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Abstract—We introduce Network Maximal Correlation (NMC) as a multivariate measure of nonlinear association among random

variables. NMC is defined via an optimization that infers transformations of variables by maximizing aggregate inner products

between transformed variables. For finite discrete and jointly Gaussian random variables, we characterize a solution of the NMC

optimization using basis expansion of functions over appropriate basis functions. For finite discrete variables, we propose an

algorithm based on alternating conditional expectation to determine NMC. Moreover we propose a distributed algorithm to compute

an approximation of NMC for large and dense graphs using graph partitioning. For finite discrete variables, we show that the

probability of discrepancy greater than any given level between NMC and NMC computed using empirical distributions decays

exponentially fast as the sample size grows. For jointly Gaussian variables, we show that under some conditions the NMC

optimization is an instance of the Max-Cut problem. We then illustrate an application of NMC in inference of graphical model for

bijective functions of jointly Gaussian variables. Finally, we show NMC’s utility in a data application of learning nonlinear

dependencies among genes in a cancer dataset.

Index Terms—Maximum correlation problem, alternating conditional expectation (ACE), Hermite-Chebyshev polynomials,

Gaussian graphical models, gene networks

Ç

1 INTRODUCTION

IDENTIFYING relationships among variables in large data-
sets is an increasingly important task in systems biology

[1], social sciences [2], finance [3], and other fields. For inde-
pendent observations of bivariate data, several measures
exist that characterize the strength of the association based
on a linear fit (e.g., Pearson’s correlation [4], canonical corre-
lation [5], [6]), rank statistics (e.g., Spearman’s correlation
[7]), and information content (e.g., mutual information [8],
[9]). Some of these measures have been extended to the
multivariate setting. For instance, Chow and Liu [10] have
used mutual information in the inference of tree graphical
models, while Liu et al. [11], [12] introduced a copula setup
based on rank statistics such as Spearman’s [7] correlation
coefficient to characterize graphical models for some nonlin-
ear functions of jointly Gaussian variables. Another method
to capture a nonlinear association between two variables is
the randomized dependence coefficient [13], where it fixes a
set of nonlinear functions and then uses randomized rank
statistics to compute association between nonlinear trans-
formations of variables.

A classical measure of nonlinear relationships between
two random elementsX1 andX2 isMaximal Correlation (MC),

introduced by Hirschfeld [14], Gebelein [15], Sarmanov [16]
and R�enyi [17], having also appeared in the work of Witsen-
hausen [18], Ahlswede andG�acs [19], and Lancaster [20]. MC
determines possibly nonlinear transformations of two varia-
bles, subject to zero mean and unit variance, to maximize
their Pearson’s correlation. MC not only computes an associ-
ation strength between variables, but it also characterizes a
possible functional relationship between them.

Definition 1 (Maximal Correlation). Let ðV;F ; P Þ be a
probability triple and for k 2 f1; 2g let ðXk;bkÞ be a measur-
able space with Xk : V ! Xk a random element. Maximal
Correlation (MC) between the two (not necessarily real-valued)
random elementsX1 andX2 is defined as

rðX1; X2Þ , sup
f1;f2

E½f1ðX1Þ f2ðX2Þ�; (1)

such that fk : Xk ! R is Borel measurable, E½fkðXkÞ� ¼ 0,
and E½fkðXkÞ2� ¼ 1, for k ¼ 1; 2.

MC can be computed efficiently for both discrete [21] and
continuous real-valued [20] random variables (Section 2.1).
For discrete random variables, under mild conditions, MC
is equal to the second largest singular value of an scaled
joint probability distribution matrix and the optimal trans-
formations of the variables can be characterized using right
and left singular vectors of the scaled probability distribu-
tion matrix. Alternating Conditional Expectation (ACE) was
introduced by Breiman and Friedman [21] to compute MC,
and was further analyzed by Buja [22]. Recently, MC has
been used in many applications. It is related to strong data
processing inequalities and contraction coefficients, being
recently investigated by Anantharam et al. [23], Polyanskiy
[24], and Raginsky [25]. Further studies include applications
in information theory [26], [27], information-theoretic secu-
rity and privacy [28], [29], [30], [31], [32], data processing
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[23], [25] and other fields [33], [34], [35], [36], [37]. In parti-
cular, Beigi and Gohari [33] introduced multipartite maxi-
mal correlation and showed its connection with the
multipartite hypercontractivity ribbon. Multipartite maxi-
mal correlation aims to find a correlation matrix C with the
largest r such that C � rI is positive semidefinite, where I
is the identity matrix. This objective function is different to
the one of the network maximal correlation discussed in the
present paper.

Many modern datasets consist of independent observa-
tions of high-dimensional multivariate random elements
X1; . . . ;Xn (i.e., n � 2). One approach to characterize rela-
tionships among these elements is to determine the bivar-
iate MC for each pair of them. In this approach one
would solve the following optimization for all pairs ði; i0Þ,
1 � i; i0 � n:

sup
fi;i0 ;fi0 ;i

E fi;i0 ðXiÞ fi0;iðXi0 Þ
� �

; (2)

such that fi;i0 : X i ! R is Borel measurable, E½fi;i0 ðXiÞ� ¼ 0,
and E½fi;i0 ðXiÞ2� ¼ 1, for 1 � i; i0 � n.

Should they exist, let f�
i;i0 for 1 � i; i0 � n denote the

resulting optimizers. By this approach, each element Xi is
assigned to n� 1 transformation functions ff�

i;i0 : 1 � i0 � n;
i0 6¼ ig. In some applications, there may be interpretability
and over-fitting issues. To circumvent these issues, we con-
sider an alternate multivariate extension of the MC optimi-
zation (1) with two types of constraints. We seek to
formulate an optimization that (i) assigns a single transfor-
mation function to each element; and (ii) its objective func-
tion can be restricted to a subset of variable pairs. The latter
conditioning is described by a graph and is motivated by
several distinct considerations: (a) there may be a priori
known structure that indicates some elements are necessar-
ily unrelated; (b) one may not care about the association of
certain elements; or (c) the restriction may serve as a compu-
tation reduction technique.

Definition 2 (Network Maximal Correlation). Let G ¼
ðV;EÞ be a graph with vertices V ¼ f1; 2; . . . ; ng and edges
E � fði; i0Þ : i; i0 2 V; i 6¼ i0g. The Network Maximal Correla-
tion (NMC) ofX1; . . . ; Xn given G is defined to be

rGðX1; . . . ; XnÞ , sup
f1;...;fn

X
ði;i0Þ2E

E fiðXiÞ fi0 ðXi0 Þ½ �; (3)

such that fi : X i ! R is Borel measurable, E fiðXiÞ½ � ¼ 0, and
E½fiðXiÞ2� ¼ 1, for all 1 � i � n.

When no confusion arises, we use rG to refer to the NMC.
The NMC optimization maximizes the aggregate inner
products between transformed variables. NMC naturally
generalizes the bivariate MC to the multivariate setting. For
example, the bivariate MC is equivalent to the NMC when
the graph G ¼ ðV;EÞ has two nodes connected by an edge.
That is, V ¼ f1; 2g and E ¼ fð1; 2Þg. As another example, if
V ¼ f1; 2; 3g and E ¼ fð1; 2Þ; ð1; 3Þg, the objective function
of the NMC optimization (3) aims to find transformation
functions fiðXiÞf g3i¼1 which maximize

E f1ðX1Þ f2ðX2Þ þ f1ðX1Þ f3ðX3Þ½ �:

Note that in this example the transformation function
f1ðX1Þ appears in two terms in the objective function, lead-
ing to additional coupling constraints in the optimization
(3), when compared to multiple bivariate MC optimizations
(2). We investigate this optimization for a general graph
G ¼ ðV;EÞ. In applications, we highlight appropriate selec-
tions of G in the NMC optimization.1

Since E½fiðXiÞ2� ¼ 1 for any 1 � i � n, we have

rG ¼ jEj � inf
f1;...;fn

1

2

X
ði;i0Þ2E

E½ðfiðXiÞ � fi0 ðXi0 ÞÞ2�; (4)

which means that the NMC optimization (3) is equivalent to
finding functions of random variables that minimize the
Mean Squared Error (MSE) among all neighboring random
variables. The form (4) can be useful in different applica-
tions such as fitting a nonlinear regression model (e.g.,
fiðXiÞ ¼

P
i0¼f1;...;ngnfig fi0 ðX0

iÞ þ Z).

The techniques described here to characterize local and
global optima of the aforementioned NMC optimization
can be used in other related formulations as well. For exam-
ple, we also introduce absolute NMC, which maximizes
the total absolute pairwise correlations among variables
(Section 8.1). Absolute NMC is appropriate for applications
where the strength of an association does not depend on the
sign of the correlation coefficient. Moreover, the NMC opti-
mization can be regularized to consider fewer nonlinear
transformations or to restrict the set of possible transforma-
tions, further avoiding over-fitting issues (Section 8.1).

In Section 2, for finite discrete random variables, we char-
acterize the solution of the NMC optimization using a natu-
ral basis expansion. For finite discrete random variables, we
show that the NMC optimization is an instance of the Maxi-
mum Correlation Problem (MCP), which is NP-hard [38],
[39], [40], [41].

In Section 3, using the results from the Multivariate
Eigenvector Problem (MEP) [38], we characterize necessary
conditions that are satisfied at the global optimum of the
NMC optimization. We propose an efficient algorithm
based on Alternating Conditional Expectation (ACE) [21]
that converges to a local optimum of the NMC optimization.
We also provide guidelines for choosing appropriate start-
ing points of the ACE algorithm to avoid local maximizers.
The proposed algorithm does not require the formation of
joint distribution matrices which could be expensive for var-
iables with large number of categories. We develop a dis-
tributed version of the ACE algorithm to compute an
approximation of the NMC value for large dense graphs
using graph partitioning. We characterize a bound on the
expected performance of the proposed algorithm for poly-
growth graphs which are often used in analyzing distrib-
uted graph algorithms (see e.g., [42], [43], [44]).

In Section 4, we prove a finite sample bound and error
guarantees for NMC. Under some conditions we prove that
NMC of finite discrete random variables is continuous
with respect to their joint probability distributions. That is,
a small perturbation in the joint distribution results in a
small change in the NMC value. Moreover, we show that
the probability of discrepancy greater than any given level

1. We use the terminology graph and network interchangeably.
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between NMC and NMC computed using empirical distri-
butions decays exponentially fast as the sample size grows.

In Section 5, for jointly Gaussian variables, we use Her-
mite-Chebyshev polynomials as the basis for the functions
of Gaussian random variables and characterize the solution
of the NMC optimization. Under some conditions, we show
that the NMC optimization is equivalent to the Max-Cut
problem, which is NP-complete [45]. However, there exist
algorithms to approximate its solution using Semidefinte
Programming (SDP) within certain approximation factors
[46]. Moreover, we provide sufficient conditions under
which a solution of the NMC optimization can be character-
ized exactly.

In Section 6, we illustrate some applications of NMC. In
Section 6.1, we show an application of NMC in inference of
graphical model (Definition 8) for bijective functions of
jointly Gaussian variables. Graphical models provide a use-
ful framework for characterizing dependencies among
variables and for efficient computation of marginals and
modes of multivariate distributions [47]. Moreover, Gauss-
ian graphical models play an important role in applications
such as linear regression [48], partial correlation [49], maxi-
mum likelihood estimation [50], etc. Here we consider a
setup in which observed variables are related to latent
jointly Gaussian variables through link functions. These
link functions are unknown, bijective, and can be linear or
nonlinear. We show that, under some conditions, the
inverse covariance matrix of the transformed variables com-
puted by the NMC optimization (as well as multiple MC
optimizations) characterizes the underlying graphical
model. With an example we show that when underlying
link functions are monotone the performance of our infer-
ence method is comparable to the one of the copula model
developed by Liu et al. [11], [12]. Moreover, we illustrate
that if we violate the model assumption for both our infer-
ence framework and for the copula method by considering
non-monotone link functions, our inference method appears
to outperform the copula one, highlighting the robustness of
our proposed inference framework.

In Section 6.2, we provide an example to demonstrate
NMC’s utility in a data application where we apply sample
NMC to cancer datasets [51] and infer nonlinear gene asso-
ciation networks. Over these inferred networks, we deduce
gene modules that are significantly associated with survival
times of individuals while these modules are not detected
using linear association measures.

2 NETWORK MAXIMAL CORRELATION

2.1 Review of Maximal Correlation

Recall the definition of maximal correlation (Definition 1).
For k ¼ i; i0, we let f�

kðXkÞ denote a solution of optimization
(1) should it exist. The existence and uniqueness of a solu-
tion ðf�

i ðXiÞ;f�
i0 ðXi0 ÞÞ to the MC optimization (1) have been

investigated in [21]. Maximal correlation rðXi;Xi0 Þ is
always between 0 and 1, where a high MC value indicates a
strong association between two variables [15].

Unlike Pearson’s linear correlation [4], MC only depends
on the joint distribution of the variables and not on their
sample spaces X i. Several works have investigated different
aspects of optimization (1) for both discrete [21] and

continuous [20] random variables. For discrete variables,
under mild conditions, MC is equal to the second largest
singular value of the following Q-matrix [21]:

Definition 3. Let PXi;Xi0 be the joint distribution of discrete
variables Xi and Xi0 with finite alphabet sizes jX ij and jX i0 j,
respectively. Define a matrix Qi;i0 2 RjX i j	jX i0 j whose ðj; j0Þ
element is

Qi;i0 ðj; j0Þ ,
PXi;Xi0 ðj; j0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ðjÞPXi0 ðj0Þ
q : (5)

The matrix is called the Q-matrix of the distribution PXi;Xi0 .

In this case, optimal transformations of variables can be
characterized using right and left singular vectors of the
normalized probability distribution matrix.

For Gaussian variables, Lancaster [20] introduced a basis
expansion with Hermite-Chebyshev polynomials to com-
pute MC. Interestingly in this case the maximal correlation
and Pearson’s linear correlation is equivalent.

2.2 NMC Formulation

Recall the definition of the Network Maximal Correlation
(Definition 2). NMC infers nonlinear transformation func-
tions assigned to each node variable so that the aggre-
gate pairwise correlations over the graph G ¼ ðV; EÞ is
maximized.

Let f�
i ð
Þ be a solution of the NMC optimization (3)

should it exist. Then, an edge maximal correlation of varia-
bles i and i0 is defined as

r
ði;i0Þ
G ðX1; . . . ; XnÞ ,

��E½f�
i ðXiÞ f�

i0 ðXi0 Þ�
��;

where ði; i0Þ 2 E. Unlike the bivariate MC formulation of (1),
the edge maximal correlation is a function of the joint distri-
bution of all variables. Thus, an edge maximal correlation of
variables Xi and Xi0 is always smaller than or equal to their
bivariate maximal correlation, i.e.,

r
ði;i0Þ
G ðX1; . . . ; XnÞ � rðXi;Xi0 Þ:

We next provide a framework to study NMC and its proper-
ties. Following the definition provided in [18, Section 3], for
i ¼ 1; 2; . . . ; n, we define a set of real-valued measurable
functionsHXi

as

HXi
¼ffi jfi : X i ! R;fi is Borel measurable;

E½fi �Xi� < 1;E½ðfi �XiÞ2� < 1g; (6)

where the inner product of two elements ofHXi
is defined as

E½fiðXiÞ f0
iðXiÞ�, and the norm is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðfi �XiÞ2�

q
.

Note that fiðXiÞ is a random variable in R such that for

any Borel-measurable set B, we have P½fiðXiÞ 2 B� ¼
P½Xi 2 f�1

i ðBÞ�. We use the notation fi �Xi and fiðXiÞ
interchangeably.

We let fci;jg1j¼1 represent an orthonormal basis for HXi
.

We will explicitly construct such basis in the case of discrete
random variables and Gaussian random variables, studied
in this paper.
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Theorem 1. Consider the following optimization:

sup
ffai;jgni¼1g1j¼1

X
ði;i0Þ2E

X
j;j0

ai;jai0;j0 r
j;j0
i;i0

X1
j¼1

a2i;j ¼ 1; 1 � i � n;

X1
j¼1

ai;j E½ci;jðXiÞ� ¼ 0; 1 � i � n;

(7)

where

r
j;j0
i;i0 , E½ci;jðXiÞ ci0;j0 ðXi0 Þ�: (8)

Let f�
i ð
Þ and fa�i;jg1j¼1 for 1 � i � n be solutions of optimiza-

tions (3) and (7), respectively. Then,

f�
i ðXiÞ ¼

X1
j¼1

a�i;j ci;jðXiÞ: (9)

is a solution of the NMC optimization (3). Moreover, rj;j
0

i;i0 for
j; j0 � 1 are coefficients of the basis expansion of PXi;Xi0 with
respect to the basis ci;jci0;j0

� �
j;j0 , i.e.,

PXi;Xi0 ðxi; xi0 Þ ¼
X
j;j0

r
j;j0
i;i0ci;jðxiÞci0;j0 ðxi0 Þ:

Proof. A proof is presented in Section 7.1. tu
Equation (9) means convergence in the L2 sense, i.e.,

limn!1 jjf�
i ðXiÞ �

Pn
j¼1 a

�
i;j ci;jðXiÞjj ¼ 0. Throughout the

paper since we only work with the inner product of func-
tions, without loss of generality, we replace f�

i ðXiÞ byP1
j¼1 a

�
i;j ci;jðXiÞ. Also note that for the case of finite discrete

random variables, the convergence is in fact pointwise. For
further details, see [20], [52].

Selecting appropriate set of functions HXi
is critical to

have a tractable optimization problem (7). In the following,
we consider the NMC optimization for finite discrete varia-
bles, while the Gaussian case is discussed in Section 5.

3 NMC FOR FINITE DISCRETE VARIABLES

In this section, we analyze the NMC optimization (3) for
finite discrete random variables, and then introduce an effi-
cient algorithm to compute NMC. We then propose a paral-
lelizable version of the NMC algorithm based on network
partitioning and characterize a bound for its expected
performance.

First we introduce some notation. For any vector
v ¼ ðv1; . . . ; vdÞ 2 Rd and p � 1, we let kvkp represent the
standard p-norm of the vector v defined as

jjvjjp ¼
Xd
i¼1

vpi

 !1
p

:

For p ¼ 2, we drop the subscript, i.e., jjvjj ¼ jjvjj2. The infi-
nite norm of a vector is defined as

jjvjj1 ¼ max
1�i�d

vi:

The inner product between two vectors v and w is
defined as

<v;w>¼
Xd
i¼1

viwi:

For a matrix V 2 Rd1 	Rd1 , the matrix norm is a vector
norm on Rd1	d2 . I.e.,

jjV jjp ¼ sup
w6¼0

jjVwjjp
jjwjjp

:

For p ¼ 2, we drop the subscript.

3.1 Relationship between NMC and Maximum
Correlation Problem

Let Xi be a discrete random variable with alphabet
f1; . . . ; jX ijg. Let

ci;jðxÞ ¼ 1fx ¼ jg 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ðjÞp ; (10)

be an orthonormal basis for HXi
, where 1 is the indicator

function. We assume that all the elements of the alphabet
xi 2 X i have positive probabilities, as otherwise they can be
neglected without loss of generality. We can write

r
j;j0
i;i0 ¼ E½ci;jðXiÞ ci0;j0 ðXi0 Þ� ¼

PXi;Xi0 ðj; j0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ðjÞ PXi0 ðj0Þ
q :

Therefore, the optimization (7) is simplified to the
following:

max
ffai;jgni¼1g1j¼1

X
ði;i0Þ2E

X
j;j0

ai;jai0;j0
PXi;Xi0 ðj; j0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ðjÞ PXi0 ðj0Þ
q

XjX ij

j¼1

ðai;jÞ2 ¼ 1; 1 � i � n;

XjX ij

j¼1

ai;j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ðjÞ
q

¼ 0; 1 � i � n:

(11)

For i ¼ 1; . . . ; n, let

ai , ai;1; ai;2; . . . ; ai;jX ij
� 	T
ffiffiffiffiffi
pi

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ð1Þ
q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ð2Þ
q

; . . . ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXi

ðjX ijÞ
q
 �T

:
(12)

Therefore, the optimization (11) can be re-written as follows:

max
faigni¼1

X
ði;i0Þ2E

aTi Qi;i0ai0

kaik2 ¼ 1; 1 � i � n;

ai ? ffiffiffiffiffi
pi

p
; 1 � i � n;

(13)

where Qi;i0 is defined in Definition 3 and ? represents
orthogonality between two vectors.

The optimization (13) is not convex nor concave in gen-
eral. Below, we show that this optimization is an instance of
the Maximum Correlation Problem proposed by Hotelling
[39], [40]. By making this connection, we use established
techniques via the Multivariate Eigenvalue Problem (MEP)
to solve optimization (13).
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For each i, since IjX i j �
ffiffiffiffiffi
pi

p ffiffiffiffiffi
pi

p T is positive semidefinite,
we take its square root2 and write

Bi ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IjX ij �

ffiffiffiffiffi
pi

p ffiffiffiffiffi
pi

p T
q

; (14)

where IjX ij is a jX ij 	 jX ij identity matrix. Let bi ¼ Biai.

Let UiSiU
T
i be the singular value decomposition of Bi where

U
ðjÞ
i is the jth column of Ui and s

ðjÞ
i is the jth singular value

of Bi. We will show that only one singular value of Bi is
zero which corresponds to the singular vector

ffiffiffiffiffi
pi

p
. Without

loss of generality, suppose s
ð1Þ
i ¼ 0, for all i. Define Ai,

a jX ij 	 jX ijmatrix, as follows:

Ai ,
 

U
ð2Þ
i ; . . . ; U

ðjX i jÞ
i

h i
diag

1

s
ð2Þ
i

; . . . ;
1

s
ðjX ijÞ
i

 !

U
ð2Þ
i ; . . . ; U

ðjX i jÞ
i

h iT!
:

(15)

As we show in the proof of Theorem 2, s
ðjÞ
i 6¼ 0, for all

1 � i � n, and j � 2, Ai is well-defined according to (15).

Theorem 2. The NMC optimization (13) can be re-written as
follows:

max
b1;...;bn

X
ði;i0Þ2E

bT
i A

T
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0bi0

s.t. jjbijj2 ¼ 1 1 � i � n:

(16)

Proof. A proof is presented in Section 7.2. tu
Let C be a matrix consisting of submatrices Ci;i0 2

RjX ij	jX i0 j where if ði; i0Þ 2 E,

Ci;i0 , AT
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0 ; (17)

otherwise Ci;i0 is an all zero matrix of size jX ij 	 jX i0 j. Note
that since the graph G ¼ ðV;EÞ does not have self-loops, Ci;i

is a zero matrix for 1 � i � n.

Let b , ðbT
1 ; . . . ;b

T
n ÞT 2 RjXj, where jXj ¼Pn

i¼1 jX ij and
bi 2 RjX ij.

Corollary 1. The NMC optimization (16) can be written as
follows:

max
b

bTCb

jjbijj2 ¼ 1; 1 � i � n:
(18)

The optimization (18) is in the standard form of the
MCP problem, proposed by Hotelling [39], [40], to find the
linear combination of one set of variables that correlates
maximally with the linear combination of another set of
variables.

Definition 4 (Multivariate Eigenvalue Problem [38]).
The first-order optimality condition for optimization (18) is
the existence of real-valued scalars, namely, Lagrange multi-
pliers �1; . . . ; �n, such that the following system of equations
is satisfied:

Xn
i0¼1

Ci;i0bi0 ¼ �ibi; 1 � i � n

jjbijj2 ¼ 1; 1 � i � n:

(19)

This system of equations is called Multivariate Eigenvalue
Problem ([38], [41]).

3.2 An ACE Approach to Compute NMC

In Section 3.1, we established a connection among the NMC
optimization (3), the Maximum Correlation Problem and
the Multivariate Eigenvalue Problem (see e.g., [38], [39],
[40], [41]). After showing that the NMC optimization can be
reformulated as the MCP, we use existing techniques from
the literature to solve it. Several local maximizers exist for
cases where finding a global optimum of optimization (18)
is computationally difficult [38], [53]. For example, an
aggregated power method that iterates on blocks of C was
proposed by Horst [54] as a general technique for solving
the MEP (Definition 4) numerically.

Below, we summarize general algorithmic ideas to solve
MCP:

(1) First, an efficient algorithm is used to solve MEP
which is the necessary first order condition for MCP.
This step is studied in references [38], [54].

(2) Next, a strategy is used to choose starting points of
the algorithm or to jump out of the local minima of
optimization (18). We adopt this step from [41], [55].

An Efficient Algorithm to Solve MEP. Algorithm 1 pro-
posed by [38] is a Gauss-Seidel algorithm [56] to solve MEP,
which is a variant of the classical power iteration method
(see e.g., [57]).

Algorithm 1. Gauss-Seidel Algorithm for MEP

Input: C 2 RjXj 	RjXj.
Initialization: bð0Þ 2 RjXj.
for k ¼ 0; 1; . . .
for i ¼ 1; . . . ; n

~b
ðkÞ
i ¼Pi�1

i0¼1 Ci;i0b
ðkþ1Þ
i0 þPn

i0¼iþ1 Ci;i0b
ðkÞ
i0 .

b
ðkþ1Þ
i ¼ ~b

ðkÞ
i

jj~bðkÞ
i

jj2
end

end

Let

rðbÞ ¼ bTCb ¼
Xn
i;i0¼1

bT
i Ci;i0bi0 (20)

�iðbÞ ¼ bT
i ½Ci;1; . . . ; Ci;n�b ¼

Xn
i0¼1

bT
i Ci;i0bi0 (21)

Algorithm 1 is an iterative algorithm. Let bðkÞ ¼ ðbðkÞ
1 ; . . . ;

bðkÞ
n Þ be the update of Algorithm 1 at iteration k.

Theorem 3 (Theorem 5.1 [41]). The sequence frðbðkÞÞg
generated by Algorithm 1 is monotonically increasing and
convergent.

Theorem 3 indicates that theAlgorithm 1 finds a local opti-
mum of the optimization (18). According to Proposition 1,

2. The square root of a symmetric positive semidefinite matrix A is
defined as

ffiffiffiffi
A

p ¼ US1=2UT where A ¼ USUT .
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this solution provides a local optimum for the NMC optimi-
zation (3). In the followingwe introduce a strategy that uses a
local optimum of the optimization (18) and constructs
another solution for the optimization (18) with strictly higher
objective function value.

A Strategy for Avoiding Local Optima of MCP.

Proposition 1. Let �b be a solution of the MEP (19). Suppose
that there exists an 1 � i � n such that �ið�bÞ < 0. Let
b̂ ¼ ðb̂1; . . . ; b̂nÞ be defined as: b̂i ¼ ��bi, for any i such
that �ið�bÞ < 0, and b̂i0 ¼ �bi0 , otherwise. Then, we have
rðb̂Þ > rð�bÞ.

Proof. A proof is presented in Section 7.3. tu
Algorithm 1 finds a local optimum �b for the optimization

(18). This solution can be translated to a solution of the NMC
optimization (3) according to Theorem 1, Equations (10), (14),
and using bi ¼ Biai. This leads to a direct algorithm to find a
solution for the NMC optimization (3) based on alternating
conditional expectation (Algorithm 2). Similarly to Algo-
rithms 1 and 2 converges to the local optimum of the NMC
optimization (3). We use a strategy similarly to the one of
Proposition 1 to avoid remaining at local maximizers. At
each iteration of the algorithm, we update transformation
functions as follows: Suppose at iteration k, transformation
functions are ffðkÞ

i gni¼1. If we fix all variables except the trans-
formation function of node i, an optimizer of f

ðkþ1Þ
i can be

written as the normalized conditional expectation of func-
tions of its neighbors. In each update, the objective function
of the NMC optimization increases or remains the same.
Note that, for the bivariate case (i.e., n ¼ 2), Algorithm 2 is
simplified to theACE algorithm [21] for theMC computation.

If the number of nodes n is large, then computation of
NMC may be expensive. In the following, we propose an
approach to compute NMC using parallel computation.

Algorithm 2.Network ACE to Compute NMC

Input: G,X1; . . . ; Xn,

Initialization: f
ð0Þ
1 ðX1Þ; . . . ;fð0Þ

n ðXnÞ with mean zero and unit
variance.
for k ¼ 0; 1; . . .
for i ¼ 1; . . . ; n

~fi
ðkÞðXiÞ ¼ E½Pi�1

i0¼1 f
ðkþ1Þ
i0 ðXi0 ÞjXi�

þE½Pn
i0¼iþ1 f

ðkÞ
i0 ðXi0 ÞjXi�, for i0 2 N ðiÞ.

update: f
ðkþ1Þ
i ðXiÞ ¼ ~fi

ðkÞðXiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ~fi

ðkÞðXiÞ2
� �q

end
r
ðkþ1Þ
G ¼Pði;i0Þ2E E½fðkþ1Þ

i ðXiÞfðkþ1Þ
i0 ðXi0 Þ�

end

3.3 Parallel Computation of NMC

For large and dense networks, exact computation of NMC
may become computationally expensive. For those cases,
we propose a parallelizable algorithm which approximates
NMC using network partitioning. The idea can be described
as follow. For a given graph G ¼ ðV;EÞ,
(1) Partition the graph into small disjoint sets.
(2) Estimate NMC for each partition independently.
(3) Combine NMC solutions over sub-graphs to form an

approximation of NMC for the original graph.

A k-partition pðk; V; EÞ of graphG ¼ ðV;EÞ is defined as a
set fV1; . . . ; VMg such that, for any 1 � i 6¼ j � M, Vi \ Vj ¼ ;,S M

i¼1 ¼ V , and 1 � jVij � k. We say an edge e 2 E belongs

to pðk; V;EÞ if e 2 S M
i¼1Vi 	 Vi.

Definition 5. A k-partitioning of graph G ¼ ðV;EÞ is a set
Pðk; V;EÞ ¼ fp1ðk; V;EÞ;p2ðk; V;EÞ; . . .gwhere each piðk; V;EÞ
is a k-partition of the graph.

Next we define an ð�; kÞ-partitioning of graph G ¼ ðV;EÞ.
Definition 6 ([58], Section A). An ð�; kÞ-partitioning of graph

G ¼ ðV;EÞ is a distribution over all k-partitioning of the graph
such that, for any e 2 E, E½1fe =2 piðk; V; EÞg� � �.

Definition 7. A graph G is poly-growth if there exists r > 0
and C > 0, such that for any vertex v in the graph,

jNvðdÞj � Cdr;

where NvðdÞ is the number of nodes within distance d of v in G
(distance is defined as the shortest path length on the graph).

Reference [58] describes the following procedure for gen-
erating an ð�; kÞ�partitioning on a graph:

1. Given G ¼ ðV;EÞ, k, and � > 0, we define the trun-
cated geometric distribution as follows:

P½x ¼ l� ¼ �ð1� �Þl�1; l < k;

ð1� �Þk�1; l ¼ k:

�
(22)

2. We then order nodes arbitrarily 1; . . . ; N . For node i,
we sample Ri according to distribution (22) and
assign all nodes within that distance from node i to
color i. If a node is already colored, we re-color it
with color i.

3. All nodes with the same color form a k-partition of
the graph.

Proposition 2 ([58], Lemma 2). If G is a poly-growth
graph, then by selecting k ¼ Qðr� log r

�Þ, the above proce-
dure results in an ð�; CkrÞ-partitioning.
Next, we use an ð�; kÞ-graph partitioning to approximate

NMC over large graphs using parallel computations.
Consider the following approach:

(1) We sample a partition fV1; . . . ; VMg of V , given an
ð�; kÞ- partitioning of G.

(2) For each partition 1 � m � M, we compute NMC
restricted to Gm ¼ ðVm;E \ ðVm 	 VmÞÞ, denoted
by r̂Gm

.
(3) Let r̂G ¼PM

m¼1 r̂Gm
be an approximation of rG.

In the following, we bound the approximation error by
bounding boundary effects:

Theorem 4. Consider an ð�; kÞ-partitioning of the graph G. We
have,

E½r̂G� � ð1� �ÞrG; (23)

where the expectation is over ð�; kÞ-partitioning of graph G.

Proof. A proof is presented in Section 7.4. tu
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4 PROPERTIES OF NETWORK MAXIMAL

CORRELATION FOR FINITE DISCRETE RANDOM

VARIABLES

In many applications, often only noisy measurements or
samples of joint distributions are observed. In this section,
we prove a finite sample generalization bound, and error
guarantees for Network Maximal Correlation of finite dis-
crete random variables. Specifically, under general condi-
tions, we prove that Network Maximal Correlation is a
continuous measure with respect to the joint probability dis-
tribution. That is, a small perturbation in the distribution
results in a small change in the NMC value. Moreover we
prove that the probability of discrepancy between NMC and
sample NMC (NMC computed using empirical distribu-
tions) greater than any given level decays exponentially fast
as the sample sizem grows.

Throughout this section we only consider finite discrete
random variables. Moreover to simplify notation we let P
be the matrix representation of probability distribution
PX1;...;Xn . We assume that all the elements of the alphabet
xi 2 X i have positive probabilities, as otherwise they can be
neglected without loss of generality, and define

dXi
ðP Þ , arg min

xi2X i

PXi
ðxiÞ > 0; 1 � i � n: (24)

The empirical distribution of these variables using m
observed samples is defined as P ðmÞðx1; . . . ; xnÞ ¼ 1

m

Pm
s¼1 1

fxðsÞ
1 ¼ x1; . . . ; x

ðsÞ
n ¼ xng, where fðxðsÞ

1 ; . . . ; xðsÞ
n Þgms¼1 are i.i.d.

samples drawn according to the distribution PX1;...;Xn . The

vector of observed samples of variable Xi is denoted by
xi ¼ ðxð1Þ

i ; x
ð2Þ
i ; . . . ; x

ðmÞ
i Þ.

4.1 Continuity of Network Maximal Correlation

Let P and ~P be two distributions over alphabets ðX1; . . . ;
XnÞ. LetK ¼ max1�i�njX ij. Thus,K , Kn is an upper bound
on the alphabet size of the joint distribution. In the following,
we show that if the infinity norm distance between P and
~P is small (i.e., jjP � ~P jj1 ¼ maxx12X1;...;xn2Xn j P ðx1; . . . ;
xnÞ � ~P ðx1; . . . ; xnÞj � g), their corresponding NMC values
(denoted by rG and ~rG respectively) are close to each other.

Theorem 5. Network Maximal Correlation is a continuous func-
tion of the joint probability distribution P . Let jjP � ~P jj1 � g,
for g � d3=2K�1. Then, we have

jrG � ~rGj � gKjEj 8
d2
; (25)

where d ¼ min1�i�n minfdXi
ðP Þ; dXi

ð ~P Þg� 	
.

Proof. A proof is presented in Section 7.5. tu
Corollary 2. Let r and ~r be bivariate MCs with respect to distri-

butions P and ~P , respectively. Let jjP � ~P jj1 � g. For any
g � d3=2K�1, we have

jr� ~rj � gK 8

d2
; (26)

where K and d are defined according to Theorem 5.

4.2 Sample NMC

Let fðxðsÞ
1 ; . . . ; xðsÞ

n Þgms¼1 be i.i.d. samples drawn according
to a distribution PX1;...;Xn . Let P ðmÞ denote the empirical

distribution obtained from these samples. Network Maxi-
mal Correlation computed using this empirical probability
distribution is called Sample Network Maximal Correlation
and is denoted by r

ðmÞ
G ðfðxðsÞ

1 ; . . . ; xðsÞ
n Þgms¼1Þ. For simplicity,

when no confusion arises, we refer to the sample NMC
by r

ðmÞ
G . In the following, we show that the probability of

discrepancy greater than any given value between r
ðmÞ
G and

rG decays exponentially fast as the sample sizem grows.

Theorem 6. For any h; � > 0, if

m � 2
32jEjK
�d02

 �2

log
8n

h

 �
; (27)

then we have

P½jrðmÞ
G � rGj > �� � h; (28)

where d0 ¼ min1�i�ndXi
ðP Þ.

Proof. A proof is presented in Section 7.6. tu
Note that the number of required samples to learn the

joint probability distribution reliably is a function of the
alphabet size. This is reflected in the right hand side of the
bound provided in Theorem 6 through the term K.

Corollary 3. Let r and rðmÞ be bivariate MC and sample MC,
respectively. For

m � 2
32K
�d02

 �2

log
16

h

 �
: (29)

we have

P½jrðmÞ � rj > �� � h; (30)

where K and d0 are defined according to Theorem 6.

5 NMC FOR JOINTLY GAUSSIAN VARIABLES

Suppose that ðX1; . . . ; XnÞ are jointly Gaussian variables
with zero means and unit variances. Let ri;i0 be the correla-
tion coefficient of variables Xi and Xi0 . We assume that
jri;i0 j 6¼ 1 if i 6¼ i0. Let Gc ¼ ðVc; EcÞ be the covariance graph
corresponding to these variables where Vc ¼ f1; 2; . . . ; ng,
and ði; i0Þ 2 Ec iff ri;i0 6¼ 0. Moreover for continuous varia-
bles ffið:Þgni¼1 in optimization (3) are assumed to be continu-
ous and l2 (equivalent to L2 for discrete random variables).

The kth Hermite-Chebyshev polynomial [20] is
defined as

CkðxÞ , ð�1Þkex2 dk

dxk
e�x2 : (31)

These polynomials form an orthonormal basis with respect
to Gaussian distributions [20]. That is,Z 1

�1
CjðxiÞCj0 ðxi0 Þpðxi; xi0 Þdxidxi0 ¼ ðri;i0 Þj1fj ¼ j0g; (32)

where pðxi; xi0 Þ is the joint density function of Gaussian vari-
ables Xi and Xi0 with correlation ri;i0 . Let ci;j to be the jth
Hermite-Chebyshev polynomial, for 1 � i � n. We have

r
j;j0
i;i0 ¼ E½ci;jðXiÞ ci0;j0 ðXi0 Þ� ¼ ðri;i0 Þj1fj ¼ j0g: (33)
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Moreover, using the definition of Hermite-Chebyshev
polynomials (31), we have

E½ci;jðXiÞ� ¼ 1fj ¼ 0g; 1 � i � n: (34)

because all of these functions for j � 1 have zero means
when integrated against a Gaussian distribution. Therefore,
using (33) and (34), the optimization (7) can be written as

max
ffai;jgni¼1g1j¼1

X
ði;i0Þ2E

X1
j¼1

ai;jai0;j ðri;i0 Þj

X1
j¼1

ðai;jÞ2 ¼ 1; 1 � i � n:

(35)

We establish that solving the optimization (35) is NP-com-
plete by identifying one instance of this problem that
reduces to the max-cut problem, which is NP-complete [45].

Theorem 7. Let si 2 f�1; 1g for 1 � i � n. SupposeX
i0 6¼i

ð1� sisi0 Þri;i0 � 0; 81 � i � n;

and X
i0 6¼i

sisi0ri;i0 �
X
i0 6¼i

ðri;i0 Þ2; 81 � i � n;

then, a�i ¼ ð0; si; 0; . . . ; 0Þ, for 1 � i � n is a global maximizer
of the NMC optimization (35) over a complete graph without
self-loops.

Proof. A proof is presented in Section 7.7. tu
Proposition 3. Under assumptions of Theorem 7, the NMC

optimization (3) is simplified to the following max-cut
optimization:

max
si

X
i6¼i0

sisi0 ri;i0

si 2 f�1; 1g; 1 � i � n:

(36)

Moreover, for all 1 � i � n, we have f�
i ðXiÞ ¼ s�i Xi, where

f�
i and s�i are solutions of optimizations (2) and (36),

respectively.

Proof. A proof is presented in Section 7.8. tu
For bivariate jointly Gaussian variables, the conditions of

Proposition 3 are always satisfied. For multivariate jointly
Gaussian variables however an optimal NMC solution
f�
i ðXiÞ can be different than Xi. Proposition 3 provides

conditions under which f�
i ðXiÞ ¼ Xi for the multivariate

setup.
In general, the Max-Cut optimization (36) is NP-complete

[45]. However, there exist algorithms to approximate its
solution using semidefinte programming (SDP) [46].

Assumption 1. Let ðX1; . . . ; XnÞ be jointly Gaussian variables,
with zero means and unit variances such that ri;i0 6¼ 1 if i 6¼ i0,
and X

i0 6¼i

ri;i0 �
X
i0 6¼i

ðri;i0 Þ2; 81 � i � n; (37)

where ri;i0 is the correlation coefficient ofXi andX0
i.

If all correlation coefficients are non-negative (i.e.,
ri;i0 � 0 for 1 � i; i0 � n), Assumption 1 is immediately sat-
isfied. However, Assumption 1 is more general as some
correlation coefficients can be negative and the condition
will still hold.

Corollary 4. Under Assumption 1, f�
i ðXiÞ ¼ Xi is a solution of

the NMC optimization (35).

6 ILLUSTRATION OF NMC’S USE

In this section, we illustrate some applications of NMC.

6.1 Inference of Graphical Models for Functions of
Gaussian Variables

Suppose that ðX1; . . . ; XnÞ are jointly Gaussian variables
with the covariance matrix LX. Without loss of generality,
we assume all variables have zero means and unit varian-
ces. I.e., E½Xi� ¼ 0 and E½X2

i � ¼ 1, for all 1 � i � n.

Definition 8. The graphical model GX ¼ ðVX;EXÞ is defined
such that if ði; i0Þ =2 EX , then

Xi ?? Xi0 jfXk; k 6¼ i; i0g; (38)

where ?? represents independence between variables.

Let JX be the information (precision) matrix [47] of these
variables where JX ¼ L�1

X .

Theorem 8 ( [47], Example 3.3). For jointly Gaussian varia-
bles, ði; i0Þ 2 EX if and only if JXði; i0Þ 6¼ 0.

This Theorem has been stated in other references as well
(e.g., [59]). Theorem 8 represents a way to model explicitly
the joint distribution of Gaussian variables using a graphical
model GX ¼ ðVX;EXÞ. This result is critical in several appli-
cations involved with Gaussian variables which requires
computation of marginal distributions, or computation of
the mode of the distribution. These computations can be
performed efficiently over the graphical model using belief
propagation approaches [47]. Moreover, Gaussian graphical
models play an important role in many applications such as
linear regression [48], partial correlation [49], maximum
likelihood estimation [50], etc. In many applications, even if
variables are not jointly Gaussian, a Gaussian approxima-
tion is used often, partially owing to the efficient inference
of their graphical models.

In the following, under some conditions, we use the mul-
tiple MC (2) and NMC (3) optimizations to characterize
graphical models for functions of latent jointly Gaussian
variables. These functions are unknown, bijective, and can
be linear or nonlinear. More precisely, let Yi ¼ fiðXiÞ, where
fi : R ! R is a bijective function. Our goal is to characterize
a graphical model for the variables ðY1; Y2; . . . ; YnÞ without
knowledge of the functions fið
Þ.

Consider the following optimizations:

sup
gi;i0 ;gi0 ;i

E½gi;i0 ðYiÞ gi0;iðYi0 Þ�; (39)

such that gi;i0 : Yi ! R is Borel measurable, E½gi;i0 ðYiÞ� ¼ 0,
and E½gi;i0 ðYiÞ2� ¼ 1, for 1 � i; i0 � n, and
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max
gi:R!R

X
ði;i0Þ

E½giðYiÞ gi0 ðYi0 Þ�;

E½giðYiÞ� ¼ 0; 1 � i � n;

E½g2i ðYiÞ� ¼ 1; 1 � i � n;

(40)

such that gi : Yi ! R is Borel measurable, E½giðYiÞ� ¼ 0, and
E½giðYiÞ2� ¼ 1, for 1 � i � n. Optimization (39) solves multi-
ple MC between all pairs of variables while optimization
(40) solves NMC considering a fully connected graph.
Suppose g�i;i0 and g�i represent solutions of (39) and (40),
respectively.

Theorem 9. g�i;i0 ðYiÞ ¼ Xi for all 1 � i; i0 � n is a solution of
(39). Moreover, if Assumption 1 holds, g�i ðYiÞ ¼ Xi for all
1 � i � n is a solution of (40).

Proof. A proof is presented in Section 7.9. tu
In the multiple MC optimization (39), each variable Yi is

assigned to n� 1 transformation functions fg�i;i0 ðYiÞ : 1 �
i0 6¼ i � ng. However, when variables X1,...,Xn are jointly
Gaussian, all these functions are equal toXi. In general this
is not true for non-Gaussian distributions. On the other
hand, when the Assumption 1 holds, a solution of the NMC
optimization (40) recovers the sign of latent variables as well.

We define the matrices LMultiMC and LNMC by

LMultiMCði; i0Þ ¼ E½g�i;i0 ðYiÞg�i0;iðYi0 Þ�
LNMCði; i0Þ ¼ E½g�i ðYiÞg�i0 ðYi0 Þ�:

Moreover, we let JMultiMC ¼ L�1
MultiMC and JNMC ¼ L�1

NMC .
We define GNMC ¼ ðVNMC;ENMCÞ such that ði; jÞ 2 ENMC

if and only if JNMCði; jÞ 6¼ 0. We also let GNMC be the set of
all possible GNMC since the solution of the optimization (40)
may not be unique. Similarly, we define GMultiMC and
GMultiMC .

Corollary 5. Let GY be a graphical model of variables
Yi ¼ fiðXiÞ according to Definition 8, where fi : R ! R is a
bijective function, for 1 � i � n. Then GY 2 GMultiMC . More-
over, if Xi 1 � i � n satisfy Assumption 1, then we have
GY 2 GNMC .

Corollary 9 characterizes the graphical model of varia-
bles fYig that are related to latent jointly Gaussian variables
fXig through the unknown bijective functions ffig. The
family of distributions considered in this corollary is broad
and includes many Gaussian distributions as well as distri-
butions whose variables are bijective functions of Gaussian
variables. Graphical models characterized in Corollary 9

can be used in computation of marginal distributions, com-
putation of the mode of the joint distribution, and in other
applications of estimation and prediction similarly to the
case of Gaussian graphical models.

Next we provide two examples to highlight similarities
and differences between our proposed inference framework
(Theorem 5) and the one in reference [12]. Liu et al. [12]
considers the graphical model inference problem for func-
tions of jointly Gaussian variables when the underlying link
functions are monotone. In [12] to characterize the graphical
model of variables Yi according to Definition 8 (or equiva-
lently the covariance matrix of jointly Gaussian variables
Xi), rank statistics between variables and connections
between Spearman’s and Pearson’s correlation coefficients
are employed.

Consider four zero mean jointly Gaussian variables
X1; . . . ; X4 with the covariance matrix

LX ¼
1:0 0:4 0:2 0:3
0:4 1:0 0:3 0:2
0:2 0:3 1:0 0:4
0:3 0:2 0:4 1:0

2
664

3
775: (41)

In this case we have JXð1; 3Þ � 0 and JXð2; 4Þ � 0 (the
underlying graphical model is illustrated in Fig. 2). We
observe samples from Yi ¼ fiðXiÞ. In Example 1, we have

Y1 ¼ f1ðX1Þ ¼
10X1; if X1 � 0;
1
10X1; otherwise;

(
Y2 ¼ f2ðX2Þ ¼ e20X2 ;

Y3 ¼ f3ðX3Þ ¼ �X3; Y4 ¼ f4ðX4Þ ¼ X3
4 :

(42)

In this example all link functions are continuous and mono-
tone satisfying the model assumption of our proposed infer-
ence framework (Corollary 5) and the copula method [12].
In Example 2, we violate the model assumption for both our
inference framework and for the copula method by consid-
ering non-monotone link functions

Y1 ¼ f1ðX1Þ ¼ e20X1 ; if X1 � 0;

�e�20X1 ; otherwise;

�

Y2 ¼ f2ðX2Þ ¼
1

maxðX2ÞX2 � 1; if X2 � 0;

�1
minðX2ÞX2 þ 1; otherwise;

(

Y3 ¼ f3ðX3Þ ¼ �X3; Y4 ¼ f4ðX4Þ ¼ X3
4 :

(43)

Relationships between samples of these variables are illus-
trated in Fig. 1. We have drawn 10,000 samples of these
random variables. Note that all variables are normalized
to have zero means and unit variances. The functions fið
Þ
remain unknown for the inference part.

Fig. 2. The underlying graphical model considered in Examples 1 and 2
in Section 6.1.

Fig. 1. Relationships between jointly Gaussian variables Xi and obser-
vations Yi for Example 1 (panel a), and for Example 2 (panel b).
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In the computation of NMC, if variables are continuous
and we only observe samples from their joint distributions,
the empirical computation of conditional expectations in
Algorithm 2 may be challenging owing to the lack of suffi-
cient samples. One approach to compute empirical condi-
tional expectations at point xi 2 R is to use all samples in its
Bi neighborhood. With m samples fðxðsÞ1 ; . . . ; xðsÞ

n Þgms¼1, for
any i; i0, this leads to

P
ðmÞ
Xi;Xi0

ðxi; xi0 Þ ¼
1

m

Xm
s¼1

1

�
xsi 2

�
xi �Bi

2
; xi þBi

2

�
;

xs
i0 2

�
xi0 �

Bi0

2
; xi0 þ

Bi0

2

��
:

(44)

In our ACE implementations to compute NMC for continu-
ous variables we have considered both fixed and variable
window sizes (i.e., Bi’s). In our simulations, in the variable
window size case, we consider 10 bins and choose Bi’s so
that the number of samples in different bins are the same.

Let ~J be an estimation of the inverse covariance matrix.
Since in the underlying graphical model there are no edges
between nodes 1 and 3, and nodes 2 and 4 (Fig. 2), we use
j ~Jð1; 3Þj þ j ~Jð2; 4Þj� 	

=
P

1�i;j�n j ~Jði; jÞj as a measure to evalu-
ate error in inferring the graphical model structure.

Fig. 3 shows inference errors for Jnmc (i.e., the NMC infer-
ence framework), Jcopula (i.e., the copula method [12]), JY
(i.e., observed variables) and JX (i.e., latent variables) for
Examples 1 and 2. In the case of Example 1, both NMC and
copula inference frameworks have small and comparable
errors. In the case of Example 2 where we violate the mono-
tonicity assumption of link functions, NMC appears to out-
perform copula. Experiments have been repeated over 50
random realizations of variables.

In this section we focused on the application of MC and
NMC in learning graphical models for functions of jointly
Gaussian variables. A similar MC/NMC framework can
potentially be useful in learning graphical models in other
setups such as tree graphical models with incomplete

samples [60]. We leave further exploration of this applica-
tion for future research.

6.2 Illustration of Sample NMC’s Use in a Data
Application

Having illustrated applications of the NMC optimization in
learning nonlinear dependencies among variables, here we
provide an example to demonstrate NMC’s utility in a real
data application. We validate inference results with second,
distinct data set that was not used in the inference part. This
validation step provides evidence that inference results are
likely to be meaningful.

Data. Cancer is a complex disease involving abnormal
cell growth with the potential to invade or spread to other
parts of the body [61]. Different studies have shown associa-
tions of micro RNA patterns in different human cancers
[51], [62]. In this section, we use normalized RNA sequence
counts from the TCGA data portal for the Glioma cancer
(GBMLGG) at the gene level [51]. Other cancer types can be
considered in our framework as well. We use the processed
data provided in [51]. Let the variable Xi denote the RNA
sequence counts of the gene i. We have samples from this
variable in m patients denoted by fxj

igmj¼1. In the following
we explain inference assumptions and steps we have taken
in this application.

Inferring Nonlinear Gene-Gene Interactions. For each cancer
type, first we select the top 500 highly-variant genes based
on their normalized variances (i.e., n ¼ 500) [63]. Let f�

i ðXiÞ
for 1 � i � n be a solution for the NMC optimization (3)
over a complete graph without self-loops. Let ANMC 2 Rn	n

be a symmetric adjacency matrix where ANMC ½i; i0� ¼
E½f�

i ðXiÞf�
i0 ðXi0 Þ� for 1 � i; i0 � n. Moreover, let ALin be a

symmetric linear covariance matrix where ALin½i; i0� ¼
E½XiXi0 � for 1 � i; i0 � n. Fig. 4a illustrates top 5 percent of
elements of the jANMC j � jALinj matrix for the Glioma Can-
cer. The non-zero elements of this matrix represent gene
pairs whose RNA sequence counts are strongly and nonli-
nearly associated to each other. In Fig. 5, we consider some
other density parameters as well (e.g., 1 and 10 percent).

It is important to note that this real-data example is based
on several heuristic steps and assumptions about the under-
lying data that we explain below.

Assumptions. We assume that different RNA sequence
count samples for a gene (i.e., fxj

igmj¼1) are independent.

Fig. 3. Inference errors for Jnmc (i.e., the NMC inference framework),
Jcopula (i.e., the copula method [12]), JY (i.e., observed variables) and JX
(i.e., latent variables) for setups of Example 1 (panel a) and Example 2
(panel b). Experiments have been repeated over 50 random realizations
of variables. The red line in the middle of each box is the sample median.
The tops and bottoms of each box are the 25th and 75th percentiles of
the samples, respectively. The performance of NMC and copula infer-
ence frameworks are comparable in the setup of Example 1, while in the
one of Example 2 NMC outperforms copula.

Fig. 4. (a) A nonlinear gene module of Glioma cancer (GBMLGG)
defined in Section 6.2, as a group of genes whose RNA sequence
counts are strongly and nonlinearly dependent among each other. (b)
Survival time curves for the corresponding nonlinear cancer module.
Survival times of cancer patients are significantly associated with aver-
age normalized RNA sequence counts of inferred gene module.
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That is, there is no between-patient correlations among
these samples [64]. Also we assume that conditions of Theo-
rem 7 holds. That is, input data comes from, possibly non-
linear, functions of some latent jointly Gaussian variables
satisfying conditions of Theorem 7. These functions are
unknown and bijective. This assumption is less restrictive
than the one of the standard covariance analysis where
input variables are assumed to be jointly Gaussian.

Inferring Nonlinear Gene Modules. We partition each net-
work to k groups using a standard spectral clustering algo-
rithm based on the modularity transformation [65]. We
consider different values of k (between 1 and 20) to obtain
dense and large clusters. Then, in a heuristic manner, we
merge small and heavily overlapping modules to form large
and dense ones. We define a gene module as a group of genes
that are densely connected to each other in the network. A
gene module is called nonlinear if it is present in the NMC
network but not in the linear one. We use a permutation test
[66] to compute a p-value for each gene module in the net-
work by permuting the network structure and comparing
the density of the module in the original network with the
ones in permutated ones. We only consider gene modules
with p-values less than 0.05. An example of such a nonlinear
genemodulemodule is illustrated by a yellow box in Fig. 4a.

Validations Using Survival Time Analysis.We partition indi-
viduals to two equal-size groups based on their average ranks
of normalized RNA sequence counts in that module to evalu-
ate if there are statistically significant differences between
survival times of patients in the two groups. In order to do
that, we perform a standard survival time analysis for each
module based on Kaplan-Meier procedure to estimate the
underlying survival function [67]. We compute its associated
log-rank p-value to determine its association with individual
survival times in the considered cancer type [68].We perform

Benjamini and Hochberg multiple hypothesis correction [69]
for the computed p-values of different nonlinear modules.
We find that this genemodule is significantly associatedwith
survival times of cancer patients (Fig. 4b) while it is not
detected using linear association measures. Several referen-
ces [70], [71], [72], [73], [74] have hypothesized that complex
nonlinear relationships among genes may play important
roles in cancer pathways. The proposed NMC algorithm and
inferred nonlinear gene modules can be used in discovering
such complex nonlinear relationships in different cancer
types. To substantiate these inferences, further experiments
should be performed to determine the involvement of these
nonlinear gene interactions andmodules in different cancers,
which is beyond the scope of the present paper.

7 PROOFS

7.1 Proof of Theorem 1

Proof. Recall that fci;jg1j¼1 is the orthonormal basis of HXi

for 1 � i � n. We can represent functions fi and fi0 in
terms of the basis functions, i.e., for any xi 2 X i; xi0 2 X i0 ,

fiðxiÞ ¼
X1
j¼1

ai;jci;jðxiÞ;

fi0 ðxi0 Þ ¼
X1
j¼1

ai0;jci0;jðxi0 Þ;

for two sequences of coefficients fai;jg1j¼1 and fai0;jg1j¼1.
Thus, the constraint E½fkðXkÞ2� ¼ 1 in optimization (3)

would be translated into
P1

j¼1 a
2
k;j ¼ 1 and the constraint

E½fkðXkÞ� ¼ 0 is simplified to
P1

j¼1 ak;jE½ck;jðXkÞ� ¼ 0,

for k ¼ i; i0. Moreover, we have

E½fiðXiÞfi0 ðXi0 Þ� ¼
X1
j;j0¼1

ai;jai0;j0 E½ci;jðXiÞci0;j0 ðXi0 Þ�: (45)

Thus, Network Maximal Correlation optimization (3) can
be re-written as follows:

sup
ffai;jgni¼1g1j¼1

X
i;i0

X
j;j0

ai;jai0;j0 E½ci;jðXiÞci0;j0 ðXi0 Þ�

X1
j¼1

a2i;j ¼ 1; 1 � i � n;

X1
j¼1

ai;j E½ci;jðXiÞ� ¼ 0; 1 � i � n:

(46)

Moreover, fci;jci0;j0 gj;j0 form a basis for the following set

of functions ffi;i0 : X i 	 X i0 ! R : E½f2
i;i0 ðXi;Xi0 Þ� < 1g.

Since PXi;Xi0 ð
; 
Þ 2 belongs to this set of functions, we can

write

PXi;Xi0 ðxi; xi0 Þ ¼
X
j;j0

r
j;j0
i;i0ci;jðxiÞci0;j0 ðxi0 Þ: (47)

This completes the proof. tu
7.2 Proof of Theorem 2

Proof. To prove Theorem 2, first we show that the con-
straints E½fiðXiÞ� ¼ 0 and E½fiðXiÞ2� ¼ 1 lead to the same
solution as the constraints varðfiðXiÞÞ ¼ 1. We then show

Fig. 5. An example illustrating the framework considered in Section 6.2
for Glioma (GBMLGG). Using normalized RNA sequence counts from
the TCGA data portal, we construct both linear (ALin) and nonlinear
(ANMC) complete dependency graphs between genes. We then select
the top 5 percent interactions among genes in the NMC network with the
largest nonlinear association increases compared to their linear associa-
tion strengths. Then, using spectral clustering [65] along with a heuristic
step to merge small overlapping clusters, we identify dense and large
clusters over the thresholded network. In this example, we illustrate the
inferred nonlinear gene module over networks with density parameters
1, 5 and 10 percent.
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that the constraint ai ? ffiffiffiffiffi
pi

p
can be incorporated into the

objective function, without changing the solution. tu
Lemma 1. The NMC optimization (3) can be written as follows:

max
f1;...;fn

X
ði;i0Þ2E

E½ðfiðXiÞ � �fiÞðfi0 ðXi0 Þ � �fi0 Þ�

varðfiðXiÞÞ ¼ 1; 1 � i � n;

(48)

where �fi and var ðfiðXiÞÞ represent the mean and the variance
of the random variable fiðXiÞ.

Proof. In this proof, we denote the random variable fiðXiÞ
by fi. We let the optimal objective value of optimization
(48) be ~rG. We also let f�

i be an solution of (3). The set of
functions f�

i for i ¼ 1; . . . ; n is feasible for optimization
(48) and therefore we have rG � ~rG. On the other hand, let
f��
i be an solution of optimization (48). Let ~fi ¼ f��

i � �fi
��.

The set of functions ~fi for i ¼ 1; . . . ; n is feasible for opti-
mization (3). Thus, we have rG � ~rG. Therefore, we have
that rG ¼ ~rG. tu

We have

1 ¼ E½fiðXiÞ2� � ðE½fiðXiÞ�Þ2 ¼ jjaijj22 � ðai ffiffiffiffiffi
pi

p Þ2
¼ aTi I � ffiffiffiffiffi

pi

p ffiffiffiffiffi
pi

p T
� 	

ai:
(49)

We next show that the matrix I � ffiffiffiffiffi
pi

p ffiffiffiffiffi
pi

p T is positive semi-
definite and the only vectors in its null space are 0 and

ffiffiffiffiffi
pi

p
.

This is because

xT I � ffiffiffiffiffi
pi

p ffiffiffiffiffi
pi

p T
� 	

x ¼ jjxjj22 � ðx ffiffiffiffiffi
pi

p Þ2 � 0; (50)

where we use Cauchy-Schwartz and jj ffiffiffiffiffipi

p jj22 ¼ 1 to obtain
the last inequality (50). This inequality becomes an equality
if and only if x ¼ 0 or x ¼ ffiffiffiffiffi

pi

p
.

Now consider the objective function of optimization (48).
We have

E½ðfiðXiÞ � �fiÞðfi0 ðXi0 Þ � �fi0 Þ� ¼ E½fiðXiÞfi0 ðXi0 Þ� � �fi
�fi0

¼ aTi Qi;i0ai0 � ðaTi
ffiffiffiffiffi
pi

p ÞðaTi0
ffiffiffiffiffiffi
pi0

p Þ ¼ aTi Qi;i0 � ffiffiffiffiffi
pi

p ffiffiffiffiffiffi
pi0

p T
� 	

ai0 :

Therefore, optimization (48) (which is equivalent to the
NMC optimization (3) according to Lemma 1) can be writ-
ten as,

max
ai

X
ði;i0Þ2E

aTi Qi;i0 � ffiffiffiffiffi
pi

p ffiffiffiffiffiffi
pi0

p T
� 	

ai0

aTi I � ffiffiffiffiffi
pi

p ffiffiffiffiffi
pi

p T
� 	

ai ¼ 1; 1 � i � n:

(51)

For each i, since I � ffiffiffiffiffi
pi

p ffiffiffiffiffi
pi

p T is positive semidefinte. Thus,
we can write I � ffiffiffiffiffi

pi

p ffiffiffiffiffi
pi

p T ¼ BiB
T
i . Recall bi ¼ Biai. Thus,

constraints of optimization (51) can be written as bT
i bi ¼

jjbijj22 ¼ 1. We next write ai as a function of bi. Note that since
Bi is not invertible, there are many choices for ai as a function
of bi characterized as follows: Let UiSiU

T
i be the singular

value decomposition of Bi. The vector
ffiffiffiffiffi
pi

p
is the singular

vector corresponding to singular value zero (s
ð1Þ
i ¼ 0)

ai ¼
�½U ð2Þ

i ; . . . ; U
ðjX i jÞ
i �diagð1=sð2Þ

i ; . . . ; 1=s
ðniÞ
i Þ

½U ð2Þ
i ; . . . ; U

ðjX iÞ
i �T 	bi þ ai

ffiffiffiffiffi
pi

p ¼ Aibi þ ai
ffiffiffiffiffi
pi

p
;

(52)

where ai can be any scalar.3 Below, we show that all choices
of ai according to (52) lead to the same objective function of
optimization (51):

aTi Qi;i0 � ffiffiffiffiffi
pi

p ffiffiffiffiffiffi
pi0

p T
� 	

ai0 ¼ bT
i A

T
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0bi0

þ bT
i A

T
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

ai0
ffiffiffiffiffiffi
pi0

p

þ ai
ffiffiffiffiffi
pi

p T Qi;i0 � ffiffiffiffiffi
pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0bi0

þ ai
ffiffiffiffiffi
pi

p T Qi;i0 � ffiffiffiffiffi
pi

p ffiffiffiffiffiffi
pi0

p T
� 	

ai0
ffiffiffiffiffiffi
pi0

p

¼ð1Þ bT
i A

T
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0bi0

þ bT
i A

T
i Qi;i0ai0

ffiffiffiffiffiffi
pi0

p þ ai
ffiffiffiffiffi
pi

p TQi;i0Ai0bi0

¼ð2Þ bT
i A

T
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0bi0 þ bT
i A

T
i

ffiffiffiffiffi
pi

p
ai0

þ ai
ffiffiffiffiffiffi
pi0

p TAi0bi0 ¼ bT
i A

T
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0bi0 ;

where (1) follows from
ffiffiffiffiffiffi
pi0

p T ffiffiffiffiffiffi
pi0

p ¼ 1,
ffiffiffiffiffi
pi

p T ffiffiffiffiffi
pi

p ¼ 1,ffiffiffiffiffi
pi

p
Qi;i0

ffiffiffiffiffiffi
pi0

p ¼ 1, AT
i

ffiffiffiffiffi
pi

p ¼ 0, and
ffiffiffiffiffiffi
pi0

p TAi0 ¼ 0; and ð2Þ fol-
lows from

ffiffiffiffiffi
pi

p TQi;i0 ¼ ffiffiffiffiffiffi
pi0

p T and Qi;i0
ffiffiffiffiffiffi
pi0

p ¼ ffiffiffiffiffi
pi

p
. Therefore,

the NMC optimization (3) can be written as

max
b1;...;bn

X
ði;i0Þ2E

bT
i A

T
i Qi;i0 � ffiffiffiffiffi

pi

p ffiffiffiffiffiffi
pi0

p T
� 	

Ai0bi0

jjbijj2 ¼ 1 1 � i � n:

7.3 Proof of Proposition 1

Proof. Let �b be a solution of the MEP (19). Suppose that
there exists an 1 � i � n such that �ið�bÞ < 0. Let
b̂ ¼ ðb̂1; . . . ; b̂nÞ be defined as: b̂i ¼ ��bi, for any i such
that �ið�bÞ < 0, and b̂i0 ¼ �bi0 , otherwise. We show that
by flipping the sign of �bi while keeping the rest of �bi0
for i0 6¼ i the same, rð
Þ increases. To show this we have

rðb̂Þ � rð�bÞ ¼ð1Þ 2b̂T
i

Xn
i0¼1

Ci;i0 b̂i0 � 2�bT
i

Xn
i0¼1

Ci;i0 �bi0

¼ð2Þ 2ðb̂T
i � �bT

i Þ
Xn
i0¼1

Ci;i0 �bi0

¼ð3Þ �2�bT
i

Xn
i0¼1

Ci;i0 �bi0

¼ð4Þ �2�ið�biÞ > 0;

where Equations (1) and (4) follow from (20), Equation (2)
follows from the fact that b̂i0 ¼ �bi0 for i0 6¼ i, and Equa-
tion (3) follows from the fact that b̂i ¼ ��bi. This com-
pletes the proof. tu

7.4 Proof of Theorem 4

Proof. For any realization of the partitioning, consider
NMC over all sub-graphs Gm (1 � m � M) and denote
the corresponding functions by f�

i for 1 � i � n. We have

3. Since Bi is symmetric it has a set of jX ij orthonormal eigenvectors
and can be written as

Bi ¼
XjX i j

j¼1

vjs
ðjÞ
i vTj :

We have bi ¼
PjX i j

j¼2 bjvj and ai ¼
PjX i j

j¼1 ajvj. From bi ¼ Biai, we obtain
that aj ¼ bj=s

ðjÞ
i for j � 2, where a1 can be any scalar.
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rG ¼
X

ði;i0Þ2E
E½f�

i ðXiÞf�
i0 ðXi0 Þ�

¼
X

ði;i0Þ2EnEc

E½f�
i ðXiÞf�

i0 ðXi0 Þ� þ
X

ði;i0Þ2Ec

E½f�
i ðXiÞf�

i0 ðXi0 Þ�

¼ð1Þ
XM
m¼1

X
ði;i0Þ2Em

E½f�
i ðXiÞf�

i0 ðXi0 Þ� þ
X

ði;i0Þ2Ec

E½f�
i ðXiÞf�

i0 ðXi0 Þ�

�
ð2Þ XM

m¼1

r̂Gm
þ

X
ði;i0Þ2Ec

E½f�
i ðXiÞf�

i0 ðXi0 Þ�

¼ r̂G þ
X

ði;i0Þ2E
1fði; i0Þ 2 EcgE½f�

i ðXiÞf�
i0 ðXi0 Þ�;

where Equation (1) comes from the graph partitioning
Definition 6, and inequality (2) comes from the fact
that r̂Gm

is the NMC for the partition Gm ¼ ðVm;E\
ðVm 	 VmÞÞ. Therefore, by taking expectation over the par-
titioning, we obtain

rG � E½r̂G� þ �rG;

which gives us

ð1� �ÞrG � E½r̂G�: tu

7.5 Proof of Theorem 5

Proof. We first present a lemma in which we bound the dif-
ference between Q matrices, according to Definition 3, by
the difference between probability distributions. We then
use a sensitivity analysis of the optimization whose opti-
mum is NMC. tu

Lemma 2. Let P and ~P be the matrix form of two joint probability
distribution on ðX i;X i0 Þ, such that PXi;Xi0 ðxi; xi0 Þ ¼ ½P �xi;xi0
and ~PXi;Xi0 ðxi; xi0 Þ ¼ ½ ~P �xi;xi0 and where DXi

ðP Þ ¼ diag PXi

�
ðxiÞ : xi 2 X iÞ. We can bound the difference between Qi;i0 and
~Qi;i0 by the difference between P and ~P , as follows:

jjQi;i0 � ~Qi;i0 jj2 �
1

2d2
ffiffiffiffiffi
K

p
jjDXi

ðP Þ �DXi
ð ~P Þjj1

þ 1

2d2
ffiffiffiffiffi
K

p
jjDXi0 ðP Þ �DXi0 ð ~P Þjj1 þ 1

d

ffiffiffiffiffi
K

p
jjP � ~P jj1;

(53)

where d is the minimum probability of all elements of X i and
X i0 , under both P and ~P , and K is the maximum alphabet
size. In particular, if jjPXi;Xi0 � ~PXi;Xi0 jj1 � g and K ¼
maxfjX ij; jX i0 jg, then we have

jjQi;i0 � ~Qi;i0 jj2 � 2gKn 1

d2
: (54)

Proof.We have

jjQi;i0 � ~Qi;i0 jj2
¼ jjDXi

ðP Þ�1
2PDXi0 ðP Þ�1

2 �DXi
ð ~P Þ�1

2 ~PDXi0 ð ~P Þ�1
2jj2:

We next insert the terms DXi
ðP Þ�1

2PDXi0 ð ~P Þ�1
2 and

DXi
ðP Þ�1

2 ~PDXi0 ð ~P Þ�1
2, pair the terms, and use triangle

inequality to obtain

jjQi;i0 � ~Qi;i0 jj2 � jjDXi
ðP Þ�1

2P jj2jjDXi0 ðP Þ�1
2 �DXi0 ð ~P Þ�1

2jj2
þ jjDXi0 ð ~P Þ�1

2jj2jj ~P jj2jjDXi
ðP Þ�1

2 �DXi
ð ~P Þ�1

2jj2
þ jjDXi0 ð ~P Þ�1

2jj2jjDXi
ðP Þ�1

2jj2jjP � ~P jj2;
(55)

where each term depends on the difference between P
and ~P . We have

jjDXi
ðP Þ�1

2P jj2 �
ð1Þ 1ffiffiffi

d
p ffiffiffiffiffi

K
p

jjDXi0 ðP Þ�1
2 �DXi0 ð ~P Þ�1

2jj2 � jjDXi0 ðP Þ�1
2 �DXi0 ð ~P Þ�1

2jj1
�
ð2Þ

jjDXi0 ðP Þ �DXi0 ð ~P Þjj1
1

2d3=2
;

(56)

where inequality (1) comes from the Cauchy-Schwartz

inequality and the fact that jjP jj2 �
ffiffiffiffiffi
K

p jjP jj1 �
ffiffiffiffiffi
K

p
.

Inequality (2) follows from the fact that for x; y 2 R, we

have

1ffiffiffi
x

p � 1ffiffiffi
y

p ¼ y� xffiffiffi
x

p ffiffiffi
y

p ð ffiffiffi
x

p þ ffiffiffi
y

p Þ � jx� yj 1

2 minfx; ygð Þ3=2
: (57)

Using (56) in (55) results in (53).

Moreover we have

jjDXi
ðP Þ �DXi

ð ~P Þjj1
�

X
fX1;...;XngnfXig

jjPX1;;...;Xn � ~PX1;...;Xn jj1 � gKn�1: (58)

Using (58) and the fact that K > 1 in (53) results in
(54). This completes the proof of this Lemma. tu

Let P and ~P be two distributions on X1 	 
 
 
 	 Xn. We shall
compare the solution of the two following optimization
problems

max
ai

X
ði;i0Þ2E

aTi Qi;i0ai

jjaijj2 ¼ 1; 1 � i � n;

ai ? ffiffiffiffiffi
pi

p
; 1 � i � n;

(59)

and

max
ai

X
ði;i0Þ2E

aTi
~Qi;i0ai

jjaijj2 ¼ 1; 1 � i � n;

ai ?
ffiffiffiffiffi
~pi

p
; 1 � i � n:

(60)

Let rG and ~rG be the optimal values for (59) and (60), respec-
tively. Recall that

d ¼ min
1�i�n

minfdXi
ðP Þ; dXi

ð ~P Þg� 	
:

Suppose a�i yields the optimum of optimization (59). Based
on this solution, we shall construct a feasible solution for
optimization (60) and then evaluate its objective function.
For any i, let
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ci ¼ a�i þ ni

jja�i þ nijj2
;

where ni ¼
ffiffiffiffiffi
~pi

p
< a�i ;

ffiffiffiffiffi
pi

p � ffiffiffiffiffi
~pi

p
> . Under the assumption

of Theorem 5 (i.e., g � d3=2K�1), we show that jjnijj � 1=2.
We have

jjnijj ¼ jj ffiffiffiffiffi
~pi

p
< a�i ;

ffiffiffiffiffi
pi

p � ffiffiffiffiffi
~pi

p
> jj2

�
ð3Þ

jj ffiffiffiffiffi
~pi

p jj2jja�i jj2jj
ffiffiffiffiffi
pi

p � ffiffiffiffiffi
~pi

p jj2
(61)

�
ð4Þ

jjpi � ~pijj1
1

2d3=2

�
ð5Þ gKn�1

2d3=2

�
ð6Þ 1

2
;

(62)

where Inequality (3) comes from the Cauchy-Schwartz,
Inequality (4) comes from the facts that jj ffiffiffiffiffi

~pi

p jj2 ¼ 1,
jja�i jj2 ¼ 1, (57), Inequality (5) comes from the fact that
jjpiðjÞ � ~piðjÞjj1 � gKn�1, and Inequality (6) comes from the

fact that gK
n

d3=2
� 1 by the assumption of Theorem 5.

We claim ci is feasible for optimization (60). First note
that the norm of each ci is one. We next show that each ci is
orthogonal to

ffiffiffiffiffi
~pi

p
:

<ci;
ffiffiffiffiffi
~pi

p
> ¼ 1

jja�i þ
ffiffiffiffiffi
~pi

p
< a�i ;

ffiffiffiffiffi
pi

p � ffiffiffiffiffi
~pi

p
> jj2

< a�i ;
ffiffiffiffiffi
~pi

p
> þ < a�i ;

ffiffiffiffiffi
pi

p � ffiffiffiffiffi
~pi

p
> jj ffiffiffiffiffi

~pi

p jj22

 �

¼ 0;

where the last equality follows from jj ffiffiffiffiffi
~pi

p jj2 ¼ 1 and
ai ? ffiffiffiffiffi

pi

p
. We now plug in the feasible solution ci into the

objective function of optimization (60)

~rG �
ð7Þ X

ði;i0Þ2E
cTi

~Qii0ci0

¼ð8Þ
X

ði;i0Þ2E
a�Ti Qi;i0a

�
i0 þ cTi

~Qi;i0 �Qi;i0
� 	

ci0 þ cTi � a�Ti
� 	

Qi;i0ci0

þ a�Ti Qi;i0 ci0 � a�i0
� 	

�
ð9Þ

rG �
X

ði;i0Þ2E

 
cTi

~Qi;i0 �Qi;i0
� 	

ci0
�� ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term I

þ cTi � a�Ti
� 	

Qi;i0ci0
�� ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term II

þ a�Ti Qi;i0 ci0 � a�i0
� 	�� ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term III

!
;

(63)

where Inequality (7) comes from the fact that ci for 1 � i � n
is a feasible solution of optimization (60), Equality (8) comes
from adding and subtracting a�Ti Qi;i0a

�
i0 , cTi Qii0ci0 and

a�Ti Qi;i0ci0 , and Inequality (9) comes from the triangle
inequality and the fact that a�i , 1 � i � n is a solution of opti-
mization (59). Next, we bound terms I-III on the righthand
side of this relation.

Using Lemma 2, for any i; i0, we have

jcTi ~Qi;i0 �Qi;i0
� 	

ci0 j � jj ~Qi;i0 �Qi;i0 jj2 � 2
gKn

d2
: (64)

We also have

j cTi � a�Ti
� 	

Qi;i0ci0 j � jjcTi � a�Ti jj2jjQi;i0 jj2jjci0 jj2 ¼ jjcTi � a�Ti jj2
� 2

jjnijj2
1� jjnijj2

;

where we use the following inequality����
���� aþ ni

jjaþ nijj2
� a

����
����
2

¼
����
���� ni

jjaþ nijj2
þ a

1

jjaþ nijj2
� 1

 �����
����
2

�
����
���� ni

jjaþ nijj2

����
����
2

þ jjajj2
���� 1

jjaþ nijj2
� 1

����
� jjnijj2

1� jjnijj2
þmax

����� 1

1� jjnijj2
� 1

����;
���� 1

1þ jjnijj2
� 1

����
�

� 2
jjnijj2

1� jjnijj2
;

(65)

where we used 1� jjnijj2 � jjaþ nijj2 � 1þ jjnijj2 and the
fact that jjnijj � 1=2 according to (61). Using (61) and (65),
we obtain

j cTi � a�Ti
� 	

Qi;i0ci0 j � 2
gKn�1

d3=2
; (66)

Using (64) and (66) in (63) leads to

~rG � rG �
X

ði;i0Þ2E
4
gKn

d2
þ 4gKn�1 1

d3=2

 �
� rG � gKnjEj 8

d2
:

Similarly, we have

rG � ~rG �
X

ði;i0Þ2E
4
gKn

d2
þ 4gKn�1 1

d3=2

 �
� ~rG � gKnjEj 8

d2
:

Combining the previous two relations, we obtain

j~rG � rGj � gKnjEj 8
d2
;

which completes the proof.

7.6 Proof of Theorem 6

Proof. We use the following theorem in the proof. tu
Theorem 10 ([75], [76]). Let P be a probability distribution on

a finite alphabet X . Also, let P ðmÞ denote the empirical probabil-
ity distribution of X, obtained from m i.i.d. samples, fxigmi¼1,
drawn according to P . We have

P jjP ðmÞ � P jj1 > g
h i

� 4e�m
g2

2 : (67)

Theorem 10 establishes that P and P ðmÞ are close to each
other for a sufficiently large sample sizem.4 Moreover, one can
use Theorem 5 to bound the difference between NMC values of

4. Note that concentration inequalities for empirical average of a dis-
crete random variable has been also studied in several other works
including [77], [78], [79], [80]. In particular, [78] exploits properties of
the underlying distribution to provide tight bounds on P½jjP ðmÞ�
P jj1 � g�. This in turn provides a bound on P½jjP ðmÞ � P jj1 � g� as well.
However without additional assumptions on the underlying probabil-
ity distribution this bound is of the same order as the one presented in
Theorem 10 (see [78, Section 3]).

242 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2017



distributions P and P ðmÞ by jjP ðmÞ � P jj1. However, to prove
Theorem 6, we also need to bound the minimum sample proba-
bility of P ðmÞ. We explain these steps below.

We have

P dXi
ðP ðmÞÞ � d0

2

� �
� P jjP ðmÞ

Xi
� PXi

jj1 � d0

2

� �

� P jjP ðmÞ � P jj1 � d0

2Kn�1

� �

� 1� P jjP ðmÞ � P jj1 >
d0

2Kn�1

� �
� 1� 4e

�m1
2

d0
2Kn�1


 �2

;

where the first inequality follows from dXi
ðP ðmÞÞ � �

jdXi
ðP ðmÞÞ � dXi

ðP Þj þ dXi
ðP Þ � d� jjP ðmÞ

Xi
� PXi

jj1 and

the second inequality follows from jjP ðmÞ
Xi

� PXi
jj1 �

Kn�1jjP ðmÞ � P jj1. Using the union bound, we obtain

P
\
i2V

dXi
ðP ðmÞÞ � d0

2

� �" #
¼ 1� P

[
i2V dXi

ðP ðmÞÞ � d0

2

� �� �

� 1� 4ne
�m1

2
d0

2Kn�1


 �2

:

By applying the union bound once more, we have

P jjP ðmÞ � P jj1 < g
n o\ \

i2V
dXi

ðP ðmÞÞ � d0

2

� �( )" #

� 1� 4ne
�m1

2
d0

2Kn�1


 �2

� 4e�m
g2

2 :

Thus, with a large probability, i.e., 1� 4ne
�m1

2ð d0
2Kn�1Þ2� 4e�m

g2

2 ,

the minimum probability of P ðmÞ is bounded by d ¼ d0=2 and
jjP ðmÞ � P jj1 is bounded by g.

For given h < 1 and � < 1, we let g ¼ �ðd0Þ2
32jEjK

�n and

m0 � 2
32jEjKn

�ðd0Þ2
 !2

log
8n

h

 �
:

Now we use Theorem 5 with d ¼ d0=2. First note that
g � d3=2K�1 which is required as an assumption for invoking
Theorem 5. This leads to

jrðmÞ
G � rGj � gjEjKn 8

d2
� �;

with probability (at least)

1� 4ne
�m0

1
2ð d0
2Kn�1Þ2 � 4e�m0

g2

2

 �
� 1� h:

7.7 Proof of Theorem 7

Proof.
Let a ¼ ða1; . . . ; anÞ. Define

ULðaÞ ,
X

ði;i0Þ2E

XL
j¼1

ai;jai0;j ðri;i0 Þj

UðaÞ ,
X

ði;i0Þ2E

X1
j¼1

ai;jai0;j ðri;i0 Þj:
(68)

Let ~aðLÞ ¼ ð~aðLÞ1 ; . . . ; ~aðLÞn Þ and ~a ¼ ð~a1; . . . ; ~anÞ be a solution
of the following optimizations

max
a

ULðaÞ
a 2 C0;

(69)

and

max
a

UðaÞ
a 2 C0;

(70)

respectively, where C0 is the feasible set of the optimiza-
tion (35). We first show for any L and any 1 � i � n,
~a
ðLÞ
i ¼ ð0; si; . . . ; 0Þ. We then show for any 1 � i � n, ~ai

must be equal to ð0; si; . . .Þ, completing the proof.
Claim 1. We first characterize a global maximizer of

optimization (69). Note that the constraint set C0 can be
truncated w.l.o.g. to consider 1 � j � L. Let L be the
matrix of correlation coefficients where ½L�i;i0 ¼ ri;i0 .
Diagonal elements of L are all zero, as we ignore self-
loops. Define

x ¼ a1;1; a2;1; . . . ; an;1; a1;2; . . . ; an;L
� 	T

: (71)

Moreover, define A0 as an nL	 nL matrix composed of
L2 blocks of size n	 nwhosemth diagonal block is equal
to 2 L:m, where L:m½i; j� , ðL½i; j�Þm. Off-diagonal blocks
ofA0 are all zeros. Moreover, defineAi for 1 � i � n as an
nL	 nL matrix where Ai½iþ ðm� 1Þn; iþ ðm� 1Þn� ¼ 1
for 1 � m � L, otherwise it is zero. Therefore, optimiza-
tion (69) can be re-written as the following standard qua-
dratic optimization:

max
x

1

2
xTA0x

1

2
xT Ai x� 1

2
� 0; 1 � i � n:

(72)

Note that equality constraints of optimization (69) are
replaced by inequality ones in optimization (72). This is
because, since ðri;i0 Þ2 � 0, solutions of optimization (72)
belong to the boundary of its feasible set. Optimization
(72) is a non-convex quadratic optimization with qua-
dratic constraints. Reference [81] (Proposition 3.2)5 char-
acterizes necessary and sufficient conditions for global
minimizers of a generalized form of optimization (72). Let

�x ¼ ½s1; s2; . . . ; sn; 0; . . . ; 0�T ; (73)

where si 2 f�1; 1g, for 1 � i � n. Using Proposition 3.2
and Theorem 3.1 of [81], to have �x as a global minimizer
of optimization (72), we need to have

Xn
i¼1

�iAi �A0

 !
�x ¼ 0 (74)

and Xn
i¼1

�iAi �A0 � 0; (75)

where �i � 0, and A � 0 means that A is a positive semi-
definite matrix. Using definitions of A0, Ai, and �x,

5. Optimization (72) can be stated as a minimization by replacing
�A0 instead of A0 to use Proposition 3.2 of Reference [81].
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Equation (74) is satisfied iff

�i ¼ 2
X
i0 6¼i

sisi0ri;i0 � 0; 1 � i � n: (76)

Using (76) and Gerschgorin’s circle theorem, ifX
i0 6¼i

ð1� sisi0 Þri;i0 � 0; 81 � i � n; (77)

X
i0 6¼i

sisi0ri;i0 �
X
i0 6¼i

r2i;i0 ; 81 � i � n; (78)

conditions (75) are satisfied. Thus, �x is a global minimizer
of optimization (72), establishing that for any L and any
1 � i � nwe have ~a

ðLÞ
i ¼ ð0; 1; . . . ; 0Þ.

Claim 2. Let a� ¼ ða�1; . . . ; a�nÞ where a�i ¼ ð0; si; . . .Þ for
all 1 � i � n. We next show that ~a ¼ a�. We proceed by
contradiction. Let

D , Uð~aÞ � Uða�Þ: (79)

By the contradiction assumption D > 0. Since ðri;i0 ÞL ! 0
as L ! 1 for all i 6¼ i0, ULð
Þ converges uniformly to Uð
Þ.
Thus there exists L0 such that for L � L0 and any a, we
have

jULðaÞ � UðaÞj � D

4
: (80)

Therefore we have

ULð~aÞ � Uð~aÞ � D

4
(81)

¼ Uða�Þ þ D� D

4

� ULða�Þ � D

4
þ D� D

4

¼ ULða�Þ þ D

2
> ULða�Þ:

(82)

This is in contradiction with the assumption that a� is
the maximizer of ULð:Þ. Putting Claims 1 and 2 together
completes the proof. tu

7.8 Proof of Proposition 3

Proof. Under assumptions of Theorem 7 and using the defi-
nition of Hermite-Chebyshev polynomials (31), we can
restrict the feasible set of optimization (3) to the set of func-
tions fiðXiÞ ¼ siXi where si 2 f�1; 1g for all 1 � i � n.
Moreover, we have

E½fiðXiÞfi0 ðXi0 Þ� ¼ sisi0ri;i0 :

Furthermore, E½siXi� ¼ E½Xi� ¼ 0, and E
�ðsiXiÞ2

� ¼
E½X2

i � ¼ 1. This completes the proof. tu

7.9 Proof of Theorem 9

Proof. The proof of the first part of this Theorem is straight-
forward. To prove the second part, we re-write optimiza-
tion (40) as follows:

max
X
ði;i0Þ

E½giðfiðXiÞÞ gi0 ðfi0 ðXi0 ÞÞ�;

E½giðfiðXiÞÞ� ¼ 0; 1 � i � n;

E½giðfiðXiÞ2� ¼ 1; 1 � i � n:

(83)

Define fiðXiÞ ¼ giðfiðXiÞÞ for 1 � i � n. Since fi’s are
bijective, feasible regions of optimizations (83) and (3)
are equal. Under the assumptions of Corollary 4,
f�
i ðXiÞ ¼ Xi. Thus, g

�
i ðfiðXiÞÞ ¼ Xi. tu

8 DISCUSSION AND CONCLUSION

The techniques we have developed in this paper can be
used in other related formulations as well. In the following,
we briefly highlight two examples of such formulations,
namely absolute NMC and regularized NMC. Considering
further properties of these optimizations is beyond the
scope of the present paper.

8.1 Other Objective Functions

The optimization (3) maximizes aggregate pairwise correla-
tions over the network. In some applications, the strength of
an association does not depend on the sign of the correlation
coefficient. In those cases, one can re-write the NMC optimi-
zation (3) to maximize the total absolute pairwise correla-
tions over the graph as follows:

Definition 9 (Absolute Network Maximal Correlation).
Consider the following optimization:

rAGðX1; . . . ; XnÞ , sup
f1;...;fn

X
ði;i0Þ2E

E½fiðXiÞ fi0 ðXi0 Þ�j j; (84)

such that fi : X i ! R is Borel measurable, E½fiðXiÞ� ¼ 0, and

E½fiðXiÞ2� ¼ 1, for all 1 � i � n. G ¼ ðV;EÞ is a graph with
vertices V ¼ f1; 2; . . . ; ng and edges E ¼ fði; i0Þ : i; i0 2
V; i 6¼ i0g. We refer to this optimization as an absolute NMC
optimization.

A similar approach can be used to characterize the abso-
lute NMC optimization (84) by introducing extra variables
si;i0 to represent correlation signs of edges ði; i0Þ:

sup
f1;...;fn

X
ði;i0Þ2E

si;i0E½fiðXiÞfi0 ðXi0 Þ�

E½fiðXiÞ� ¼ 0;E½f2
i ðXiÞ� ¼ 1; 1 � i � n

si;i0 2 f�1; 1g; 1 � i; i0 � n:

(85)

The NMC optimization (3) results in n possibly nonlinear
transformation functions f�

i ðXiÞ whose correlation with the
original variables can be small. In some applications, one
may wish to restrict the set of possible transformations of
the NMC optimization to control the correlation between
transformed and original variables. This can be done by
introducing a regularization term in the definition of NMC
as follows.

Definition 10 (Regularized NMC). The regularized NMC of
real-valued X1; . . . ; Xn connected by a graph G ¼ ðV;EÞ is
defined as the solution of the following optimization:

rRG X1; . . . ; Xnð Þ ¼ sup
f1;...;fn

ð1� �Þ
X

ði;i0Þ2E
E fiðXiÞ fi0 ðXi0 Þ½ �

þ �
X
i2V

E fiðXiÞ ðXi � E½Xi�Þ½ �;

(86)

such that fi : X i ! R is Borel measurable, E½fiðXiÞ� ¼ 0, and
E½fiðXiÞ2� ¼ 1, for all 1 � i � n. G ¼ ðV;EÞ is a graph with
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vertices V ¼ f1; 2; . . . ; ng and edges E ¼ fði; i0Þ : i; i0 2 V;
i 6¼ i0g. 0 � � � 1 is the regularization parameter.

Unlike MC and NMC, which only depend on the joint
distributions of variables, the regularized NMC depends on
both joint distributions and support of variables because of
the regularization term. Moreover, one can define regular-
ized absolute NMC similarly to the optimization (84).

Let the optimal transformation functions computed by
optimization (86) be f�

i;�ðXiÞ. If � ¼ 0, f�
i;�ðXiÞ ¼ f�

i ðXiÞ,
while if � ¼ 1, f�

i;�ðXiÞ ¼ Xi. By varying � between 0 and 1,
f�
i;�ðXiÞ vary from f�

i ðXiÞ toXi. Define

RG;�ðX1; . . . ; XnÞ ,
X

ði;i0Þ2E
E f�

i;�ðXiÞ f�
i0;�ðXi0 Þ

h i
:

Therefore,RG;0 ¼ rG whileRG;1 is the total linear correlations
over the network. By the definition of NMC, RG;0 � RG;1.
Note that we can use a similar algorithm to Algorithm 2 to
compute regularized NMC of Definition 10. The objective
function of the regularized NMC optimization (86) can be
written as follows:

X
i2V

E fiðXiÞ 1� �

2

X
j2NðiÞ

fi0 ðXi0 Þ þ �ðXi � E½Xi�Þ
0
@

1
A

2
4

3
5;
(87)

where NðiÞ represents the set of neighbors of node i in
the graph G ¼ ðV;EÞ. To compute the regularized NMC,
one can use an algorithm similar to the ACE Algorithm 2
with the following updates for transformation functions:

f�
i ðXiÞ ¼ E

1� �

2

X
j2NðiÞ

fi0 ðXi0 Þ þ �ðXi � E½Xi�ÞjXi

2
4

3
5: (88)

8.2 Conclusion

In this paper, we propose NMC as a measure to capture
nonlinear associations among variables. We show that
NMC extends the standard bivariate MC to the case of hav-
ing large number of variables, by assigning each variable to
a single transformation function, thus avoiding over-fitting
issues of using multiple MC optimizations over variable
pairs. We also introduce a regularized NMC optimization
which penalizes total distances of inferred transformed var-
iables from the original ones. One can use other standard
regularization techniques to further restrict inferred nonlin-
ear functions in practical applications.

One of the main contributions of this work is providing a
unifying framework to compute NMC (and therefore, MC)
for both discrete and continuous variables using projections
over appropriate Hilbert spaces. Using this framework, we
establish a connection between the NMC optimization with
the MCP and MEP for discrete random variables, and with
the Max-Cut problem for jointly Gaussian variables. Using
these relationships, we provide efficient algorithms to com-
pute NMC in different cases. Note that properties of NMC
for finite discrete variables characterized in Theorems 5 and 6
depend onminimummarginal probabilities of variables (i.e.,
d). Therefore, extending these properties to the continuous

case is not straightforward and requires exploiting techni-
ques tailored for continuous variables andmeasures. To com-
pute NMC for continuous random variables with general
distributions, one can use the proposed optimization frame-
work by choosing appropriate orthonormal basis for Hilbert
spaces. For example, we use projections over Hermite-
Chebyshev polynomials to characterize a solution of the
NMC optimization for jointly Gaussian variables. Finally
note that the inferred, possibly nonlinear, functions of the
NMC optimization can be used in other applications such as
nonlinear regression.
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