2381943

12. Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel
Haney, Erika Chin, and David Wagner. 2012b. Android
Permissions: User Attention, Comprehension, and
Behavior. In Proceedings of the Eighth Symposium on
Usable Privacy and Security (SOUPS ’12). ACM, New
York, NY, USA, Article 3, 14 pages. DOI:
http://dx.doi.org/10.1145/2335356.2335360

13. Huiqing Fu, Yulong Yang, Nileema Shingte, Janne
Lindqvist, and Marco Gruteser. 2014. A field study of
run-time location access disclosures on android
smartphones. In Workshop on Usable Security (USEC).
Internet Society, San Diego, California, USA.

14. Google 2016. Requesting Permissions at Run Time.
Google. https://developer.android.com/training/
permissions/requesting.html

15. Andrew F Hayes and Klaus Krippendorff. 2007.
Answering the call for a standard reliability measure for
coding data. Communication methods and measures 1, 1
(2007), 77–89.
http://dx.doi.org/10.1080/19312450709336664

16. Donald Hedeker. 2008. Multilevel models for ordinal and
nominal variables. In Handbook of multilevel analysis.
Springer, 237–274.
http://link.springer.com/chapter/10.1007/978-0-387-

73186-5_6

17. Jinseong Jeon, Kristopher K. Micinski, Jeffrey A.
Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Foster,
and Todd Millstein. 2012. Dr. Android and Mr. Hide:
Fine-grained Permissions in Android Applications. In
ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM). ACM,
Raleigh, NC, USA, 3–14.

18. Ruogu Kang, Stephanie Brown, Laura Dabbish, and Sara
Kiesler. 2014. Privacy Attitudes of Mechanical Turk
Workers and the U.S. Public. In Proceedings of the 23rd

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

372

https://www.usenix.org/conference/hotsec12/workshop-program/presentation/Felt
https://www.usenix.org/conference/hotsec12/workshop-program/presentation/Felt
http://dx.doi.org/10.1109/tac.1974.1100705
http://dx.doi.org/10.1145/2702123.2702210
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1145/2501604.2501616
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
http://dx.doi.org/10.1177/1745691610393980
http://internetsociety.org/doc/contextual-policy-enforcement-android-applications-permission-event-graphs
http://internetsociety.org/doc/contextual-policy-enforcement-android-applications-permission-event-graphs
http://internetsociety.org/doc/contextual-policy-enforcement-android-applications-permission-event-graphs
http://dx.doi.org/10.1145/1753326.1753688
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2381934.2381943
http://dx.doi.org/10.1145/2335356.2335360
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
http://dx.doi.org/10.1080/19312450709336664
http://link.springer.com/chapter/10.1007/978-0-387-73186-5_6
http://link.springer.com/chapter/10.1007/978-0-387-73186-5_6

USENIX Security Symposium (USENIX Security ’14).
USENIX Association, San Diego, California, USA,
37–49. https://www.usenix.org/conference/soups2014/
proceedings/presentation/kang

19. Jennifer King. 2012. "How Come I’m Allowing Strangers
To Go Through My Phone?": Smartphones and Privacy
Expectations. In Proceedings of the Ninth Symposium on
Usable Privacy and Security (SOUPS ’12). USENIX,
Washington, DC, USA. http:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=2493412

20. Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008.
Crowdsourcing User Studies with Mechanical Turk. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). ACM, New
York, NY, USA, 453–456. DOI:
http://dx.doi.org/10.1145/1357054.1357127

21. Kristopher Micinski, Jonathan Fetter-Degges, Jinseong
Jeon, Jeffrey S. Foster, and Michael R. Clarkson. 2015.
Checking Interaction-Based Declassification Policies for
Android Using Symbolic Execution. Springer
International Publishing, Vienna, Austria, 520–538. DOI:
http://dx.doi.org/10.1007/978-3-319-24177-7_26

22. Helen Nissenbaum. 2004. Privacy as Contextual Integrity.
Washington Law Review 79 (2004), 119–157.

23. Ashwini Rao, Florian Schaub, Norman Sadeh,
Alessandro Acquisti, and Ruogu Kang. 2016. Expecting
the Unexpected: Understanding Mismatched Privacy
Expectations Online. In Twelfth Symposium on Usable
Privacy and Security (SOUPS 2016). USENIX
Association, Denver, CO, 77–96.
https://www.usenix.org/conference/soups2016/technical-

sessions/presentation/rao

24. Android Developers Reference. 2016.
Manifest.permission_group. (2016). https://developer.
android.com/guide/topics/security/permissions.html

(Accessed 9-16-2016).

25. Talia Ringer, Dan Grossman, and Franziska Roesner.
2016. AUDACIOUS: User-Driven Access Control with
Unmodified Operating Systems. In Proceedings of the
23rd ACM Conference on Computer and
Communications Security. ACM, Vienna, Austria.
http://tlringer.github.io/pdf/audacious.pdf

26. Franziska Roesner and Tadayoshi Kohno. 2013. Securing
Embedded User Interfaces: Android and Beyond. In
Proceedings of the 22nd USENIX Security Symposium
(USENIX Security ’13). USENIX, Washington, D.C.,
97–112.
https://www.usenix.org/conference/usenixsecurity13/

technical-sessions/presentation/roesner

27. Franziska Roesner, Tadayoshi Kohno, Alexander
Moshchuk, Bryan Parno, Helen J. Wang, and Crispin
Cowan. 2012. User-Driven Access Control: Rethinking
Permission Granting in Modern Operating Systems. In
Proceedings of the 2012 IEEE Symposium on Security
and Privacy (SP ’12). IEEE Computer Society,

Washington, DC, USA, 224–238. DOI:
http://dx.doi.org/10.1109/SP.2012.24

28. Stuart E Schechter, Rachna Dhamija, Andy Ozment, and
Ian Fischer. The Emperor’s New Security Indicators. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy.

29. Marc Stiegler, Alan H. Karp, Ka-Ping Yee, Tyler Close,
and Mark S. Miller. 2006. Polaris: Virus-safe Computing
for Windows XP. Commun. ACM 49, 9 (Sept. 2006),
83–88. DOI:http://dx.doi.org/10.1145/1151030.1151033

30. Marc Stiegler and Mark S. Miller. 2002. A
Capability-based Client: The DarpaBrowser. Technical
Report Technical Report, Focused Research Topic 5.
Combex Inc, Meadowbrook, PA.
http://www.combex.com/papers/darpareport/index.html

31. Joshua Sunshine, Serge Egelman, Hazim Almuhimedi,
Neha Atri, and Lorrie Faith Cranor. 2009. Crying Wolf -
An Empirical Study of SSL Warning Effectiveness.. In
Proceedings of the 18th USENIX Security Symposium.
{}https://www.usenix.org/legacy/events/sec09/tech/

full_papers/sunshine.

32. Michael Toomim, Travis Kriplean, Claus Pörtner, and
James Landay. 2011. Utility of Human-computer
Interactions: Toward a Science of Preference
Measurement. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11).
ACM, New York, NY, USA, 2275–2284. DOI:
http://dx.doi.org/10.1145/1978942.1979277

33. Primal Wijesekera, Arjun Baokar, Ashkan Hosseini,
Serge Egelman, David Wagner, and Konstantin Beznosov.
2015. Android Permissions Remystified: A Field Study
on Contextual Integrity. In Proceedings of the 24th
USENIX Security Symposium (USENIX Security ’15).
USENIX Association, Washington, D.C., 499–514.
https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/wijesekera

34. Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng
Ning, and X. Sean Wang. 2013. AppIntent: analyzing
sensitive data transmission in android for privacy leakage
detection. In Proceedings of the 2013 ACM SIGSAC
conference on Computer and Communications Security
(CCS ’13). ACM, New York, NY, USA, 1043–1054. DOI:
http://dx.doi.org/10.1145/2508859.2516676

Authentication and Access Control CHI 2017, May 6–11, 2017, Denver, CO, USA

373

https://www.usenix.org/conference/soups2014/proceedings/presentation/kang
https://www.usenix.org/conference/soups2014/proceedings/presentation/kang
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2493412
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2493412
http://dx.doi.org/10.1145/1357054.1357127
http://dx.doi.org/10.1007/978-3-319-24177-7_26
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/rao
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/rao
https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/guide/topics/security/permissions.html
http://tlringer.github.io/pdf/audacious.pdf
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
http://dx.doi.org/10.1109/SP.2012.24
http://dx.doi.org/10.1145/1151030.1151033
http://www.combex.com/papers/darpareport/index.html
{}https://www.usenix.org/legacy/events/sec09/tech/full_papers/sunshine.
{}https://www.usenix.org/legacy/events/sec09/tech/full_papers/sunshine.
http://dx.doi.org/10.1145/1978942.1979277
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wijesekera
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wijesekera
http://dx.doi.org/10.1145/2508859.2516676

	Introduction
	Background and Related Work
	App Measurement Survey Methodology
	Binary Rewriting and Execution Logging
	Log Visualization
	Resource Uses
	Coding Apps and Resolving Differences
	App Selection
	Limitations

	App Measurement Survey Results
	User Expectations Study Methodology
	Study Overview
	Conditions
	Statistical Analysis
	Ecological Validity and Limitations

	User Expectations Study Results
	Demographics
	H1 – Interactivity v. Expectation
	H2 – Real-World Frequency v. Expectation
	H3 – Effect of Previously Seen Accesses
	App v. Expectation

	Conclusions and Design Recommendations
	Acknowledgments
	REFERENCES

