
1

SecureML: A System for Scalable
Privacy-Preserving Machine Learning

Payman Mohassel∗ and Yupeng Zhang†
∗Visa Research, †University of Maryland

Abstract—Machine learning is widely used in practice to pro-
duce predictive models for applications such as image processing,
speech and text recognition. These models are more accurate
when trained on large amount of data collected from different
sources. However, the massive data collection raises privacy
concerns.

In this paper, we present new and efficient protocols for
privacy preserving machine learning for linear regression, logistic
regression and neural network training using the stochastic
gradient descent method. Our protocols fall in the two-server
model where data owners distribute their private data among
two non-colluding servers who train various models on the joint
data using secure two-party computation (2PC). We develop new
techniques to support secure arithmetic operations on shared
decimal numbers, and propose MPC-friendly alternatives to non-
linear functions such as sigmoid and softmax that are superior
to prior work.

We implement our system in C++. Our experiments validate
that our protocols are several orders of magnitude faster than
the state of the art implementations for privacy preserving linear
and logistic regressions, and scale to millions of data samples
with thousands of features. We also implement the first privacy
preserving system for training neural networks.

I. INTRODUCTION

Machine learning techniques are widely used in practice
to produce predictive models for use in medicine, banking,
recommendation services, threat analysis, and authentication
technologies. Large amount of data collected over time have
enabled new solutions to old problems, and advances in deep
learning have led to breakthroughs in speech, image and text
recognition.

Large internet companies collect users’ online activities to
train recommender systems that predict their future interest.
Health data from different hospitals, and government organi-
zation can be used to produce new diagnostic models, while
financial companies and payment networks can combine trans-
action history, merchant data, and account holder information
to train more accurate fraud-detection engines.

While the recent technological advances enable more effi-
cient storage, processing and computation on big data, combin-
ing data from different sources remains an important challenge.
Competitive advantage, privacy concerns and regulations, and
issues surrounding data sovereignty and jurisdiction prevent
many organizations from openly sharing their data. Privacy-
preserving machine learning via secure multiparty computation
(MPC) provides a promising solution by allowing different

†This work was partially done when the author was interning at Visa
Research.

entities to train various models on their joint data without
revealing any information beyond the outcome.1

We focus on machine learning algorithms for training
linear regression, logistic regression and neural networks
models, and adopt the two-server model (see section III for
more details), commonly used by previous work on privacy-
preserving machine learning via MPC [37], [36], [21]. In this
model, in a setup phase, the data owners (clients) process,
encrypt and/or secret-share their data among two non-colluding
servers. In the computation phase, the two servers can train
various models on the clients’ joint data without learning any
information beyond the trained model.

The state of the art solutions for privacy preserving linear
regression [37], [21] are many orders of magnitude slower
than plaintext training. The main source of inefficiency in prior
implementations is that the bulk of computation for training
takes place inside a secure 2PC for boolean circuits (e.g Yao’s
garbled circuit) that performs arithmetic operation on decimal
numbers represented as integers. It is well-known that boolean
circuits are not suitable for performing arithmetic operations,
but they seem unavoidable given that existing techniques for
fixed-point or floating-point multiplication require bit-level
manipulations that are most efficient using boolean circuits.

In case of logistic regression and neural networks, the
problem is even more challenging as the training procedure
computes many instances of non-linear activation functions
such as sigmoid and softmax that are expensive to compute
inside a 2PC. Indeed, we are not aware of any privacy
preserving implementations for these two training algorithms.

A. Our Contributions

We design new and efficient protocols for privacy preserving
linear regression, logistic regression and neural networks
training in the two-server model discussed above assuming an
arbitrary partitioning of the dataset across the clients.

Our privacy preserving linear regression protocol is several
orders of magnitude more efficient than the state of the art
solutions for the same problem. For example, for a dataset
with 100, 000 samples and 500 features and in a comparable
setup and experimental environment, our protocol is 1100-
1300× faster than the protocols implemented in [37], [21].
Moreover, as our experiments show, we significantly reduce
the gap between privacy-preserving and plaintext training.

1In the more general variant of our protocols, even the model can remain
private (secret shared).

2

We also implement the first privacy preserving protocols
for logistic regression and neural networks training with high
efficiency. For example, on a dataset of size 60,000 with 784
features, our privacy preserving logistic regression has a total
running time of 29s while our privacy-preserving protocol for
training a neural network with 3 layers and 266 neurons runs
in 21,000s.

Our protocols are naturally divided into a data-independent
offline phase and a much faster online phase. When excluding
the offline phase, the protocols are even more competitive
with plaintext training. For instance, for a dataset with 60,000
samples and 784 features, and in the LAN setting, the linear
regression protocol runs in 1.4s, the logistic regression in 8.9s,
and the neural network training in 653.0s.
Arithmetic on shared decimal numbers. As mentioned
earlier, a major bottleneck in prior work is the computation
of fixed-point arithmetic inside a secure 2PC such as garbled
circuits. This is prohibitively expensive, given the large number
of multiplications needed for training.

Fixed-point addition is fairly straightforward. For multipli-
cation, we show that the following strategy is very effective:
represent the two shared decimal numbers as shared integers
in a finite field; perform a multiplication on shared integers
using offline-generated multiplication triplets; have each party
truncate its share of the product so that a fixed number
of bits represent the fractional part. We prove that, with
high probability, the product when reconstructed from these
truncated shares, is at most 1 bit off in the least significant
position of the fractional part compared to fixed-point arith-
metic. Our experiments on two different datasets, MNIST and
Arcene [6], [1], confirm that the small truncation error has
no effect on accuracy of the trained model (in fact accuracies
match those of standard training) when the number of bits
representing the fractional part is sufficiently large. As a result,
the online phase for privacy preserving linear regression does
not involve any cryptographic operations and only consists of
integer multiplications and bit shifting, while the offline phase
consists of generating the necessary multiplication triplets. Our
microbenchmarking shows that even when considering total
time (online and offline combined) our approach yields a factor
of 4-8× improvement compared to fixed-point multiplication
using garbled circuits.
MPC-friendly activation functions. As discussed earlier, lo-
gistic regression and neural network training require computing
the logistic (1

1+e−x), and the softmax (e−xi∑
e−xi

) functions which
are expensive to compute on shared values. We experimentally
show that the use of low-degree polynomials to approximate
the logistic function is ineffective. In particular, one needs
polynomials of degree at least 10 to approach the accuracy of
training using the logistic function. We propose a new activation
function that can be seen as the sum of two RELU functions
(see Figure 5), and computed efficiently using a small garbled
circuit. Similarly, we replace the softmax function with a
combination of RELU functions, additions and a single division.
Our experiments using the MNIST, and Arcene datasets confirm
that accuracy of the models produced using these new functions
either match or are very close to those trained using the original
functions.

We then propose a customized solution for switching between
arithmetic sharing and Yao sharing, and back, for our particular
computation, that significantly reduces the cost by minimizing
rounds of interaction and number of invoked oblivious transfers
(OT). Our microbenchmarking in Section G shows that the time
to evaluate our new function is much faster than to approximate
the logistic function with a high degree polynomial.

We use the same ideas to securely evaluate the RELU
functions used in neural networks training.
Vectorizing the protocols. Vectorization, i.e. operating on
matrices and vectors, is critical in efficiency of plaintext training.
We show how to benefit from the same vectorization techniques
in the shared setting. For instance, in the offline phase of our
protocols which consists of generating many multiplication
triplets, we propose and implement two solutions based on
linearly homomorphic encryption (LHE) and oblivious transfer.
The techniques are inspired by prior work (e.g., [18]) but
are optimized for our vectorized scenario where we need to
compute multiplication of shared matrices and vectors. As a
result the complexity of our offline protocols is much better than
the naive approach of generating independent multiplication
triplets for each multiplication. In particular, the performance
of the OT-based multiplication triplets generation is improved
by a factor of 4×, and the LHE-based generation is improved
by 41-66×.

In a different security model similar to [21], we also
propose a much faster offline phase where clients help generate
the multiplication triplets. This provides a weaker security
gauarantee than our standard setting. In particular, it requires
the additional assumption that servers and clients do not collude,
i.e. an attacker either corrupts a server or a subset of clients but
not both. We discuss pros/cons of this approach and compare
its performance with the standard approach in Section V and
Appendix F.

B. Related Work
Earlier work on privacy preserving machine learning has

focused on decision trees [31], k-means clustering [28], [14],
SVM classification [48], [44], linear regression [19], [20], [40]
and logistic regression [42]. These papers propose solutions
based on secure multiparty computation, but appear to incur
high efficiency overheads and lack implementation/evaluation.

Nikolaenko et. al. [37] present a privacy preserving linear
regression protocol on horizontally partitioned data using a
combination of LHE and garbled circuits, and evaluate it on
datasets with millions of samples. Gascon et. al. [21] extend
the results to vertically partitioned data and show improved
performance. However, both papers reduce the problem to
solving a linear system using Yao’s garbled circuit protocol,
which introduces a high overhead on the training time and
cannot be generalized to non-linear models. In contrast, we
use the stochastic gradient descent method which enables
training non-linear models such as logistic regression and
neural networks. Recently, Gilad-Bachrach et. al. [23] propose
a framework for secure data exchange, and support privacy
preserving linear regression as an application. However, only
small datasets are tested and the protocol is implemented purely
using garbled circuit, which does not scale for larger datasets.

3

Privacy preserving logistic regression is considered by Wu
et. al. [46]. They propose to approximate the logistic function
using polynomials, and train the model using LHE. However,
the complexity is exponential in the degree of the approximation
polynomial, and as we will show in experiments, the accuracy
of the model is degraded compared to using the logistic function.
Aono et. al. [10] consider a different security model where an
untrusted server collects and combines the encrypted data from
multiple clients, and transfers it to a trusted client to train the
model on the plaintext. By carefully approximating the cost
function of logistic regression with a degree 2 polynomial, the
optimal model can be calculated by solving a linear system.
However, in this setting, the plaintext of the aggregated data is
leaked to the client who trains the model. We are not aware of
any prior work with a practical system for privacy preserving
logistic regression in the two-server model.

Privacy preserving machine learning with neural networks
is more challenging. Shokri and Shmatikov [41] propose a
solution where instead of sharing the data, the two servers
share the changes on a portion of the coefficients during the
training. Although the system is very efficient (no cryptographic
operation is needed at all), the leakage of these coefficient
changes is not well-understood and no formal security guaran-
tees are obtained. In addition, their approach only works for
horizentally partitioned data since each server needs to be able
to perform the training individually on its portion in order to
obtain the coefficient changes. Privacy preserving predictions
using neural networks were also studied recently by Gilad-
Bachrach et. al. [22]. Using fully homomorphic encryption, the
neural network model can make predictions on encrypted data.
In this case, it is assumed that the neural network is trained
on plaintext data and the model is known to one party who
evaluates it on private data of another.

An orthogonal line of work considers the differential privacy
of machine learning algorithms [16], [43], [9]. In this setting,
the server has full access to the data in plaintext, but wants
to guarantee that the released model cannot be used to infer
the data used during the training. A common technique used
in differentially private machine learning is to introduce an
additive noise to the data or the update function (e.g., [9]).
The parameters of the noise are usually predetermined by
the dimensions of the data, the parameters of the machine
learning algorithm and the security requirement, and hence
are data-independent. Our system can be composed with such
constructions given that the servers can always generate the
noise according to the public parameters and add it directly
onto the shared values in the training. In this way, the trained
model will be differentially private once reconstructed, while
all the data still remains private during the training.

II. PRELIMINARIES

A. Machine Learning

In this section, we briefly review the machine learning
algorithms considered in this paper: linear regression, logistic
regression and neural networks. All algorithms we present
are classic and can be found in standard machine learning
textbooks (e.g., [26]).

a) Linear regression: Given n training data samples xi
each containing d features and the corresponding output labels
yi, regression is a statistical process to learn a function g
such that g(xi) ≈ yi. Regression has many applications in real
life. For example, in medical science, it is used to learn the
relationship between a disease and representative features, such
as age, weight, diet habits and use it for diagnosing purposes.

In linear regression, the function g is assumed to be linear
and can be represented as the inner product of xi with the
coefficient vector w: g(xi) =

∑d
j=1 xijwj = xi ·w, where xij

(resp. wj) is the jth value in vector xi (resp. w), and · denotes
the inner product of two vectors.2

To learn the coefficient vector w, a cost function C(w) is
defined and w is calculated by the optimization argminw C(w).
In linear regression, a commonly used cost function is C(w) =
1
n

∑
Ci(w), where Ci(w) = 1

2 (xi · w− yi)2. 3

The solution for this optimization problem can be computed
by solving the linear system (XT ×X)×w = XT ×Y, where X
is a n×d matrix representing all the input data, and Y is a n×1
matrix for the output labels. However, the complexity of the
matrix multiplication XT ×X is O(nd2) and the complexity of
solving the linear system is O(d3). Due to its high complexity,
it is rarely used in practice except for small values of n and d.

b) Stochastic gradient descent (SGD): SGD is an effective
approximation algorithm for approaching a local minimum
of a function, step by step. As the optimization function
for the linear regression described above is convex, SGD
provably converges to the global minimum and is typically
very fast in practice. In addition, SGD can be generalized
to work for logistic regression and neural network training,
where no closed-form solution exists for the corresponding
optimization problems. As a result, SGD is the most commonly
used approach to train such models in practice and the main
focus of this work.

The SGD algorithm works as follows: w is initialized as a
vector of random values or all 0s. In each iteration, a sample
(xi, yi) is selected randomly and a coefficient wj is updated as

wj := wj − α
∂Ci(w)

∂wj
. (1)

where α is a learning rate defining the magnitude to move
towards the minimum in each iteration. Substituting the cost
function of linear regression, the formula becomes wj :=
wj − α(xi · w− yi)xij . The phase to calculate the predicted
output y∗i = xi · w is called forward propagation, and the
phase to calculate the change α(y∗i −yi)xij is called backward
propagation.
Mini-batch. In practice, instead of selecting one sample of data
per iteration, a small batch of samples are selected randomly
and w is updated by averaging the partial derivatives of all
samples on the current w. We denote the set of indices selected
in a mini-batch by B. This is called a mini-batch SGD and |B|

2Usually a bias b is introduced such that g(xi) = xi ·w+ b. However, this
can be easily achieved by appending a dummy feature equal to 1 for each xi.
To simplify the notation, we assume b is already embedded in w in this paper.

3In ridge regression, a penalty term λ||w||2 is added to the cost function to
avoid overfitting where λ is the regularization parameter. This is supported in
an obvious way by the protocols in this paper, and is omitted for simplicity.

4

−10 −5 0 5 10
u

0
0.5
1

f
(u

)

f

f

f

...

f

f

f

...

x1

x2

xd

f

f

f

...

f

f

f

......
y1

y2

y3

input
layer

output
layer

hidden
layer 1

hidden
layer m-1

Fig. 1: (a) Logistic function. (b) An example of neural network.

denotes the mini-batch size, usually ranging from 2 to 200. The
benefit of mini-batch is that vectorization libraries can be used
to speed up the computation such that the computation time
for one mini-batch is much faster than running |B| iterations
without mini-batch. Besides, with mini-batch, w converges
smoother and faster to the minimum. With mini-batch, the
update function can be expressed in a vectorized form:

w := w− 1

|B|αXTB × (XB × w− YB). (2)

XB and YB are B × d and B × 1 submatrices of X and Y
selected using indices in B, representing |B| samples of data
and labels in an iteration. Here w is viewed as a column vector.
Learning rate adjustment. If the learning rate α is too large,
the result of SGD may diverge from the minimum. Therefore,
a testing dataset is used to test the accuracy of the current w.
The inner product of w and each data sample in the testing
dataset is calculated as the prediction, and is compared to the
corresponding label. The accuracy is the percentage of the
correct predictions on the testing dataset. If the accuracy is
decreasing, the learning rate is reduced and the training starts
over with the new learning rate. To balance the overhead spent
on testing, the common practice is to shuffle all the training
samples and select the mini-batch in each iteration sequentially,
until all the samples are used once. This is referred to as one
epoch. After one epoch, the accuracy of the current w is tested.
At this point, if the accuracy decreases, the learning rate is
reduced by half and the training starts over; otherwise the data
is reshuffled and the next epoch of training is executed.
Termination. When the difference in accuracy compared to
the previous epoch is below a small threshold, w is viewed as
having converged to the minimum and the algorithm terminates.
We denote the number of epochs to train a model as E and
denote the total number of iterations as t. Note that we have
the following relationship: n · E = |B| · t.

c) Logistic Regression: In classification problems with
two classes, the output label y is binary. E.g., given some
medical features, we are interested to predict whether the
patient is healthy or sick. In this case, it is better to bound
the output of the prediction between 0 and 1. Therefore, an
activation function f is applied on top of the inner product and
the relationship is expressed as: g(xi) = f(xi · w). In logistic
regression, the activation function is defined as the logistic
function f(u) = 1

1+e−u . As shown in Figure 1(a), the two tails
of the logistic function converge to 0 and 1.

With this activation function, the original cost function for
linear regression is no longer convex, thus applying SGD
may give a local minimum instead of the global minimum.
Therefore, the cost function is changed to the cross entropy

function Ci(w) = −yi log y∗i −(1−yi) log(1−y∗i) and C(w) =
1
n

∑
Ci(w), where y∗i = f(xi · w).

The mini-batch SGD algorithm for logistic regression updates
the coefficients in each iteration as follows:

w := w− 1

|B|αXTB × (f(XB × w)− YB). (3)

Notice that the backward propagation of logistic regression has
exactly the same form as linear regression, yet it is derived using
a different activation and cost function. The only difference in
the SGD for logistic regression is to apply an extra logistic
function on the inner product in the forward propagation.

d) Neural Networks.: Neural networks are a generaliza-
tion of regression to learn more complicated relationships
between high dimensional input and output data. It is exten-
sively used in a wide range of areas such as image processing,
voice and text recognition, often leading to breakthroughs in
each area. Figure 1(b) shows an example of a neural network
with m− 1 hidden layers. Each node in the hidden layer and
the output layer is an instance of regression and is associated
with an activation function and a coefficient vector. Nodes are
also called neurons. Popular activation functions include the
logistic and the RELU function (f(u) = max(0, u)).

For classification problems with multiple classes, usually a
softmax function f(ui) = e−ui∑dm

i=1 e
−ui

is applied at the output
layer, where dm denotes the total number of neurons in the
output layer. The insight is that the output after the softmax
function is always a probability distribution: each output is
between 0 and 1 and all the outputs sum up to 1.

To train a neural network using SGD, Equation 1 is applied
in every iteration to update all coefficients of all neurons where
each neuron is treated similar to a regression. In particular,
let di be the number of neurons in layer i and d0 = d be the
number of features in the input data. dm is the dimension of
the output. We denote the coefficient matrix of the ith layer
as a di−1 × di matrix Wi, and the values as a |B| × di matrix
Xi. X0 is initialized as XB . In the forward propagation for
each iteration, the matrix Xi of the ith layer is computed as
Xi = f(Xi−1 ×Wi). In the backward propagation, given a
cost function such as the cross entropy function, the update
function for each coefficient in each neuron can be expressed in
a closed form. To calculated it, we compute the vectors Yi =
∂C(W)
∂Ui

iteratively, where Ui = Xi−1 ×Wi. Ym is initialized
to ∂C

∂Xm
� ∂f(Um)

∂Um
, where ∂f(Um)

∂Um
is simply the derivative of

the activation function, and � is the element-wise product.
By the chain rule, Yi = (Yi+1 ×WT

i)� ∂f(Ui)
∂Ui

. Finally, the
coefficients are updated by letting Wi := Wi − α

|B| · Xi × Yi.

B. Secure Computation

Oblivious Transfer. Oblivious transfer (OT) is a fundamental
cryptographic primitive that is commonly used as building block
in MPC. In an oblivious transfer protocol, a sender S has two
inputs x0 and x1, and a receiver R has a selection bit b and
wants to obtain xb without learning anything else or revealing
b to S. Figure 2 describes the ideal functionality realized by
such a protocol. We use the notation (⊥;xb)← OT(x0, x1; b)
to denote a protocol realizing this functionality.

5

Parameters: Sender S and Receiver R.
Main: On input (SELECT, sid, b) from R and
(SEND, sid, x0, x1) from S, return (RECV, sid, xb) to
R.

Fig. 2: Fot Ideal Functionality
We use OTs both as part of our offline protocol for

generating multiplication triplets and in the online phase for
logistic regression and neural network training in order to
securely compute the activation functions. One-round OT can
be implemented using the protocol of [39], but it requires
public-key operations by both parties. OT extension [27], [11]
minimizes this cost by allowing the sender and receiver to
perform m OTs at the cost of λ base OTs (with public-key
operations) and O(m) fast symmetric-key ones, where λ is the
security parameter. Our implementations take advantage of OT
extension for better efficiency. We also use a special flavor of
OT extension called correlated OT extension [11]. In this variant
which we denote by COT, the sender’s two inputs to each OT
are not independent. Instead, the two inputs to each OT instance
are: a random value s0 and a value s1 = f(s0) for a correlation
function f of the sender’s choice. The communication for a
COT of l-bit messages, denoted by COTl, is λ + l bits, and
the computation consists of 3 hashing.
Garbled Circuit 2PC. Garbled Circuits were first introduced
by [47]. A garbling scheme consists of a garbling algorithm
that takes a random seed σ and a function f and generates
a garbled circuit F and a decoding table dec; the encoding
algorithm takes input x and the seed σ and generates garbled
input x̂ ; the evaluation algorithm takes x̂ and F as input and
returns the garbled output ẑ; and finally, a decoding algorithm
that takes the decoding table dec and ẑ and returns f(x). We
require the garbling scheme to satisfy the standard security
properties formalized in [13].

Given such a garbling scheme, it is possible to design
a secure two-party computation protocol as follows: Alice
generates a random seed σ and runs the garbling algorithm for
function f to obtain a garbled circuit GC. She also encodes her
input x̂ using σ and x as inputs to the encoding algorithm. Alice
sends GC and x̂ to Bob. Bob obtains his encoded (garbled)
input ŷ using an oblivious transfer for each bit of y4. He then
runs the evaluation algorithm on GC, x̂, ŷ to obtain the garbled
output ẑ. We can have Alice, Bob, or both learn an output
by communicating the decoding table accordingly. The above
protocol securely realizes the ideal functionality Ff that simply
takes the parties inputs and computes f on them. See [32] for
a more detailed description and proof of security against a
semi-honest adversary. In our protocols, we denote this garbled
circuit 2PC by (za, zb)← GarbledCircuit(x; y, f)
Secret Sharing and Multiplication Triplets. In our protocols,
all intermediate values are secret-shared between the two
servers. We employ three different sharing schemes: Additive
sharing, Boolean sharing and Yao sharing. We briefly review
these schemes but refer the reader to [18] for more details.

To additively share (ShrA(·)) an `-bit value a, the first party
P0 generates a0 ∈ Z2` uniformly at random and sends a1 = a−
a0 mod 2` to the second party P1. We denote the first party’s

4While and OT-based encoding is not a required property of a garbling
scheme, all existing constructions permit such interacting encodings

share by 〈a〉A0 = a0 and the second party’s by 〈a〉A1 = a1.
For ease of composition we omit the modular operation in
the protocol descriptions. In this paper, we mostly use the
additive sharing, and denote it by 〈·〉 for short. To reconstruct
(RecA(·, ·)) an additively shared value 〈a〉, Pi sends 〈a〉i to
P1−i who computes 〈a〉0 + 〈a〉1.

Given two shared values 〈a〉 and 〈b〉, it is easy to non-
interactively add the shares by having Pi compute 〈c〉i =
〈a〉i + 〈b〉i mod 2`. We overload the addition operation to
denote the addition protocol by 〈a〉+ 〈b〉.

To multiply (MulA(·, ·)) two shared values 〈a〉 and 〈b〉, we
take advantage of Beaver’s pre-computed multiplication triplet
technique. Lets assume that the two parties already share
〈u〉, 〈v〉, 〈z〉 where u, v are uniformly random values in Z2` and
z = uv mod 2`. Then Pi locally computes 〈e〉i = 〈a〉i − 〈u〉i
and 〈f〉i = 〈b〉i − 〈v〉i. Both parties run Rec(〈e〉0, 〈e〉1) and
Rec(〈f〉0, 〈f〉1), and Pi lets 〈c〉i = i·e·f+f ·〈a〉i+e·〈b〉i+〈z〉i.

Boolean sharing can be seen as additive sharing in Z2 and
hence all the protocols discussed above carry over. In particular,
the addition operation is replaced by the XOR operation (⊕) and
multiplication is replaced by the AND operation (AND(·, ·)).
We denote party Pi’s share in a Boolean sharing by 〈a〉Bi .

Finally, one can also think of a garbled circuit protocol as
operating on Yao sharing of inputs to produce Yao sharing of
outputs. In particular, in all garbling schemes, for each wire w
the garbler (P0) generates two random strings kw0 , k

w
1 . When

using the point-and-permute technique [34] the garbler also
generates a random permutation bit rw and lets Kw

0 = kw0 ||rw
and Kw

1 = kw1 ||(1−rw). The concatenated bits are then used to
permute the rows of each garbled truth table. A Yao sharing of a
is 〈a〉Y0 = Kw

0 ,K
w
1 and 〈a〉Y1 = Kw

a . To reconstruct the shared
value, parties exchange their shares. XOR and AND operations
can be performed by garbling/evaluating the corresponding
gates.

To switch from a Yao sharing 〈a〉Y0 = Kw
0 ,K

w
1 and 〈a〉Y1 =

Kw
a to a Boolean sharing, P0 lets 〈a〉B0 = Kw

0 [0] and P1 lets
〈a〉B1 = 〈a〉Y1 [0]. In other words, the permutation bits used in
the garbling scheme can be used to switch to boolean sharing
for free. We denote this Yao to Boolean conversion by Y2B(·, ·).
We note that we do not explicitly use a Yao sharing in our
protocol description as it will be hidden inside the garbling
scheme, but explicitly use the Y2B conversion to convert the
garbled output to a boolean sharing.

III. SECURITY MODEL

A. Architecture

We consider a set of clients C1, . . . , Cm who want to
train various models on their joint data. We do not make
any assumptions on how the data is distributed among the
clients. In particular, the data can be horizontally or vertically
partitioned, or be secret-shared among them as part of a
previous computation.

A natural solution is to perform a secure multiparty com-
putation where each client plays the role of one party. While
this approach satisfies the privacy properties we are aiming
for, it has several drawbacks. First, it requires the clients to be
involved throughout the protocol. Second, unlike the two-party

6

Parameters: Clients C1, . . . , Cm and servers S0,S1.
Uploading Data: On input xi from Ci, store xi internally.
Computation: On input f from S0 or S1, compute (y1, . . . , ym) =
f(x1, . . . , xm) and send yi to Ci. This step can be repeated multiple
times with different functions.

Fig. 3: Ideal Functionality Fml
case, techniques for more than two parties (and a dishonest
majority) are significantly more expensive and not scalable to
large input sizes or a large number of clients.

Hence, we consider a server-aided setting where the clients
outsource the computation to two untrusted but non-colluding
servers S0 and S1. Server-aided MPC has been formalized and
used in various previous work (e.g. see [29]). It has also been
utilized in prior work on privacy-preserving machine learning
[37], [36], [21]. Two important advantages of this setting are
that (i) clients can distribute (secret-share) their inputs among
the two servers in a setup phase but not be involved in any
future computation, and (ii) we can benefit from a combination
of efficient techniques for boolean computation such as garbled
circuits and OT-extension, and arithmetic computation such as
offline/online multiplication triplet shares.

Depending on the application scenario, previous work refers
to the two servers as the evaluator and the cryptography service
provider (CSP) [37], or the evaluator and a cloud service
provider who maintains the data [24]. The two servers can
also be representatives of the different subsets of clients or
themselves be among the clients who possess data. Regardless
of the specific role assigned to the servers, the trust model is
the same and assumes that the two servers are untrusted but do
not collude. We discuss the security definition in detail next.

B. Security Definition

Recall that the involved parties are m clients C1, . . . , Cm and
two servers S0,S1. We assume a semi-honest adversary A who
can corrupt any subset of the clients and at most one of the two
servers. This captures the property that the two servers are not
colluding, i.e. if one is controlled by the adversary, the second
one behaves honestly. Note that we do not put any restrictions
on collusion among the clients and between the clients and the
servers. We call such an adversary an admissible adversary. In
one particular scenario (see Section V), we weaken the security
model by requiring that servers do not collude with the clients.

The security definition should require that such an adversary
only learns the data of the clients it has corrupted and the final
output but nothing else about the remaining honest clients’
data. For example, an adversary A who corrupts C1, C2 and
S1 should not learn any information about C3’s data beyond
the trained model. We define security using the framework of
Universal Composition (UC) [15]. We give a brief overview of
the definition in appendix A, and refer the reader to [15] for
the details. The target ideal functionality Fml for our protocols
is described in Figure 3.

IV. PRIVACY PRESERVING MACHINE LEARNING

In this section, we present our protocols for privacy pre-
serving machine learning using SGD. We first describe a
protocol for linear regression in Section IV-A, based solely on

arithmetic secret sharing and multiplication triplets. Next, we
discuss how to efficiently generate these multiplication triplets
in the offline phase in Section IV-B. We then generalize our
techniques to support logistic regression and neural networks
training in Sections IV-C and IV-D. Finally, techniques to
support predication, learning rate adjustment and termination
determination are presented in Section IV-E.

A. Privacy Preserving Linear Regression
Recall that we assume the training data is secret shared

between two servers S0 and S1. We denote the shares by
〈X〉0, 〈Y〉0 and 〈X〉1, 〈Y〉1. In practice, the clients can distribute
the shares between the two servers, or encrypt the first share
using the public key of S0, upload both the first encrypted
share and the second plaintext share to S1. S1 then passes
the encrypted shares to S0 to decrypt. In our protocol, we
also let the coefficients w be secret shared between the two
servers. It is initialized to random values simply by setting
〈w〉0, 〈w〉1 to be random, without any communication between
the two servers. It is updated and remains secret shared after
each iteration of SGD, until the end when it is reconstructed.

As described in Section II-A, the update function for linear
regression is wj := wj − α(

∑d
k=1 xikwk − yi)xij , only

consisting of additions and multiplications. Therefore, we apply
the corresponding addition and multiplication algorithms for
secret shared values to update the coefficients, which is 〈wj〉 :=

〈wj〉 − αMulA
(∑d

k=1 MulA(〈xik〉, 〈wk〉) − 〈yi〉, 〈xij〉
)
. We

separate our protocol into two phases: online and offline. The
online phase trains the model given the data, while the offline
phase consists mainly of multiplication triplet generation. We
focus on the online phase in this section, and discuss the offline
phase in Section IV-B.
Vectorization in the Shared Setting. We also want to benefit
from the mini-batch and vectorization techniques discussed in
Section II-A (see Equation 2). To achieve this, we generalize
the addition and multiplication operations on share values
to shared matrices. Matrices are shared by applying ShrA

to every element. Given two shared matrices 〈A〉 and 〈B〉,
matrix addition can be computed non-interactively by letting
〈C〉i = 〈A〉i + 〈B〉i for i ∈ {0, 1}. To multiply two shared
matrices, instead of using independent multiplication triplets,
we take shared matrices 〈U〉, 〈V〉, 〈Z〉, where each element in
U and V is uniformly random in Z2l , U has the same dimension
as A, V has the same dimension as B and Z = U×V mod 2l.
Si computes 〈E〉i = 〈A〉i−〈U〉i, 〈F〉i = 〈B〉i−〈V〉i and sends
it to the other server. Both servers reconstruct E and F and set
〈C〉i = i · E× F + 〈A〉i × F + E× 〈B〉i + 〈Z〉i. The idea of
this generalization is that each element in matrix A is always
masked by the same random element in U, while it is multiplied
by different elements in B in the matrix multiplication. Our
security proof confirms that this does not affect security of the
protocol, but makes the protocol significantly more efficient
due to vectorization.

Applying the technique to linear regression, in each
iteration, we assume the set of mini-batch indices B
is public, and perform the update 〈w〉 := 〈w〉 −
1
|B|αMulA(〈XTB〉,MulA

(
〈XB〉, 〈w〉

)
− 〈YB〉). We further ob-

serve that one data sample will be used several times in

7

different epochs, yet it suffices to mask it by the same random
multiplication triplet. Therefore, in the offline phase, one shared
n×d random matrix 〈U〉 is generated to mask the data samples
〈X〉. At the beginning of the online phase, 〈E〉i = 〈X〉i−〈U〉i
is computed and exchanged to reconstruct E through one
interaction. After that, in each iteration, EB is selected and used
in the multiplication protocol, without any further computation
and communication. In particular, in the offline phase, a series
of min-batch indices B1, . . . , Bt are agreed upon by the two
servers. This only requires the knowledge of n, d, t or an
upperbound, but not any real data. Then the multiplication
triplets 〈U〉, 〈V〉, 〈Z〉, 〈V′〉, 〈Z′〉 are precomputed with the
following property: U is an n×d matrix to mask the data X, V
is a d× t matrix, each column of which is used to mask w in
one iteration (forward propagation), and V′ is a |B| × t matrix
wherein each column is used to mask the difference vector
Y∗ − Y in one iteration (backward propagation). We then let
Z[i] = UBi

× V[i] and Z′[i] = UTBi
× V′[i] for i = 1, . . . , t,

where M[i] denotes the ith column of the matrix M. Using
the multiplication triplets in matrix form, the computation and
communication in both the online and the offline phase are
reduced dramatically. We will analyze the cost later.

We denote the ideal functionality realizing the generation
of these matrices in the offline phase by Foffline.
Arithmetic Operations on Shared Decimal Numbers. As
discussed earlier, a major source of inefficiency in prior work
on privacy preserving linear regression stems from computing
on shared/encrypted decimal numbers. Prior solutions either
treat decimal numbers as integers and preserve full accuracy
after multiplication by using a very large finite field [22], or
utilize 2PC for boolean circuits to perform fixed-point [21]
or floating-point [35] multiplication on decimal numbers. The
former can only support a limited number of multiplications,
as the range of the result grows exponentially with the number
of multiplications. This is prohibitive for training where the
number of multiplications is large. The latter introduces high
overhead, as the boolean circuit for multiplying two l-bit
numbers has O(l2) gates, and such a circuit needs to be
computed in a 2PC (e.g. Yao’s garbled circuits) for each
multiplication performed.

We propose a simple but effective solution to support
decimal arithmetics in an integer field. Consider the fixed-point
multiplication of two decimal numbers x and y with at most
lD bits in the fractional part. We first transform the numbers to
integers by letting x′ = 2lDx and y′ = 2lDy and then multiply
them to obtain the product z = x′y′. Note that z has at most
2lD bits representing the fractional part of the product, so we
simply truncate the last lD bits of z such that it has at most lD
bits representing the fractional part. Mathematically speaking,
if z is decomposed into two parts z = z1 · 2lD + z2, where
0 ≤ z2 < 2lD , then the truncation results is z1. We denote this
truncation operations by bzc.

We show that this truncation technique also works when z is
secret shared. In particular, the two servers can truncate their
individual shares of z independently. In the following theorem
we prove that for a large enough field, these truncated shares
when reconstructed, with high probability, are at most 1 off
from the desired bzc. In other words, we incur a small error

Protocol SGD Linear(〈X〉, 〈Y〉, 〈U〉, 〈V〉, 〈Z〉, 〈V′〉, 〈Z′〉):
1: Si computes 〈E〉i = 〈X〉i−〈U〉i for i ∈ {0, 1}. Then parties

run Rec(〈E〉0, 〈E〉1) to obtain E.
2: for j = 1, . . . , t do
3: Parties select the mini-batch 〈XBj 〉, 〈YBj 〉.
4: Si computes 〈Fj〉i = 〈w〉i − 〈V[j]〉 for i ∈ {0, 1}. Then

parties run Rec(〈Fj〉0, 〈Fj〉1) to recover Fj .
5: Si computes 〈Y∗Bj

〉i = i ·EBj×Fi+〈XBj 〉i×Fi+EBj×
〈w〉i + 〈Zj〉i for i ∈ {0, 1}.

6: Si compute the difference 〈DBj 〉i = 〈Y∗Bj
〉i − 〈YBj 〉i for

i ∈ {0, 1}.
7: Si computes 〈F′j〉i = 〈DBj 〉i − 〈V′j〉i for i ∈ {0, 1}.

Parties then run Rec(〈F′j〉0, 〈F′j〉1) to obtain F′j .
8: Si computes 〈∆〉i = i ·ETBj

×F′j + 〈XTBj
〉i×F′j + ETBj

×
〈DBj 〉i + 〈Z′j〉i for i ∈ {0, 1}.

9: Si truncates its shares of ∆ element-wise to get b〈∆〉ic.
10: Si computes 〈w〉i := 〈w〉i − α

|B|b〈∆〉ic for i ∈ {0, 1}.
11: Parties run RecA(〈w〉0, 〈w〉1) and output w.

Fig. 4: The online phase of privacy preserving linear regression.

in the least significant bit of the fractional part compared to
standard fixed-point arithmetic.

We also note that if a decimal number z is negative, it will
be represented in the field as 2l − |z|, where |z| is its absolute
value and the truncation operation changes to bzc = 2l−b|z|c.
We prove the following theorem for both positive and negative
numbers in Appendix B.

Theorem 1. In field Z2l , let x ∈ [0, 2lx]∪ [2l−2lx , 2l), where
l > lx+1 and given shares 〈x〉0, 〈x〉1 of x, let 〈bxc〉0 = b〈x〉0c
and 〈bxc〉1 = 2l−b2l−〈x〉1c. Then with probability 1−2lx+1−l,
RecA(〈bxc〉0, 〈bxc〉1) ∈ {bxc − 1, bxc, bxc + 1} , where b·c
denotes truncation by lD ≤ lx bits.

The complete protocol between the two servers for the
online phase of privacy preserving linear regression is shown in
Figure 4. It assumes that the data-independent shared matrices
〈U〉, 〈V〉, 〈Z〉, 〈V′〉, 〈Z′〉 were already generated in the offline
phase. Besides multiplication and addition of shared decimal
numbers, the protocol also requires multiplying the coefficient
vector by α

|B| in each iteration. To make this operation efficient,
we set α

|B| to be a power of 2, i.e. α
|B| = 2−k. Then the

multiplication with α
|B| can be replaced by having the parties

truncate k additional bits from their shares of the coefficients.
We sketch a proof for the following Theorem on security of

the online protocol in Appendix D.

Theorem 2. Consider a protocol where clients distribute
arithmetic shares of their data among two servers who run
the protocol of Figure 4 and send the output to clients.
In the Foffline hybrid model, this protocol realizes the
ideal functionality Fml of Figure 3 for the linear regression
function, in presence of a semi-honest admissible adversary
(see section III).

Effect of Truncation Error. Note that when the size of the
field is large enough, truncation can be performed once per
iteration instead of once per multiplication. Hence in our
implementations, the truncation is performed (|B| + d) · t
times and by the union bound, the probability of failure in

8

the training is (|B| + d) · t · 2lx+1−l. For typical parameters
|B| = 128, d = 784, t = 1000, lx = 32, l = 64, the probability
of a single failure happening during the whole training is
around 2−12. Moreover, even if a failure in the truncation
occurs, it is unlikely to translate to a failure in training. Such
a failure makes one feature in one sample invalid, yet the final
model should not be affected by small changes in data, or
else the trainig strategy suffers from overfitting. In appendix C,
we confirm these observations by running experiments on two
different datasets (MNIST [6] and Arcene [1]). In particular,
we show that accuracy of the models trained using privacy
preserving linear regression with truncation matches those of
plaintext training using standard arithmetic.
Efficiency Discussion. The dominating term in the computa-
tion cost of Figure 4 is the matrix multiplications in step 5
and 8. In each iteration, each party performs 4 such matrix
multiplications5, while in plaintext SGD training, according
to Equation 2, 2 matrix multiplications are performed. Hence,
the computation time for each party is only twice the time for
training on plaintext data.

The total communication of the protocol is also nearly
optimal. In step 1, each party sends an n× d matrix, which is
of the same size as the data. In step 4 and 7, |B|+ d elements
are sent per iteration. Therefore, the total communication is
n·d+(|B|+d)·t = nd·(1+E

d + E
|B|) for each party. In practice,

the number of epochs E is only 2-3 for linear and logistic
regressions and 10-15 for neural networks, which is much
smaller than |B| and d. Therefore, the total communication
is only a little more than the size of the data. The time spent
on the communication can be calculated by dividing the total
communication by the bandwidth between the two parties.

B. The Offline Phase

We describe how to implement the offline phase as a two-
party protocol between S0 and S1 by generating the desired
shared multiplication triplets. We present two protocols for
doing so based on linearly homomorphic encryption (LHE)
and oblivious transfer (OT). The techniques are similar to prior
work (e.g., [18]) but are optimized for the vectorized scenario
where we operate on matrices. As a result the complexity of
our offline protocol is much better than the naive approach of
generating independent multiplication triplets.

Recall that given shared random matrices 〈U〉 and 〈V〉, the
key step is to choose a |B| × d submatrix from 〈U〉 and a
column from 〈V〉 and compute the shares of their product. This
is repeated t times to generate 〈Z〉. 〈Z′〉 is computed in the
same way with the dimensions reversed. Thus, for simplicity,
we focus on this basic step, where given shares of a |B| × d
matrix 〈A〉, and shares of a d × 1 matrix 〈B〉, we want to
compute shares of a |B| × 1 matrix 〈C〉 such that C = A× B.

We utilize the following relationship: C = 〈A〉0 × 〈B〉0 +
〈A〉0×〈B〉1+〈A〉1×〈B〉0+〈A〉1×〈B〉1. It suffices to compute
〈〈A〉0 × 〈B〉1〉 and 〈〈A〉1 × 〈B〉0〉 as the other two terms can
be computed locally.

5Party S1 can simplify the formula to E × (F − 〈w〉) + 〈X〉 × F + 〈Z〉,
which has only 2 matrix multiplications.

LHE-based generation. To compute the shares of the product
〈A〉0 × 〈B〉1, S1 encrypts each element of 〈B〉1 using an
LHE and sends them to S0. The LHE can be initiated
using the cryptosystem of Paillier [38] or Damgard-Geisler-
Kroigaard(DGK) [17]. S0 then performs the matrix mul-
tiplication on the ciphertexts, with additions replaced by
multiplications and multiplications by exponentiations. Finally,
S0 masks the resulting ciphertexts by random values, and
sends them back to S1 to decrypt. The protocol can be found
in Figure 12 in the Appendix.

Here S1 performs d encryptions, |B| decryptions and S0
performs |B| × d exponentiations. The cost of multiplications
on the ciphertext is non-dominating and is omitted. The shares
of 〈A〉1 × 〈B〉0 can be computed similarly.

Using this basic step, the overall computation performed
in the offline phase per party is (|B| + d) · t encryptions,
(|B|+ d) · t decryptions and 2|B| · d · t exponentiations. The
total communication is 2(|B| + d) · t ciphertexts, which is
much smaller than the size of the data. If we had generated the
multiplication triplets independently, the number of encryptions,
decryptions and the communication would increase to 2|B|·d·t.
Finally, unlike the online phase, all communication in the offline
phase can be done in one interaction.
OT-based generation. The shares of the product 〈A〉0 × 〈B〉1
can also be computed using OTs. We first compute the shares
of the product 〈aij ·bj〉 for all i = 1, . . . , |B| and j = 1, . . . , d.
To do so, S1 uses each bit of bj to select two values computed
from aij using correlated OTs. In particular, for k = 1, . . . , l,
S0 sets the correlation function of COT to fk(x) = ai,j ·2k+x
mod 2l and S0, S1 run COT(rk, fk(x); bj [k]). If bj [k] = 0,
S1 gets rk; if bj [k] = 1, S1 gets ai,j · 2k + rk mod 2l. This
is equivalent to bj [k] · aij · 2k + rk mod 2l. Finally, S1 sets
〈aij · bj〉1 =

∑l
k=1(bj [k] · aij · 2k + rk) = aij · bj +

∑l
k=1 rk

mod 2l, and S0 sets 〈aij · bj〉0 =
∑l
k=1(−rk) mod 2l.

To further improve efficiency, authors of [18] observe that
for each k, the last k bits of aij · 2k are all 0s. Therefore,
only the first l − k bits need to be transferred. Therefore, the
message lengths are l, l − 1, . . . , 1, instead of all being l-bits.
This is equivalent to running l instances of COT(l+1)/2. So far,
all the techniques described are as discussed in [18].

The optimization described above does not improve the
computation cost of OTs. The reason is that in OT, each
message is XORed with a mask computed from the random
oracle applied to the selection bit. In practice, the random
oracle is instantiated by a hash function such as SHA256 or
AES, which at least has 128 bit output. Hence, the fact that l
is only 64 does not reduce time to compute the masks.

We further leverage the matrix structure to improve on this.
Note that a1j , . . . , a|B|j are all multiplied by bj , which means
the same selection bit bj [k] is used for all aijs. Equivalently, we
can view it as using bj [k] to select messages with length (l −
k) · |B| bits. Therefore, they can be masked by d (l−k)·|B|128 e hash
outputs. For a reasonable mini-batch size, each multiplication
needs l

4 instances of COT128. In this way, the total number of
hashes can be reduced by 4 times and the total communication
can be reduced by half.

Finally, after computing 〈aij ·bj〉, the ith element of 〈〈A〉0×

9

−0.5 0 0.5
u

0

0.5

1

f
(u

)

−1 0 1
u

0

1

f
(u

)

Fig. 5: (a) Our new activation function. (b) RELU function.

〈B〉1〉 can be computed by 〈〈A〉0 × 〈B〉1〉[i] =
∑d
j=0〈aij · bj〉.

The shares of 〈A〉1 × 〈B〉0 can be computed similarly.
In total, both parties perform |B|·d·t·l

2 instances of COT128

and the total communication is |B| · d · t · l · (l + λ) bits.
In addition, a set of base OTs needs to be performed at the
beginning for OT extension. In Section VI-A we show that
the size communication for the OT-based generation is much
higher than LHE-based generation, yet the total running time
is faster. The reason is that, given OT extension, each OT
operation is very cheap (∼ 106 OTs per second).

C. Privacy Preserving Logistic Regression

In this section, we present a protocol to support privacy
preserving logistic regression. Besides issues addressed for
linear regression, the main additional challenge is to compute
the logistic function f(u) = 1

1+e−u on shared numbers. Note
that the division and the exponentiation in the logistic function
are computed on real numbers, which are hard to support using
a 2PC for arithmetic or boolean circuit. Hence, prior work
proposes to approximate the function using polynomials [10].
It can be shown that approximation using a high-degree
polynomial is very accurate [33]. However, for efficiency
reasons, the degree of the approximation polynomial in secure
computation is set to 2 or 3, which results in a large accuracy
loss of the trained model compared to logistic regression.
Secure computation friendly activation functions. Instead
of using polynomials to approximate the logistic function,
we propose a new activation function that can be efficiently
computed using secure computation techniques. The function
is described in Equation 4 and drawn in Figure 5(a).

f(x) =

0, if x < − 1

2

x+ 1
2 , if − 1

2 ≤ x ≤ 1
2

1, if x > 1
2

(4)

The intuition for this choice of activation is as follows (we
also confirm its effectiveness with experiments): as mentioned
in section II-A, the main reason logistic regression works well
for classification problems is that the prediction is bounded
between 0 and 1. Therefore, it is very important for the two
tails of the activation function to converge to 0 and 1, and
both the logistic function and the function in Equation 4 have
such behavior. In contrast, approximation with low degree
polynomials fails to achieve this property. The polynomial
might be close to the logistic function in certain intervals, but
the tails are unbounded. If a data sample yields a very large
input u to the activation function, f(u) will be far beyond the
[0, 1] interval which affects accuracy of the model significantly
in the backward propagation. Our choice of the activation
function is also inspired by its similarity to the RELU function

Logistic Our approaches Polynomial Approx.
first second deg. 2 deg. 5 deg. 10

MNIST 98.64 98.62 97.96 42.17 84.64 98.54
Arcene 86 86 85 72 82 86

TABLE I: Accuracy (%) comparison of different approaches
for logistic regression.

(Figure 5(b)) used in neural networks. One of the justifications
used for replacing logistic function by the RELU function in
neural networks is that the subtraction of two RELU functions
with an offset yields the activation function of Equation 4
which in turn, closely imitates the logistic function.

Once we use the new activation function, we have two
choices when computing the backward propagation. We can
either use the same update function as the logistic function (i.e.
continue to compute the partial derivative using the logistic
function), or compute the partial derivative of the new function
and substitute it into the update function. We test both options
and find out that the first approach yields better accuracy
matching that of using the logistic function. Therefore, we will
use the first approach in the rest of the paper. We believe one
reason for lower accuracy of the second approach is that by
replacing the activation function, the cross entropy cost function
is no longer convex; using the first approach, the update formula
is very close to training using the distance cost function, which
might help produce a better model. Better theoretical analysis
of these observations is an interesting research direction.

To justify our claims, we compare the accuracy of the
produced model using our approaches with logistic regression,
and polynomial approximation with different degrees. For the
polynomial approximation, we fix the constant to 1

2 so that
f(0) = 1

2 . Then we select as many points on the logistic
function as the degree of the polynomial. The points are
symmetric to the original, and evenly spread in the range
of the data value (e.g., [0,1] for MNIST, [0,1000] for Arcene).
The unique polynomial passing through all these points is
selected for approximation. The test is run on the MNIST
data with mini-batch size |B| = 128. The series of random
mini-batches are the same for all approaches. Here we train
the models on plaintext data only. As shown in Table I, the
performance of our approaches are much better than polynomial
approximation. In particular, our first approach reaches almost
the same accuracy (98.62%) as logistic regression, and our
second approach performs slightly worse. On the contrary,
when a degree 3 polynomial is used to approximate the logistic
function, the accuracy can only reach 42.17%, which is even
worse than a linear regression. The reason is that the tails
diverge even faster than a linear activation function. When the
degree is 5, the accuracy can reach 84%; when the degree
is 10, the accuracy finally matches that of logistic regression.
However, computing a polynomial of degree 10 in secure
computation introduces a high overhead. Similar effects are
also verified by experiments on the Arcene dataset.

Nevertheless, we suggest furthur work to explore more MPC-
friendly activation functions that can be computed efficiently
using simple boolean or arithmetic circuits.
The privacy preserving protocol. The new activation function
proposed above is circuit friendly. It only involves testing
whether the input is within the [−1/2, 1/2] interval. However,

10

applying Yao’s garbled circuit protocol naively to the whole
logistic regression is very inefficient. Instead, we take advantage
of techniques to switch between arithmetic sharing and Yao
sharing proposed in [18]. The observation is that as mentioned
in Section II-A, the only difference between the SGD for
logistic regression and linear regression is the application
of an extra activation function in each forward propagation.
Therefore, following the same protocol for privacy preserving
linear regression, after computing the inner product of the
input data and the coefficient vector, we switch the arithmetic
sharing to a Yao sharing and evaluate the activation function
using a garbled circuit. Then, we switch back to arithmetic
sharing and continue the backward propagation.

Here, we propose a more involved protocol to further
optimize the circuit size, the number of interactions and the
number of multiplication triplets used. Note that if we let b1 = 0
if u + 1

2 ≥ 0, b1 = 1 otherwise, and b2 = 0 if u − 1
2 ≥ 0,

b2 = 1 otherwise, then the activation function can be expressed
as f(u) = (¬b2) + (b2 ∧ (¬b1))u. Therefore, given 〈u〉, we
construct a garbled circuit that takes the bits of 〈u+ 1

2 〉0 and
〈u〉1 as input, adds them and sets b1 as the most significant
bit (msb) of the result (the msb indicates whether a value is
positive or negative). To be more precise, the “+ 1

2” value is
represented in the field and scaled to have the same number of
bit representing the fractional part as u. In particular, since u is
the product of two values before truncation, “+ 1

2” is expressed
as 1

2 ·2lu , where lu is the sum of bit-length of the decimal part
in the data x and the coefficient w, but we use + 1

2 for ease of
presentation. b2 is computed in a similar fashion. Instead of
computing the rest of the function in the garbled circuit which
would require a linear number of additional AND gates, we
let the garbled circuit output the Yao sharing (output labels)
of the bits (¬b2) and b2 ∧ (¬b1). We then switch to boolean
sharing of these bits and use them in two OTs to compute
〈(¬b2) + (b2 ∧ (¬b1))u〉 and continue with the rest of the
training. The detailed protocol is described in Figure 13 in
the Appendix. The following theorem states the security of
privacy-preserving logistic regression. The proof is omitted due
to lack of space but we note that it is implied by the security
of the secret sharing scheme, the garbling scheme, and OT.

Theorem 3. Consider a protocol where clients distribute
arithmetic shares of their data among two servers who run the
protocol of Figure 13 and send the output to clients. Given a
secure garbling scheme, in the Foffline and Fot hybrid model,
this protocol realizes the ideal functionality Fml of Figure 3 for
the logistic regression function, in presence of a semi-honest
admissible adversary (see section III).

Efficiency Discussion. The additional overhead of the logistic
regression is very small. Most of the steps are exactly the
same as the linear regression protocol in Section IV-A. In
addition, one garbled circuit protocol and 3 extra OTs are
performed in each forward propagation. The garbled circuit
performs two additions and one AND, yielding a total 2l − 1
AND gates for each value u. The base OT for OT extension
can be performed in the offline phase. Therefore, the total
communication overhead is |B| · t · ((2l− 1) · 2λ+ 3l) for each
party. Note that the garbled circuit and the messages in OTs

from S0 can be sent simultaneously to S1. Thus, the logistic
regression only introduces one more interaction per iteration,
and yields a total of 3t interactions between the two parties.
No extra multiplication triplets are required since we do away
with arithmetic operations for the activation function.

D. Privacy Preserving Neural Network Training

All techniques we proposed for privacy preserving linear
and logistic regression naturally extend to support privacy
preserving neural network training. We can use the RELU
function as the activation function in each neuron and the cross
entropy function as the cost function. The update function for
each coefficient in each neuron can be expressed in a closed
form as discussed in Section II-A. All the functions in both
forward and backward propagation, other than evaluating the
activation function and its partial derivative, involve only simple
additions and multiplications, and are implemented using the
same techniques discussed for linear regression. To evaluate
the RELU function f(u) = (u > 0) · u and its derivative
f ′(u) = (u > 0), we use the same approach as for logistic
regression by switching to Yao sharing. The garbled circuit
simply adds the two shares and outputs the most significant
bit, which is even simpler than the circuit we needed for our
new logistic function. Note that both the RELU function and
its derivative can be evaluated together in one iteration, and
the result of the latter is used in the backward propagation.

We also propose a secure computation friendly alternative to
the softmax function f(ui) = e−ui∑dm

i=1 e
−ui

. We first replace the
exponentiations in the numerator with RELU functions such
that the results remain non-negative as intended by e−ui . Then,
we compute the total sum by adding the outputs of all RELU
functions, and divide each output by the total sum using a
division garbled circuit. In this way, the output is guaranteed
to be a probability distribution6. In the experiment section we
show that using an example neural network and training on
the MNIST dataset, the model trained by Tensorflow (with
softmax) can reach 94.5% accuracy on all 10 classes, while we
reach 93.4% using our proposed function. We omit a detailed
description of the protocol due to space limits.

As we observe in our experiments, the time spent on garbled
circuits for the RELU functions dominates the online training
time. Therefore, we also consider replacing the activation
function with the square function f(u) = u2, as recently
proposed in [22] but for prediction only. (We still use RELU
functions for approximating softmax.) With this modification,
we can reach 93.1% accuracy. Now a garbled circuit computing
a RELU function is replaced by a multiplication on shared
values, thus the online efficiency is improved dramatically.
However, this approach consumes more multiplication triplets
and increases cost of the offline phase.
Efficiency Discussion. In the online phase, the computation
complexity is twice that of the plaintext training for the
matrix arithmetic operations, plus the overhead of evaluating
the RELU functions and divisions using garbled circuits and
OTs. In our experiments, we use the division circuit from

6If the sum is 0, which means all the results of RELU functions are 0s, we
assign the same probability to each output. This is done with a garbled circuit.

11

the EMP toolkit [3], which has O(l2) AND gates for l-bit
numbers. The total communication is the sum of the sizes of
all matrices involved in the matrix multiplication and element-
wise multiplication, which is O(t ·∑m

i=1(|B| ·di−1+di−1 ·di)).
The total number of iterations is 5m · t.

In the offline phase, the total number of multiplication triplets
is increased by a factor of O(

∑m
i=1 dm) compared to regression,

which is exactly the number of neurons in the neural network.
Some of the multiplication triplets can be generated in the
matrix form for online matrix multiplication. Others need to
be generated independently for element-wise multiplications.
We show the cost experimentally in Section VI-C.

E. Predictions and Accuracy Testing

The techniques developed so far can also be used to securely
make predictions, since the prediction is simply the forward
propagation component of one iteration in the training. We can
hide the data, the model, the prediction, or any combinations
of them, as they can all be secret shared in our protocols.

Similarly, we can also test the accuracy of the current
model after each epoch securely, as the accuracy is simply an
aggregated result of the predictions on the testing data. The
accuracy test can be used to adjust the learning rate or decide
when to terminate the training, instead of using a fixed learning
rate and training the model by a fixed number of epochs.
Detailed discussion about this can be found in Appendix E.

V. CLIENT-AIDED OFFLINE PROTOCOL

As expected and shown by the experiments, the main
bottleneck in our privacy preserving machine learning protocols
is the offline phase. It involves a large number of cryptographic
operations such as OT or LHE, which are much slower than
simple addition and multiplication in a finite field in the online
phase. This motivates us to explore an alternative way of
generating multiplication triplets. In particular, we can let the
clients generate the multiplication triplets. Since the clients
need to secretly share their data in the first place, it is natural
to further ask them to secretly share some extra multiplication
triplets. Now, these multiplication triplets can be generated
in a trusted way with no heavy cryptographic operations,
which improves the efficiency significantly. However, despite
its benefits, it changes the trust model and introduces some
overhead for the online phase. A detailed discussion of the
client-aided triplet generations and the analysis of the overhead
can be found in Appendix F.
The new security model. The security model also changes
with the client-aided offline phase. We only informally sketch
the differences here. Previously, a client is only responsible
to upload his own data, and thus the server clearly cannot
learn any extra information when he colludes with a subset of
clients. Now, as the clients are also generating multiplication
triplets, if a subset of clients are colluding with one server, they
may reconstruct the coefficient vector in an iteration, which
indirectly leaks information about the data from honest clients.
Therefore, in the client-aided scenario, we change the security
model to not allow collusion between a server and a client.
Similar models have appeared in prior work. E.g., in [21], the

CSP provides multiplication triplets to the clients to securely
compute inner products of their data. If a client is colluding
with the CSP, he can immediately learns others’ data. Our
client-aided protocols are secure under the new model, because
the clients learn no extra information after uploading the data
and the multiplication triplets. As long as the multiplication
triplets are correct, which is the case for semihonest clients
we consider, the training is correct and secure.

VI. EXPERIMENTAL RESULTS

We implement a privacy preserving machine learning system
based on our protocols and show the experimental results in
this section.
The Implementation. The system is implemented in C++. In
all our experiments, the field size is set to 264. Hence, we
observe that the modulo operations can be implemented using
regular arithmetics on the unsigned long integer type in C++
with no extra cost. This is significantly faster than any number-
theoretic library that is able to handle operations in arbitrary
fields. E.g., we tested that an integer addition (multiplication)
is 100× faster than a modular addition (multiplication) in the
same field implemented in the GMP [5] or the NTL [7] library.
More generally, any element in the finite field Z2l can be
represented by one or several unsigned long integers and an
addition (multiplication) can be calculated by one or several
regular additions (multiplications) plus some bit operations.
This enjoys from the same order of speedup compared to using
general purpose number theoretic libraries. We use the Eigen
library [2] to handle matrix operations. OTs and garbled circuits
are implemented using the EMP toolkit [3]. It implements the
OT extension of [11], and applies free XOR [30] and fixed-key
AES garbling [12] optimizations for garbled circuits. Details
can be found in [45]. We use the cryptosystem of DGK [17]
for LHE, implemented by Demmler et. al. in [18].
Experimental settings. The experiments are executed on two
Amazon EC2 c4.8xlarge machines running Linux, with 60GB
of RAM each. For the experiments on a LAN network, we host
the two machines in the same region. The average network
delay is 0.17ms and the bandwidth is 1GB/s. The setting is
quite representative of the LAN setting, as we further tested
that two computers connected by a cable have similar network
delay and bandwidth. For the experiments on a WAN network,
we host the two machines in two different regions, one in the
US east and the other in the US west. The average network
delay is 72ms and the bandwidth is 9MB/s. We collected 10
runs for each data point in the results and report the average.

Our experiments in the LAN setting capture the sce-
nario where the two servers in our protocols have a high-
bandwidth/low-latency network connection, but otherwise are
not administered/controlled by the same party. The primary
reason for reporting experiments in the LAN setting is more
accurate benchmarking and comparison as the majority of prior
work, including all previous MPC implementations for machine
learning only report results in the LAN setting. Moreover,
contrasting our results in the LAN and WAN setting highlights
the significance of network bandwidth in our various protocols.
For example, as our experiments show, the total time for the

12

offline phase in the LAN and WAN setting are very close
when using LHE techniques to generate multiplication triplets
while there is a signficant gap between the two when using
OT extension (see Table II).

Furthermore, while the LAN setting is understandably not
always a realistic assumption, there are scenarios where a high
bandwidth link (or even a direct dedicated link) between the
two servers is plausible. For example, in payment networks,
it is not uncommon for the various involved parties (issuing
Banks, aquiring Banks, large merchants, and payment networks)
to communicate over fast dedicated links connecting them.
Similarly, in any international organization that needs to
abide by different privacy regulations and data sovereignty
restrictions, the two servers may indeed be connected using
a high bandwidth direct link but be administered in different
countries. In such scenarios, the logical, administrative, or legal
separation of the two servers plays a more significant role.

Offline vs. Online. We report experimental numbers for both
the offline and the online phase of our protocols separately,
but only use total costs (online + offline) when comparing
to related work. The offline phase includes all computation
and communication that can be performed without presence
of data, while the online phase consists of all data-dependent
steps of the protocol. Optimizing the online cost is useful
for application scenarios where a fast turn-around is required.
In particular, when using our protocols for privacy-preserving
prediction (e.g. fraud detection), new data needs to be classified
with low latency and high throughput. Indeed, we run a set
of experiments to demonstrate that online cost of privacy-
preserving prediction can be made fast enough to run for latency
critical applications (See Table IV). Similarly, when training
small models dynamically and on a regular basis, it is important
to have high online efficiency. In contrast, when training large
models (e.g. a large neural networks), the separation of the
offline and the online costs is less important.
Data sets. In our experiments, we use the following datasets.
The MNIST dataset [6] contains images of handwritten digits
from “0” to “9”. It has 60,000 training samples, each with 784
features representing 28× 28 pixels in the image. Each feature
is a grayscale between 0∼255. The Gisette dataset [4], [25]
contains images of digits “4” and “9”. It has 13,500 samples
and 5,000 features between 0∼1,000. We also use the Arcene
dataset [1], [25]. It contains mass-spectrometric data and is
used to determine if the patient has cancer. There are 200 data
samples with 10,000 features. Each value is between 0 and
1000. All of the datasets are drawn from the real world.

A. Experiments for Linear Regression

We start with the experimental results for our privacy
preserving linear regression protocols in different settings, and
compare it with previous privacy preserving solutions.
Online phase. To examine how the the online phase scales,
we run experiments on datasets with size (n) from 1,000 to
1,000,000 and d from 100 to 1,000. When n ≤ 60000 and d ≤
784, the samples are directly drawn from the MNIST dataset.
When n and d are larger than that of MNSIT, we duplicate
the dataset and add dummy values for missing features. Note

103 104 105 106

n

10−2

10−1

100

101

102

103

T
im

e
(s

)

PP Linear 1
PP Linear 2

(a)

100 300 500 700 900
d

0

0.5

1

1.5

(b)

103 104 105 106

n

100

101

102

103

104

T
im

e
(s

)

(c)

100 300 500 700 900
d

0

20

40

60

80

(d)
Fig. 6: Online cost of privacy preserving linear regression in
standard and client-aided settings. |B| is set to 128. Figure
(a), (b) are for LAN network and Figure (c), (d) are for WAN
network. Figure (a) and (c) are in log-log scale and for d = 784.
Figure (b) and (d) are in regular scale and for n = 10, 000.

that when n, d,E are fixed, the actual data used in the training
does not affect the running time.

Figure 6a shows the results in the LAN setting. “PP Linear
1” denotes the online phase of our privacy preserving linear
regression with multiplication triplets in matrix form, and “PP
Linear 2” denotes the online phase of the client-aided variant.
The running time reported is the total online time when two
servers are running simultaneously and interacting with each
other. The two parties take roughly the same time based on
our experiments. The learning rate is predetermined and we do
not count the time to find an appropriate learning rate in the
figures. The number of features is fixed to 784 and n varies
from 1,000 to 1,000,000.

As shown in the figure, the online time of our linear
regression is very fast in the LAN setting. In particular, it
only takes 22.3s to train a linear model securely on 1 million
data samples with 784 features each. From 22.3s needed for
privacy preserving training, only a small portion, namely less
than 2s, is spent on the network delay for the interactions.
The communication time to transfer the data is negligible
given the high bandwidth of the LAN network. Our second
protocol using client-generated multiplication triplets has an
overhead of roughly 3.5×. In particular, it takes 77.6s to train
the model with n = 1, 000, 000 and d = 784. As shown in
Figure 6a and 6b, the running time of our protocol scales
linearly with both n and d. We also observe that the SGD for
linear and logistic regressions on all the datasets we tested
always converges within the first epoch, and terminate after the
second epoch, which confirms that the SGD is very effective
and efficient in practice.

Figure 6c shows the corresponding performance on a WAN
network. The running time of our privacy preserving protocols
increase significantly. In particular, our first protocol takes
2291.8s to train the model when n = 1, 000, 000 and d = 784.
The reason is that now the network delay is the dominating
factor in the training time. The computation time is exactly
the same as the LAN setting, which is around 20s; the

13

LHE-based OT-based Client aided
LAN WAN Communication LAN WAN Communication Time Communication Dataset size

n = 1,000
d=100 23.9s 24.0s 2MB 0.86s 43.2s 190MB 0.028s 7MB 0.8MB
d=500 83.9s 84.8s 6MB 3.8s 210.6s 1GB 0.16s 35MB 3.8MB

d=1000 158.4s 163.2s 10MB 7.9s 163.2s 1.9GB 0.33s 69MB 7.6MB

n = 10,000
d=100 248.4s 252.9s 20MB 7.9s 420.2s 1.9GB 0.33s 69MB 7.6MB
d=500 869.1s 890.2s 60MB 39.2s 2119.1s 9.5GB 1.98s 344MB 38MB

d=1000 1600.9s 1627.0s 100MB 80.0s 4097.1s 19GB 4.0s 687MB 76MB

n = 100,000
d=100 2437.1s 2478.1s 200MB 88.0s 4125.1s 19GB 3.9s 687MB 76MB
d=500 8721.5s 8782.4s 600MB 377.9s 20000s∗ 95GB 20.2s 3435MB 380MB

d=1000 16000s∗ 16100s∗ 1000MB 794.0s 40000s∗ 190GB 49.9s 6870MB 760MB
TABLE II: Performance of the offline phase. |B| = 128 and E = 2. ∗ means estimated visa extrapolation.

communication time is still negligible even under the bandwidth
of the WAN network. The total running time is almost the
same as the network delay times the number of iterations.
Our second protocol is still roughly 3.3× slower than the first
protocol, but the reason is different from the LAN setting. In the
WAN setting, this overhead comes from the increment of the
communication, as explained in Section V. Even under this big
network delay in the WAN network, as we will show later, the
performance of our privacy preserving machine learning is still
orders of magnitude faster than the state of the art. Besides,
it is also shown in Figure 6c that the training time grows
linearly with the number of the samples in WAN networks.
However, in Figure 6d, when fixing n = 10, 000, the training
time of our first protocol only grows slightly when d increases,
which again has to do with the fact that number of interactions
is independent of d. The overhead of our second protocol
compared to the first one is increasing with d, because the
communication grows linearly with d in the second protocol.
When d = 100, the training time is almost the same, as it is
dominated by the interaction; when d = 1000, the training
time is 4× slower because of the overhead of communication.

We also show that we can improve the performance in the
WAN setting by increasing the mini-batch size, in order to
balance the computation time and the network delay. Figure 7
shows the result of this parameter tweaking. We let n = 10, 000
and d = 784 and increases |B| to measure its effect on
performance. As shown in the figure, the running time of the
online phase is decreasing when we increase the mini-batch size.
In particular, it takes 6.8s to train the model in our first protocol
when |B| = 512, which is almost 4 times faster than the time
needed when |B| = 128. This is because when the number of
epochs is the same, the number of iterations (or interactions)
is inverse proportional to the mini-batch size. When the mini-
batch size is increasing, the computation time remains roughly
unchanged, while the time spent on interaction decreases.
However, the running time cannot always keep decreasing.
When the computation time becomes dominating, the running
time will remain unchanged. Furthermore, if |B| is set too large,
the number of iterations is too small in an epoch such that the

128 256 384 512
|B|

0

20

40

60

80

T
im

e
(s

)

PP Linear 1
PP Linear 2

Fig. 7: Performance of online cost of linear regression on WAN
with different mini-batch sizes. n = 10, 000, d = 784.

model may not reach the optimum as fast as before, which
may result in an increase in the number of necessary epochs
E which itself can affect the performance. Mini-batch size is
usually determined considering the speed up of vectorization,
parallelization and robustness of the model in plaintext training.
In the privacy preserving setting, we suggest that one should
also take the network condition into consideration and find an
appropriate mini-batch size to optimize the training time.
Offline phase. The performance of the offline phase is
summarized in Table II. We report the running time on LAN
and WAN networks and the total communication for OT-
based and LHE-based multiplication triplets generation. For
the client-aided setting, we simulate the total computation time
by generating all the triplets on a single machine. We report
its total time and total communication, but do not differentiate
between the LAN and WAN settings, since in practice the data
would be sent from multiple clients with different network
conditions. As a point of reference, we also include the dataset
size assuming each value is stored as 64-bit decimal number.
We vary n from 1000 to 100,000 and d from 100 to 1000. The
mini-batch size is set to 128 and the number of epochs is set
to 2, as we usually only need 2 epochs in the online phase. If
more epochs are needed, all the results reported in the table
clearly grow linearly with the number of epochs.

As shown in the table, the LHE-based multiplication triplets
generation is the slowest among all approaches. In particular, it
takes 1600.9s for n = 10, 000 and d = 1000. The reason is that
each basic operation in LHE, i.e., encryption, and decryption
are very slow, which makes the approach impractical. E.g.,
one encryption takes 3ms, which is around 10,000× slower
than one OT (when using OT extension). However, the LHE-
based approach yields the best communication. As calculated in
Section IV-B, the asymptotic complexity is much smaller than
the dataset size. Taking the large ciphertext (2048 bits) into
consideration, the overall communication is still on the same
order as the dataset size. This communication introduces almost
no overhead when running on both LAN and WAN networks.
Unlike the online phase, the offline phase only requires 1
interaction and hence the network delay is negligible.

The performance of the OT-based multiplication triplets
generation is much better in the LAN setting. In particular, it
only takes 80.0s for n = 10, 000 and d = 1000. It introduces
a huge overhead on the communication, namely 19GB while
the data is only 76MB. This communication overhead makes
the running time much slower on WAN networks. Because
of this communication overhead, which is the major cost of
OT, the total running time is even slower than the LHE-based
generation on WAN networks.

14

Finally, the client-aided multiplication triplets generation is
the fastest because no cryptographic operation is involved. It
only takes 4.0s for n = 10, 000 and d = 1000. The overhead
on the total communication is only around 9 times the dataset
size which is acceptable in practice.

It is also shown in Table II that all the running times grow
roughly linearly7 with both n and d, which agrees with the
asymptotic complexity derived in Section IV-B.

Combining the results presented for both the online and the
offline phase, our system is still quite efficient. E.g., in the
LAN setting, when client-aided multiplication triplets are used,
it only takes 1.0s for our privacy preserving linear regression
in the online phase, with n = 10, 000 and d = 1000. The
total time for the offline phase is only 4.0s, which would be
further distributed to multiple clients in practice. When OT-
based generation is used, the online phase takes 0.28s and the
offline phase takes 80.0s.
Comparison with prior work. As surveyed in Section I-B,
privacy preserving linear regression was also considered by [37]
(NWI+13) and [21] (GSB+16) in a similar two-server setting.
Instead of using the SGD method, these two papers propose to
calculate the optimum by solving a linear system we described
in Section II-A. We show that the model trained by the SGD
method can reach the same accuracy in Table V in the Appendix,
on the MNIST, Gisette and Arcene datasets.

The protocols in NWI+13 and GSB+16 can be decomposed
into two steps. In the first step, the d × d matrix XT × X
is constructed securely, which defines a linear system. In
the second step, the Cholesky algorithm or its variants are
implemented using a garbled circuit. In the first step of
NWI+13, each client encrypts a d× d matrix using LHE. In
GSB+16, the first step is computed using multiplication triplets
generated by the CSP, which is faster than NWI+13. However,
now the clients cannot collude with the CSP, which is similar
to the model we consider in the client-aided setting. Using
garbled circuits, NWI+13 implements the Cholesky algorithm
while GSB+16 implements CGD, an approximation algorithm.

For comparison, we use the numbers reported in [21, Table
1, Figure 6] . As the performance of the first step of NWI+13
is not reported in the table, we implement it on our own using
Paillier’s encryption [38] with batching, which is the same as
used in the protocol of NWI+13. For the first step in GSB+16,
we use the result of the total time for two clients only in [21,
Table 1] with d = 500, which is the fastest8; for the second
step in GSB+16, we use the result for CGD with 15 iterations
in [21, Figure 6] with d = 500. We sum up the running time
of our offline and online phase, and sum up the running time
of the first and the second step in NWI+13 and GSB+16, and
report the total running time of all parties in all the schemes.

In Figure 8a, we compare the performance of the scheme
in NWI+13 and our schemes with OT-based and LHE-based
multiplication triplets generation, executed in both LAN and
WAN settings. As shown in the figure, the performance is

7The number of encryptions and decryptions in the LHE-based generation
is O(|B|+ d). As |B| is fixed to 128, its running time does not grow strictly
linearly with d, as reflected in Table II.

8For n = 1, 000, 000, d = 500, since the data point is missing in [21,
Table 1], we extrapolate assuming a quadratic complexity in d.

103 104 105 106

n

10−2
100
102
104
106
108

T
im

e
(s

)

NWI+13
LHE LAN
LHE WAN

OT LAN
OT WAN

(a)

103 104 105 106

n

10−2

100

102

104

106

GSB+16
Client LAN

Client WAN

(b)
Fig. 8: Efficiency comparison with prior work. Figures are in
log-log scale, d = 500, |B| = 128 for our schemes.

improved significantly. For example, when n = 100, 000 and
d = 500, even our LHE-based protocol in both LAN and WAN
settings has a 54× speedup. The OT-based protocol is 1270×
faster in the LAN setting and 24× faster in the WAN setting.
We could not execute the first step of NWI+13 for n ≥ 10, 000
and the dotted line in the figure is our extrapolation

We further compare the performance of the scheme in
GSB+16 and our scheme with client-generated multiplication
triplets in Figure 8b, as they are both secure under the
assumption that servers and clients do not collude. As shown
in the figure, when n = 100, 000 and d = 500, our scheme
has a 31× speedup in WAN setting and a 1110× speedup in
LAN setting. As the figure is in log-log scale, the larger slope
of the growth of the running time for our schemes does not
mean we will be slower eventually with large enough n. It
means that the relative speedup is decreasing, but, in fact, the
absolute difference between the running time of our scheme
and GSB+16 keeps increasing.

The reason why the cost of NWI+13 and GSB+16 are so
high when n is small is that the size of the garbled circuit to
solve the linear system only depends on d. Even if there is
only 1 data sample, the time of the second step for d = 500
is around 90,000s in NWI+13 and 30,000s in GSB+16.

Note that the gap between our scheme and prior work will
become even larger as d increases, as the running time is linear
in d in our schemes and quadratic or cubic in the two prior
schemes. In addition, all the numbers reported for the two prior
work were obtained on a network with 1 Gbps bandwidth [21]
which is close to our LAN setting. Indeed, the garbled circuit
introduces a huge communication and storage overhead. As
reported in [21, Figure 4], the garbled circuits for d = 500 in
both schemes have more than 1011 gates, which is 3000GB.
The communication time to transfer such a huge circuits would
be at least 330000s on a WAN network, which means the
speedup of our scheme for that could be more significant.

Finally, NWI+13 only supports horizontally partitioned data,
where each client holds one or multiple rows of the data matrix;
GSB+16 only supports vertically partitioned data with 2 ∼ 5
clients, where each client holds one entire column of the data.
Our schemes can support arbitrary partitioning of the data.
Besides, the offline phase of our protocols is data independent.
The servers and the clients can start the offline phase with basic
knowledge on the bounds of the dataset size, while the bulk of
the computation in the two prior work need to be performed
after obtaining the data.

15

103 104 105 106

n

10−1

100

101

102

103

T
im

e
(s

)

PP Logistic 1
PP Logistic 2

(a)

100 300 500 700 900
d

0

1

2

3

(b)

103 104 105 106

n

100

101

102

103

104

T
im

e
(s

)

(c)

100 300 500 700 900
d

0

30

60

90

120

(d)
Fig. 9: Online cost of privacy preserving logistic regression in
the standard and client-aided setting. |B| is set to 128. Figure
(a), (b) are for LAN network and Figure (c), (d) are for WAN
network. Figure (a) and (c) are in log-log scale, d = 784.
Figure (b) and (d) are in regular scale, n = 10, 000.

B. Experiments for Logistic Regression

In this section, we review experimental results for our privacy
preserving logistic regression protocol. Since this protocol does
not require any additional multiplication triplets, the offline
phase has the exact same cost as linear regression.

As shown in Figure 9, our privacy preserving logistic
regression introduces some overhead on top of the linear
regression. Specifically, in Figure 9a, when n = 1, 000, 000
and d = 784, our protocol 1 using OT-based or LHE-based
multiplication triplets takes 149.7s in the online phase. This
overhead is introduced purely by the extra garbled circuit to
compute our logistic function. The fact that a small additional
garbled circuit introduces a 7× overhead, serves as evidence
that the running time would be much larger if the whole
training was implemented in garbled circuits. Our protocol 2,
using client-generated multiplication triplets, takes 180.7s as
no extra multiplication triplet is used in logistic regression and
the garbled circuit is an additive overhead, no matter which
type of multiplication triplet is used. The training time grows
linearly with both n and d, as presented in Figure 9a and 9b.

Figure 9c and 9d shows the result on a WAN network. The
time spent on the interactions is still the dominating factor.
When n = 1, 000, 000 and d = 784, it takes around 6623s
for our first protocol, and 10213s for the second. Compared
to privacy preserving linear regression, one extra interaction
and extra communication for the garbled circuit is added per
iteration. We can also increase the mini-batch size |B| to
balance the computation and interactions and improve the
performance. We omit the result due to page limit.

To further show the scalability of our system, we run the
online part of our privacy preserving logistic regression on the
Gisette dataset with 5000 features and up to 1,000,000 samples
on a LAN network. It takes 268.9s using our first protocol and
623.5s using the second one. The trained model can reach an
accuracy of 97.9% on the testing dataset.

We are not aware of any prior work in this security model
with an implementation. We are the first to implement a scalable

Protocol 1 Protocol 2
Offline Online Offline Online

RELU 290,000s∗ 4239.7s 14951.2s 10332.3s
Square 320,000s∗ 653.0s 16783.9s 4260.3s

TABLE III: Performance of privacy preserving neural networks
training on MNIST in LAN setting. n = 60, 000, d = 784.

system for privacy preserving logistic regression.

C. Experiments for Neural Networks

We also implemented our privacy preserving protocol for
training an example neural network on the MNIST dataset.
The neural network has two hidden layers with 128 neurons in
each layer. We experiment with both the RELU and the square
function as the activation function in the hidden layers and our
proposed alternative to softmax function in the output layer.
The neural network is fully connected and the cost function is
the cross entropy function. The labels are represented as hot
vectors with 10 elements, where the element indexed by the
digit is set to 1 while others are 0s. We run our system on a
LAN network and the performance is summarized in Table III.
|B| is set to 128 and the training converges after 15 epochs.

As shown in the table, when RELU function is used, the
online phase of our first protocol takes 4239.7s, while the
offline phase using OT takes around 2.9×105s. When the
square function is used, the performance of the online phase
is improved significantly, as most of the garbled circuits
are replaced by multiplications on secret shared values. In
particular, it only takes 653.0s for the online phase of our first
protocol. The running time of the offline phase is increased,
showing a trade-off between the two phases. Using client-aided
multiplication triplets, the offline phase is further reduced to
about 1.5×104s, with an overhead on the online phase.

Due to high number of interactions and high communication,
the neural network training on WAN setting is not yet practical.
To execute one round of forward and backward propagation
in the neural network, the online phase takes 30.52s using
RELU function and the offline phase takes around 2200s using
LHE-based approach. The total running time is linear in the
number of rounds, which is around 7000 in this case.

In terms of the accuracy, the model trained by our protocol
can reach 93.4% using RELU and 93.1% using the square
function. In practice, there are other types of neural networks
that can reach better accuracy. For example, the convolutional
neural networks are believed to work better for image pro-
cessing tasks. In such neural networks, the neurons are not
fully connected and the inner product between the data and the
coefficients is replaced by a 2-D convolution. In principle, we
can also support such neural networks, as the convolution can
be computed using additions and multiplications. However,
improving the perfomance using techniques such as Fast
Fourier Transform inside secure computation is interesting
open questions. Experimenting with various MPC-friendly
activations is another avenue for research.

ACKNOWLEDGEMENTS

We thank Jing Huang from Visa Research for helpful dis-
cussions on machine learning, and Xiao Wang from University
of Maryland for his help on the EMP toolkit. The work was
partially supported by NSF grants #5245250 and #5246010.

16

REFERENCES

[1] Arcene data set. https://archive.ics.uci.edu/ml/datasets/Arcene. Accessed:
2016-07-14.

[2] Eigen library. http://eigen.tuxfamily.org/.
[3] EMP toolkit. https://github.com/emp-toolkit.
[4] Gisette data set. https://archive.ics.uci.edu/ml/datasets/Gisette. Accessed:

2016-07-14.
[5] GMP library. https://gmplib.org/.
[6] MNIST database. http://yann.lecun.com/exdb/mnist/. Accessed: 2016-

07-14.
[7] NTL library. http://www.shoup.net/ntl/.
[8] Tensorflow. https://www.tensorflow.org/.
[9] ABADI, M., CHU, A., GOODFELLOW, I., MCMAHAN, H. B., MIRONOV,

I., TALWAR, K., AND ZHANG, L. Deep learning with differential privacy.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), ACM, pp. 308–318.

[10] AONO, Y., HAYASHI, T., TRIEU PHONG, L., AND WANG, L. Scalable
and secure logistic regression via homomorphic encryption. In Proceed-
ings of the Sixth ACM Conference on Data and Application Security and
Privacy (2016), ACM, pp. 142–144.

[11] ASHAROV, G., LINDELL, Y., SCHNEIDER, T., AND ZOHNER, M. More
efficient oblivious transfer and extensions for faster secure computation.
In Proceedings of the ACM CCS 2013 (2013).

[12] BELLARE, M., HOANG, V. T., KEELVEEDHI, S., AND ROGAWAY, P.
Efficient garbling from a fixed-key blockcipher. In Security and Privacy
(SP), 2013 IEEE Symposium on (2013), IEEE, pp. 478–492.

[13] BELLARE, M., HOANG, V. T., AND ROGAWAY, P. Foundations of garbled
circuits. In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 784–796.

[14] BUNN, P., AND OSTROVSKY, R. Secure two-party k-means cluster-
ing. In Proceedings of the 14th ACM conference on Computer and
communications security (2007), ACM, pp. 486–497.

[15] CANETTI, R. Universally composable security: A new paradigm for
cryptographic protocols. In Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on (2001), IEEE, pp. 136–145.

[16] CHAUDHURI, K., AND MONTELEONI, C. Privacy-preserving logistic
regression. In Advances in Neural Information Processing Systems (2009),
pp. 289–296.

[17] DAMGARD, I., GEISLER, M., AND KROIGARD, M. Homomorphic
encryption and secure comparison. International Journal of Applied
Cryptography 1, 1 (2008), 22–31.

[18] DEMMLER, D., SCHNEIDER, T., AND ZOHNER, M. Aby-a framework
for efficient mixed-protocol secure two-party computation. In NDSS
(2015).

[19] DU, W., AND ATALLAH, M. J. Privacy-preserving cooperative scientific
computations. In csfw (2001), vol. 1, Citeseer, p. 273.

[20] DU, W., HAN, Y. S., AND CHEN, S. Privacy-preserving multivariate
statistical analysis: Linear regression and classification. In SDM (2004),
vol. 4, SIAM, pp. 222–233.

[21] GASCON, A., SCHOPPMANN, P., BALLE, B., RAYKOVA, M., DOERNER,
J., ZAHUR, S., AND EVANS, D. Secure linear regression on vertically
partitioned datasets.

[22] GILAD-BACHRACH, R., DOWLIN, N., LAINE, K., LAUTER, K.,
NAEHRIG, M., AND WERNSING, J. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Proceedings of The 33rd International Conference on Machine Learning
(2016), pp. 201–210.

[23] GILAD-BACHRACH, R., LAINE, K., LAUTER, K., RINDAL, P., AND
ROSULEK, M. Secure data exchange: A marketplace in the cloud.
Cryptology ePrint Archive, Report 2016/620, 2016. http://eprint.iacr.org/
2016/620.

[24] GILAD-BACHRACH, R., LAINE, K., LAUTER, K., RINDAL, P., AND
ROSULEK, M. Secure data exchange: A marketplace in the cloud.

[25] GUYON, I., GUNN, S., BEN-HUR, A., AND DROR, G. Result analysis
of the nips 2003 feature selection challenge. In Advances in neural
information processing systems (2004), pp. 545–552.

[26] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The elements of
statistical learning – data mining, inference, and prediction.

[27] ISHAI, Y., KILIAN, J., NISSIM, K., AND PETRANK, E. Extending
oblivious transfers efficiently. Advances in Cryptology-CRYPTO 2003
(2003), 145–161.

[28] JAGANNATHAN, G., AND WRIGHT, R. N. Privacy-preserving distributed
k-means clustering over arbitrarily partitioned data. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining (2005), ACM, pp. 593–599.

[29] KAMARA, S., MOHASSEL, P., AND RAYKOVA, M. Outsourcing multi-
party computation. IACR Cryptology ePrint Archive (2011), 272.

[30] KOLESNIKOV, V., AND SCHNEIDER, T. Improved garbled circuit: Free
xor gates and applications. In International Colloquium on Automata,
Languages, and Programming (2008), Springer, pp. 486–498.

[31] LINDELL, Y., AND PINKAS, B. Privacy preserving data mining. In
Annual International Cryptology Conference (2000), Springer, pp. 36–
54.

[32] LINDELL, Y., AND PINKAS, B. A proof of security of yaos protocol for
two-party computation. Journal of Cryptology 22, 2 (2009), 161–188.

[33] LIVNI, R., SHALEV-SHWARTZ, S., AND SHAMIR, O. On the compu-
tational efficiency of training neural networks. In Advances in Neural
Information Processing Systems (2014), pp. 855–863.

[34] MALKHI, D., NISAN, N., PINKAS, B., SELLA, Y., ET AL. Fairplay-
secure two-party computation system.

[35] NAYAK, K., WANG, X. S., IOANNIDIS, S., WEINSBERG, U., TAFT, N.,
AND SHI, E. Graphsc: Parallel secure computation made easy. In 2015
IEEE Symposium on Security and Privacy (2015), IEEE, pp. 377–394.

[36] NIKOLAENKO, V., IOANNIDIS, S., WEINSBERG, U., JOYE, M., TAFT,
N., AND BONEH, D. Privacy-preserving matrix factorization. In
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 801–812.

[37] NIKOLAENKO, V., WEINSBERG, U., IOANNIDIS, S., JOYE, M., BONEH,
D., AND TAFT, N. Privacy-preserving ridge regression on hundreds of
millions of records. In Security and Privacy (SP), 2013 IEEE Symposium
on (2013), IEEE, pp. 334–348.

[38] PAILLIER, P. Public-key cryptosystems based on composite degree
residuosity classes. In International Conference on the Theory and
Applications of Cryptographic Techniques (1999), Springer, pp. 223–238.

[39] PEIKERT, C., VAIKUNTANATHAN, V., AND WATERS, B. A framework
for efficient and composable oblivious transfer. Advances in Cryptology–
CRYPTO 2008 (2008), 554–571.

[40] SANIL, A. P., KARR, A. F., LIN, X., AND REITER, J. P. Privacy preserv-
ing regression modelling via distributed computation. In Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining (2004), ACM, pp. 677–682.

[41] SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1310–1321.

[42] SLAVKOVIC, A. B., NARDI, Y., AND TIBBITS, M. M. ” secure” logistic
regression of horizontally and vertically partitioned distributed databases.
In Seventh IEEE International Conference on Data Mining Workshops
(ICDMW 2007) (2007), IEEE, pp. 723–728.

[43] SONG, S., CHAUDHURI, K., AND SARWATE, A. D. Stochastic gradient
descent with differentially private updates. In Global Conference on
Signal and Information Processing (GlobalSIP), 2013 IEEE (2013), IEEE,
pp. 245–248.

[44] VAIDYA, J., YU, H., AND JIANG, X. Privacy-preserving svm classifica-
tion. Knowledge and Information Systems 14, 2 (2008), 161–178.

[45] WANG, X., MALOZEMOFF, A. J., AND KATZ, J. Faster two-party
computation secure against malicious adversaries in the single-execution
setting. Cryptology ePrint Archive, Report 2016/762, 2016. http://eprint.
iacr.org/2016/762.

[46] WU, S., TERUYA, T., KAWAMOTO, J., SAKUMA, J., AND KIKUCHI, H.
Privacy-preservation for stochastic gradient descent application to secure
logistic regression. The 27th Annual Conference of the Japanese Society
for Artificial Intelligence 27 (2013), 1–4.

[47] YAO, A. C. Protocols for secure computations. In Foundations of
Computer Science, 1982. SFCS’08. 23rd Annual Symposium on (1982),
IEEE, pp. 160–164.

[48] YU, H., VAIDYA, J., AND JIANG, X. Privacy-preserving svm classi-
fication on vertically partitioned data. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining (2006), Springer, pp. 647–656.

APPENDIX A
THE UC FRAMEWORK

An execution in the UC framework involves a collection
of (non-uniform) interactive Turing machines. In this work
we consider an admissible and semi-honest adversary A as
discussed above. The parties exchange messages according to
a protocol. Protocol inputs of uncorrupted parties are chosen
by an environment machine. Uncorrupted parties also report
their protocol outputs to the environment. At the end of

17

the interaction, the environment outputs a single bit. The
adversary can also interact arbitrarily with the environment —
without loss of generality the adversary is a dummy adversary
which simply forwards all received protocol messages to the
environment and acts in the protocol as instructed by the
environment.

Security is defined by comparing a real and ideal interaction.
Let REAL[Z,A, π, λ] denote the final (single-bit) output of
the environment Z when interacting with adversary A and
honest parties who execute protocol π on security parameter λ.
This interaction is referred to as the real interaction involving
protocol π.

In the ideal interaction, parties simply forward the inputs
they receive to an uncorruptable functionality machine and
forward the functionality’s response to the environment. Hence,
the trusted functionality performs the entire computation on
behalf of the parties. The target ideal functionality Fml for
protocols is described in Figure 3. Let IDEAL[Z,S,Fml, λ]
denote the output of the environment Z when interacting with
adversary S and honest parties who run the dummy protocol
in presence of functionality F on security parameter λ.

We say that a protocol π securely realizes a functionality
Fml if for every admissible adversary A attacking the real
interaction (without loss of generality, we can take A to be
the dummy adversary), there exists an adversary S (called
a simulator) attacking the ideal interaction, such that for all
environments Z , the following quantity is negligible (in λ):∣∣∣Pr

[
REAL[Z,A, π, λ] = 1

]
−Pr

[
IDEAL[Z,S,Fml, λ] = 1

]∣∣∣.
Intuitively, the simulator must achieve the same effect (on
the environment) in the ideal interaction that the adversary
achieves in the real interaction. Note that the environment’s
view includes (without loss of generality) all of the messages
that honest parties sent to the adversary as well as the outputs
of the honest parties.

APPENDIX B
PROOF OF SMALL TRUNCATION ERROR

Theorem. In field Z2l , let x ∈ [0, 2lx] ∪ [2l − 2lx , 2l), where
l > lx+1 and given shares 〈x〉0, 〈x〉1 of x, let 〈bxc〉0 = b〈x〉0c
and 〈bxc〉1 = 2l−b2l−〈x〉1c. Then with probability 1−2lx+1−l,
RecA(〈bxc〉0, 〈bxc〉1) ∈ {bxc − 1, bxc, bxc + 1} , where b·c
denotes truncation by lD ≤ lx bits.

Proof. Let 〈x〉0 = x+r mod 2l, where r is uniformly random
in Z2l , then 〈x〉1 = 2l − r. We decompose r as r1 · 2lD +
r2, where 0 ≤ r2 < 2lD and 0 ≤ r1 < 2l−lD . We prove
that if 2lx ≤ r < 2l − 2lx , RecA(〈bxc〉0, 〈bxc〉1) ∈ {bxc −
1, bxc, bxc+ 1}. Consider the following two cases.

Case 1: If 0 ≤ x ≤ 2lx , then 0 < x+r < 2l and 〈x〉0 = x+
r, without modulo. Let x = x1 ·2lD +x2, where 0 ≤ x2 < 2lD

and 0 ≤ x1 < 2lx−lD . Then we have x+ r = (x1 + r1) · 2lD +
(x2 + r2) = (x1 + r1 + c) · 2lD + (x2 + r2− c · 2lD), where the
carry bit c = 0 if x2 +r2 < 2lD and c = 1 otherwise. After the
truncation, 〈bxc〉0 = bx+rc = x1+r1+c and 〈bxc〉1 = 2l−r1.
Therefore, RecA(〈bxc〉0, 〈bxc〉1) = x1 + c = bxc+ c.

Case 2: If 2l − 2lx ≤ x < 2l, then x+ r ≥ 2l and 〈x〉0 =
x+r−2l. Let x = 2l−x1 ·2lD−x2, where 0 ≤ x2 < 2lD and

0 ≤ x1 < 2lx−lD . We have x+r−2l = (r1−x1) ·2lD +(r2−
x2) = (r1−x1− c) · 2lD + (r2−x2 + c · 2lD), where the carry
bit c = 0 if r2 > x2 and c = 1 otherwise. After the truncation,
〈bxc〉0 = bx + r − 2lc = r1 − x1 − c and 〈bxc〉1 = 2l − r1.
Therefore, RecA(〈bxc〉0, 〈bxc〉1) = 2l − x1 − c = bxc − c.

Finally, the probability that our assumption holds, i.e. the
probability of a random r being in the range [2lx , 2l − 2lx) is
1− 2lx+1−l.

Theorem 1 can be extended to a prime field Zp in a natural
way by replacing 2l with p in the proof. We also note that the
truncation does not affect security of the secret sharing as the
shares are truncated independently by each party without any
interaction.

APPENDIX C
EFFECT OF TRUNCATION ON TRAINING FOR MNIST AND

ARCENE DATASET

We run our privacy preserving linear regression protocol with
the truncation technique on the MNIST dataset [6] consisting
of images of handwriting digits and compare accuracy of
the trained model to plaintext training with standard decimal
numbers operations. The mini-batch size is set to |B| = 128
and the learning rate is α = 2−7. The input data has 784
features, each a gray scale of a pixel scaled between 0 and
1, represented using 8 decimal bits. We set the field to Z264 .
For a fair comparison, coefficients are all initialized to 0s and
the same sequence of the mini-batch indices are used for all
trainings. To simplify the task, we change the labels to be 0 for
digit “0” and 1 for non-zero digits. In Figure 10, the x-axis is
the number of iterations of the SGD algorithm and the y-axis
is the accuracy of the trained model on the testing dataset.
Here we reconstruct the coefficient vector after every iteration
in our protocol to test the accuracy. As shown in Figure 10,
when we use 13 bits for the fractional part of w, the privacy
preserving training behaves almost exactly the same as the
plaintext training. This is because we only introduce a small
error on the 13th bit of the decimal part of w. Our experiments
never triggered the failure condition in theorem 1. However,
when we use 6 bits for the decimal part of w, the accuracy of
our protocol oscillates during the training. This is because now
the error is on the 6th bit which has a larger effect and may
push the model away from the optimum. When the distance

0 10 20 30 40 50 60 70 80 90 100 110 120
Number of iterations

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Plaintext Training
Privacy Preserving 13 bits
Privacy Preserving 6 bits
Privacy Preserving 2 bits

Fig. 10: Comparison of accuracy of privacy preserving linear
regression with truncation and plaintext training on decimal
numbers.

18

to the optimum is large enough, the SGD will move back
towards the optimum again. Finally, when we use 2 bits for
the fractional part, the oscillating behavior is more extreme.
We observe a similar effect when training on another dataset
called Arcene [1] as shown in Figure 11. In other words, when
sufficient bits are used to represent the fractional part of the
coefficients, our new approach for fixed-point multiplication
of shared decimal numbers has little impact on accuracy of
the trained model.

APPENDIX D
PROOF OF SECURITY FOR PRIVACY PRESERVING LINEAR

REGRESSION

We repeat the theorem of security for privacy preserving
linear regression here and provide a proof sketch.
Theorem. Consider a protocol where clients distribute arith-
metic shares of their data among two servers who run the
protocol of Figure 4 and send the output to clients. In
the Foffline hybrid model, this protocol realizes the ideal
functionality Fml of Figure 3 for the linear regression function,
in presence of a semi-honest admissible adversary (see section
III).

sketch. An admissible adversary in our model can corrupt one
server and any subset of the clients. Given that the protocol is
symmetric with respect to the two servers, we simply need to
consider the scenario where the adversary corrupts S0 and all
but one of the clients, i.e. C1, . . . , Cm−1.

We describe a simulator S that simulates the above adversary
in the ideal world. S submits the corrupted clients’ inputs data
to the functionality and receives the final output of the linear
regression i.e. the final value of the coefficients w back.
S then runs A. On behalf of the honest client(s) S sends a

random share in Z2l to A for each value in the held by that
client. This is the only message where clients are involved.
In the remainder of the protocol, generate random matrices
and vectors corresponding to the honest server’s shares of
〈X〉, 〈Y〉, 〈U〉, 〈V〉, 〈Z〉, 〈V′〉, 〈Z′〉, and play the role of the
honest server in interactions with A using those randomly
generated values.

Finally, in the very last step where w is to be recovered,
S adjusts the honest servers’ share of of w such that the

0 40 80 120 160 200 240 280 320 360 400 440 480
Number of iterations

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Plaintext Training
Privacy Preserving 12 bits
Privacy Preserving 4 bits
Privacy Preserving 2 bits

Fig. 11: Comparison of accuracy between privacy preserving
linear regression with truncation and plaintext training on
decimal numbers, on the Arcene dataset. |B| = 32.

recovered value is indeed the coefficient vector it received
from the functionality. This concludes the simulation.

We briefly argue that the A’s view in the real and ideal
worlds and as a result, the environment’s view in the two
worlds is indistinguishable. This immediately follows from
the security of the arithmetic secret sharing and the fact that
the matrices/vectors generated in the offline phase are indeed
random. In particular, all messages sent and received and
reconstructed in the protocol (with the exception of w are
generated using uniformly random shares in both the real
protocol and the simulation described above, so indeed the view
are both identically distributed. this concludes our argument.

We note that this argument implicitly explains why using
one mask matrix U is sufficient to hide the data matrix X. The
reason is that the adversary only gets to see the masked value
once in the first interaction and the rest of the computation on
X takes place without interactions between the honest and the
corrupted server.

APPENDIX E
PRIVACY PRESERVING PREDICTION AND ACCURACY

TESTING

Privacy preserving prediction. As a side product, our proto-
cols also support privacy preserving predictions. The algorithm
is exactly the same as computing the predicted value y∗ for
linear regression, logistic regression and neural networks and
the cost is only half of one iteration. We iterate that we can
hide the input data, the model, the prediction result or any
combinations of them, as they can all be secret shared in our
protocols. Table IV summarizes the cost of predictions. Note
that the online phase is extremely fast, which benefits latency
critical applications as the offline phase can be precomputed
independently of the data. In addition, because of vectorization,
the time grows sublinearly when making multiple predictions
in parallel.

k Linear (ms) Logistic (ms) Neural (s)
Online Offline Online Offline Online Offline

LAN 1 0.20 2.5 0.59 2.5 0.18 4.7
100 0.22 51 3.9 51 0.20 13.8

WAN 1 72 620 158 620 0.57 17.8
100 215 2010 429 2010 1.2 472

TABLE IV: Online and offline performances for privacy
preserving predicition.

If either the input data or the model can be revealed, the
efficiency can be further improved. E.g., if the model is
in plaintext, the multiplications of the input data with the
coefficients can be computed directly on the shares without
precomputed multiplication triplets.

In classification problems, the prediction is usually rounded
to the closest class. E.g, in logistic regression, if the predicted
value is 0.8, the data is likely to be classified as 1, and the exact
result may reveal extra information on the input. This rounding
can be viewed as testing whether a secret shared value minus
1
2 is larger than 0, and can be supported by applying an extra
garbled circuit, similar to how we approximated the logistic
function. The garbled circuit would add the two shares and
output the most significant bit.

19

Protocol LHE MT(〈A〉0; 〈B〉1):
(Let aij be the (i, j)th element in 〈A〉0 and bj be the jth element
in 〈B〉1.)

1: S1 → S0: Enc(bj) for i = 1, . . . , d.
2: S0 → S1: ci = Πd

j=0Enc(bj)
aij · Enc(ri), for i =

1, . . . , |B|.
3: S0 sets 〈〈A〉0 × 〈B〉1〉0 = r, where r =

(−r1, . . . ,−r|B|)T mod 2l.
4: S1 sets 〈〈A〉0 × 〈B〉1〉1 = (Dec(c1), . . . ,Dec(c|B|))

T ,

Fig. 12: The offline protocol based on linearly homomorphic
encryption.

Privacy preserving accuracy testing. A simple way to decide
the learning rate is to test it on some insensitive data of the
same category beforehand, and set it to a constant without
any adjustment throughout training. Similarly, the number of
iterations can be fixed in advance.

At the cost of some leakage, we propose an alternative
solution that enables adjusting the rate and number of iteration
in the same fashion as plaintext training. To do so, we need to
test the accuracy of the current model after each epoch on a
testing dataset. As a first step, we simply perform a privacy
preserving prediction for each testing data sample. Then, we
test whether it is the same as the label and aggregate the result.
Again we use a simple garbled circuit to perform the equality
test, in which the number of gates is linear in the bit length
of the values. Finally, each party sums up all the secret-shared
results of equality test as the shared accuracy. The cost of doing
so is only running half of an iteration plus some extra garbled
circuits for rounding and equality testing. As the size of the
testing data is usually significantly smaller than the training
data, the time spent on the accuracy testing is only a small
portion of the training.

To adjust the learning rate, we compare the shared accuracy
of two epochs using a garbled circuit and reduce the learning
rate if the accuracy is decreasing. Similarly, we calculate the
difference of the accuracy and test if it is smaller than a
threshold using a garbled circuit, and terminate if the model
converges. All these tests are done on the aggregated accuracy,
which is a single value per epoch and independent of the
number of the training and testing data samples, thus the
overhead is negligible. Notice that in each epoch, whether
or not we adjust the learning rate or whether we terminate
or not leaks one extra bit of information hence providing a
trade-off between the efficiency (reduced number of epochs)
and security, compared to using a fixed learning rate and a
fixed number of iterations.

APPENDIX F
CLIENT-AIDED MULTIPLICATION TRIPLETS

We start with the linear regressions for simplicity. Note
that in the whole training, each feature in each data sample
is used exactly in two multiplications per epoch: one in the
forward propagation and the other in the backward propagation.
Therefore, it suffices for the client holding this value to generate

Protocol SGD Logistic(〈X〉, 〈Y〉, 〈U〉, 〈V〉, 〈Z〉, 〈V′〉, 〈Z′〉):
1: Do step 1–5 as in Figure 4. Both parties obtain the

shares 〈UBi
〉 = 〈XBi

× w〉 (it was defined as 〈Y∗Bi
〉 in

Figure 4).
2: for every element 〈u〉 in 〈UBi

〉 do
3: (〈b3〉B , 〈b4〉B) ← Y2B(GarbledCircuit(〈u〉0 +

1
2 , 〈u〉0 − 1

2 ; 〈u〉1, f)), where f sets b1 as the most
significant bit of (〈u〉0 + 1

2) + 〈u〉1 and b2 as the
most significant bit of (〈u〉0 − 1

2) + 〈u〉1. It then
outputs b3 = ¬b1 and b4 = b1 ∧ (¬b2).

4: S0 sets m0 = 〈b4〉B0 · 〈u〉0 + r1 and m1 = (1 −
〈b4〉B0) · 〈u〉0 + r1. S0 and S1 run (⊥;m〈b4〉B1) ←
OT(m0,m1; 〈b4〉B1). m〈b4〉B1 is equal to (〈b4〉B0 ⊕
〈b4〉B1) · 〈u〉0 + r1 = b4 · 〈u〉0 + r1.

5: P1 sets m0 = 〈b4〉B1 · 〈u〉1 + r2 and m1 = (1 −
〈b4〉B1) · 〈u〉1 + r2. S1 and S0 run (⊥;m〈b4〉B0) ←
OT(m0,m1; 〈b4〉B0). m〈b4〉B0 is equal to b4·〈u〉1+r2.

6: S0 sets m0 = 〈b3〉B0 +r3 and m1 = (1−〈b3〉B0)+r3.
S0 and S1 run (⊥;m〈b3〉B1)← OT(m0,m1; 〈b3〉B1).
m〈b3〉B1 is equivalent to b3 + r3.

7: S0 sets 〈y∗〉0 = m〈b4〉B0 −r1−r3 and S1 sets 〈y∗〉1 =

m〈b4〉B1 +m〈b3〉B1 − r2.
8: end for
9: Both parties set 〈Y∗〉i as a vector of all 〈y∗〉is

computed above and continue to step 6–12 in
Figure 4.

Fig. 13: Privacy preserving logistic regression protocol.

2E multiplication triplets. In particular, for each feature of each
sample, the client possessing the data generates a random value
u to mask the data, and generates random values vk, v′k for
k = 1, . . . , E and computes zk = u · vk, z′k = u · v′k. Finally,
the client distributes shares of 〈u〉, 〈vk〉, 〈v′k〉, 〈zk〉, 〈z′k〉 to the
two servers.

Notice that we do not assume the clients know the partition-
ing of the data possession when generating the triplets. This
means that we can no longer utilize the vectorized equation for
the online phase. For example, in Section IV-A, in the forward
propagation at step 5 of Figure 4, where we compute XB ×w,
we use precomputed matrix multiplication triplets of U×V = Z
with exactly the same dimensions as the online phase. Now,
when the multiplication triplets are generated by the clients,
the data in the mini-batch XB may belong to different clients
who may not know they are in the same mini-batch of the
training, and thus cannot agree on a common random vector
V to compute Z.

Instead, for each data sample x in XB , the two parties
compute 〈y∗〉 = MulA(〈x〉, 〈w〉) using independently generated
multiplication triplets, and set 〈Y∗〉 to be a vector of 〈y∗〉s.
Because of this, the computation, communication of the online
phase and the storage of the two servers are increased.

The client-aided multiplication triplets generation signifi-
cantly improves the efficiency of the offline phase, as there is
no cryptographic operation involved. However, it introduces
overhead to the online phase. The matrix multiplications are

20

MNIST Gisette Arcene
Cholesky 92.02% 96.7% 87%

SGD 91.95% 96.5% 86%

TABLE V: Comparison of accuracy for SGD and Cholesky.

Total (OT) Total (LHE) GC

LAN
k = 1000 0.028s 5.3s 0.13s
k = 10, 000 0.16s 53s 1.2s
k = 100, 000 1.4s 512s 11s

WAN
k = 1000 1.4s 6.2s 5.8s
k = 10, 000 12.5s 62s 68s
k = 100, 000 140s 641s 552s

TABLE VI: Comparison of our decimal multiplication and the
fixed-point multiplication using garbled circuit.

replaced by vector inner products. Though the total number
of multiplications performed is exactly the same, matrix
multiplication algorithms are in general faster using matrix
libraries in modern programming languages. This is the major
overhead introduced by the client-aided approach as depicted
in the experiments.

The communication is also increased. Previously, the coeffi-
cient vector is masked by a single random vector to compute a
single matrix multiplication, while now it is masked multiple
times by different random vectors for each inner products.
These masked values are transferred between the two parties
in the secure computation protocol. In particular, the overhead
compared to the protocols in Section IV is t ·(2|B| ·d−|B|−d)
for linear and logistic regressions. this is not significant in the
LAN setting but becomes important in the WAN setting.

Finally, the storage is also increased. Previously, the matrix
V and Z is much smaller than the data size and the matrix
U is of the same size as the data. Now, as the multiplication
triplets are generated independently, the size of V becomes
|B| ·d · t = n ·d ·E, which is larger than the size of the data by
a factor of E. The size of U is still the same, as each data is
still masked by one random value, and the size of Z is still the
same because the values can be aggregated once the servers
collect the shares from all the clients.

Despite of all these overheads, the online phase is still very
efficient, while the performance of the offline phase is im-
proved dramatically. Therefore, the privacy preserving machine
learning with client-aided multiplication triplets generation is
likely the most promising option for deployment in existing
machine learning frameworks.

APPENDIX G
MICROBENCHMARKS

In addition to evaluating the end-to-end performance of our
system, we present microbenchmarks to show the effect of our
major optimizations individually in this section.
Arithmetic on shared decimal numbers. Table VI compares
the performance of our new scheme for decimal multiplications
with that of fixed-point multiplication using garbled circuit. We
run k multiplications in parallel and compare the total time of
our scheme (online + OT-based offline and online + LHE-based
offline) to GC-based fixed-point multiplication, with a 16-bit
integer part and a 16-bit decimal part. As shown in the table,

our OT-based approach is faster than garbled circuits by a
factor of 5 − 8× on LAN, and a factor of 4 − 5× on WAN
networks. The typical number of multiplications in parallel,
needed to train on our datasets is close to 100,000. Though our
LHE-based approach is much slower than using garbled circuits
on LAN networks, and is comparable on WAN networks, we
will show in the next microbenchmark that the LHE-based
approach benefits the most from vectorization, which makes it
even faster than our OT-based approach on WAN networks.

Note that if the client-aided offline phase is used, the speedup
is more significant. Typically it only takes milliseconds in total
for k = 10, 000. However, as the security model is weakened
when using client-aided multiplication triplets, we did not
compare it directly with the fixed-point multiplication.

d Online Online OT OT LHE LHE
Vec Vec Vec

LAN
100 0.37ms 0.22ms 0.21s 0.05s 67s 1.6s
500 1.7ms 0.82ms 1.2s 0.28s 338s 5.5s
1000 3.5ms 1.7ms 2.0s 0.46s 645s 10s

WAN
100 0.2s 0.09s 14s 3.7s 81s 2s
500 0.44s 0.20ss 81s 19s 412s 6.2s
1000 0.62s 0.27s 154s 34s 718s 11s

TABLE VII: Speedup from vectorization. |B| = 128.

Vectorization. Table VII shows the speedup gained from
vectorization. As a basic operation in our training, we need to
multiply a shared |B|×d matrix and a d×1 vector. |B| is set to
128 and d varies from 100 to 1000. In the unoptimized version,
we compute the inner product between the vector and each
row of the matrix; in the vectorized version, we compute the
matrix-vector multiplication. As shown in Table VII, the online
time is improved by around 2×. The OT-based offline phase
is improved by 4×. The LHE-based offline phase is improved
by 41− 66× and it is faster than the OT-based offline phase
on WAN networks because of the vectorization.

New Logistic Poly Total Poly Total Poly Total
Client-aided OT LHE

LAN 0.0045s 0.0005s 0.025s 6.8s
WAN 0.2s 0.69s 2.5s 8.5s

TABLE VIII: Performance of our new logistic function and
polynomial approximation.

New logistic function. We compare the cost of calculating
our new logistic function with approximating the logistic
function using a degree 10 polynomial. For the polynomial
approximation, we use our scheme for decimal multiplications
and compute it using 9 sequential multiplications using the
Horner’s rule. Table VIII shows the running time for 128
parallel evaluations of the function (just to amortize the effect
of network delay). As shown in the table, unless using client-
aided multiplication triplets in LAN networks, which weakens
the security model, our new logistic function is dramatically
faster than using polynomial approximation (3.5− 1511×).

