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Abstract

Summary methods are one of the dominant approaches for estimating species trees
from genome-scale data. However, they can fail to produce accurate species trees
when the input gene trees are highly discordant due to gene tree estimation error as
well as biological processes, like incomplete lineage sorting. Here, we introduce a new
summary method TREE-QMC that offers improved accuracy and scalability under
these challenging scenarios. TREE-QMC builds upon the algorithmic framework of
QMC (Snir and Rao 2010) and its weighted version wQMC (Avni et al. 2014). Their
approach takes weighted quartets (four-leaf trees) as input and builds a species tree in
a divide-and-conquer fashion, at each step constructing a graph and seeking its max
cut. We improve upon this methodology in two ways. First, we address scalability by
providing an algorithm to construct the graph directly from the input gene trees. By
skipping the quartet weighting step, TREE-QMC has a time complexity of O(n3k) with
some assumptions on subproblem sizes, where n is the number of species and k is the
number of gene trees. Second, we address accuracy by normalizing the quartet weights
to account for “artificial taxa,” which are introduced during the divide phase so that
solutions on subproblems can be combined during the conquer phase. Together, these
contributions enable TREE-QMC to outperform the leading methods (ASTRAL-III,
FASTRAL, wQFM) in an extensive simulation study. We also present the application
of these methods to an avian phylogenomics data set.

Introduction1

Estimating the evolutionary history for a collection of species is a fundamental problem in2

evolutionary biology. Increasingly, species trees are estimated from multi-locus data sets,3
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with molecular sequences partitioned into (recombination-free) regions of the genome (re-4

ferred to as loci or genes). A popular approach to species tree estimation involves concate-5

nating the alignments for individual loci together and then estimating a phylogeny under6

some model of molecular sequence evolution, like the Generalized Time Reversible (GTR)7

model (Tavaré 1986).8

Standard models assume the genes have a shared evolutionary history; however, this9

is not necessarily the case. The evolutionary histories of individual genes (referred to as10

gene trees) can differ from each other due to biological processes (Maddison 1997). Incom-11

plete lineage sorting (ILS), one of the most well-studied sources of gene tree discordance, is12

an outcome of genes evolving within populations of individuals, as modeled by the multi-13

species coalescent (MSC) (Pamilo and Nei 1988; Rosenberg 2002; Degnan and Salter 2005).14

Concatenation-based approaches to species tree estimation can be statistically inconsistent15

under the MSC (Roch and Steel 2015). Moreover, simulation studies have shown concatena-16

tion can perform poorly when the amount of ILS is high (e.g. Kubatko and Degnan 2007).17

ILS is expected to impact many major groups, including birds (Jarvis et al. 2014), placental18

mammals (McCormack et al. 2012), and land plants (Wickett et al. 2014). Thus, species19

tree estimation methods that account for ILS, either explicitly or implicitly, are of interest.20

An alternative to concatenation involves estimating gene trees (typically one per locus)21

and then applying a summary method. The most popular summary method to date, AS-22

TRAL (Mirarab et al. 2014b), is a heuristic for the NP-hard Maximum Quartet Support23

Species Tree (MQSST) problem (Lafond and Scornavacca 2019), which can be framed as24

weighting quartets (four-leaf trees) by their frequencies in the input gene trees and then25

seeking a species tree T that maximizes the total weight of the quartets displayed by T .26

The optimal solution to MQSST is a statistically consistent estimator of the (unrooted)27

species tree under the MSC model, which is why heuristics for this problem are widely used28

in the context of multi-locus species tree estimation. Proofs of consistency typically assume29

the input gene trees are error-free (Roch et al. 2018); however, this is rarely the case. Gene30

trees estimated in recent studies have had low bootstrap support on average (Table 1 in31

Molloy and Warnow 2018), suggesting that gene tree estimation error (GTEE) is pervasive32
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in modern phylogenomics data sets. GTEE has been shown to negatively impact the accu-33

racy of summary methods in both simulation (e.g. Xi et al. 2015) and systematic studies34

(e.g. Meiklejohn et al. 2016). Together, GTEE and ILS present significant challenges to35

species tree estimation.36

Scalability is also an issue when estimating species trees from large heterogeneous data37

sets. ASTRAL executes an exact (dynamic programming) algorithm for MQSST within a38

constrained version of the solution space constructed from the input gene trees. There have39

been many improvements to ASTRAL, with the latest version ASTRAL-III (Zhang et al.40

2018) running in O((nk)1.726x) time, where n is the number of species (also called taxa),41

k is the number of gene trees, and x = O(nk) is the size of the constrained solution space.42

In addition, a recent method FASTRAL (Dibaeinia et al. 2021) runs ASTRAL-III in an43

aggressively constrained solution space to speedup species tree estimation. Importantly, the44

ASTRAL operates directly on the input set of k gene trees instead of explicitly constructing45

a set of Θ(n4) weighted quartets. This is in stark contrast to the other popular MQSST46

heuristics: weighted Quartet Max Cut (wQMC; Avni et al. 2014) and weighted Quartet47

Fiduccia-Mattheyses (wQFM; Mahbub et al. 2021).48

The wQMC and wQFM methods take weighted quartets as input and thus require a49

preprocessing step, in which Θ(n4) quartets are weighted by the number of gene trees that50

display them. Both implement divide-and-conquer approach to species tree estimation,51

which is quite different than the approach used by ASTRAL. Interestingly, a recent study52

found wQFM outperforms ASTRAL-III under model conditions characterized by high ILS53

and high GTEE (Mahbub et al. 2021); however, the scalability of wQFM is limited due54

to the required preprocessing. In this paper, we enable improved accuracy and scalability55

under these challenging scenarios by introducing TREE-QMC.56
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Results57

Overview of TREE-QMC Method58

TREE-QMC builds upon the first widely-used MQSST heuristic, wQMC, which reconstructs59

the species tree in a divide-and-conquer fashion. At each step in the divide phase, an internal60

branch in the output species tree is identified; this branch splits the taxa into two disjoint61

subsets (Figure 1). The algorithm continues by recursion on the subproblems implied by the62

two subsets of taxa. Importantly, “artificial taxa” are introduced to represent the species63

on the opposite of the branch so that solutions to subproblems can be combined during the64

conquer phase. The recursion terminates when the subproblem has three or fewer taxa, as65

there is only one possible tree that can be returned (Supplementary Figure S1). At each step66

in the conquer phase, trees for complementary subproblems are connected at their artificial67

taxa, until there is a single tree on the original set of species.68

Central to wQMC’s divide-and-conquer approach is a graph built from the (weighted)69

quartets. This graph is constructed in such a way that its max cut should correspond70

to a branch in the output species tree (Snir and Rao 2010, 2012; Avni et al. 2014). Our71

observation is that quartets with artificial taxa can have higher weights than quartets with72

only non-artificial taxa (called singletons) when looking at a single gene tree (Figure 1).73

As we will show, normalizing the quartet weights so that each gene tree gets one vote for74

every subset of four species greatly improves accuracy. The best performing normalization75

scheme (n2) weights quartets based on subproblem decomposition; specifically, quartets76

are upweighted if the species labeling their leaves are more closely related to the current77

subproblem (note: n1 denotes uniform normalization and n0 denotes no normalization).78

Moreover, we provide an algorithm to build the (normalized) quartet graph directly from79

the input gene trees, enabling TREE-QMC to have a time complexity of O(n3k) with some80

assumptions on subproblem sizes (see Methods section for details).81

In the remainder of this section, we evaluate the performance of TREE-QMC (and its82

different normalization schemes) against the leading MQSST heuristics on simulated data.83

We then apply these methods to a real avian phylogenomics data set (Jarvis et al. 2014).84
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Figure 1: At each step in the divide phase, taxa are split into two disjoint subsets and
then artificial taxa are introduced to represent the species on the other side of the split.
To compute the quartet weights for a given subproblem, the leaves of each gene tree are
relabeled by the artificial taxa. Without normalization (column n0), quartet 1, 2|Y,Z gets
0 votes and the alternative quartets get 6 votes each (note: quartet 1, Y |2, Z gets 6 votes
by taking either species 5, 3, or 4 for label Y and either species 0 or 9 for label Z). With
normalization, each gene tree gets one vote for each subset of four labels, although this vote
can be split across the three possible quartets. In the uniform normalization scheme (column
n1), we simply divide column n0 by the total number of votes cast in the unnormalized case.
In the non-uniform normalization scheme (column n2), we leverage that structure implied
by the divide phase of the algorithm; the idea is that species should have lesser importance
each time they are re-labeled by artificial taxa.

Experimental Evaluation85

We now give an overview of our simulation study; see Supplementary Materials for details.86

Methods87

TREE-QMC is compared against five leading MQSST heuristics: wQMC v1.3, wQFM v3.0,88

ASTRAL v5.5.7 (denoted ASTRAL-III or ASTRAL3), and FASTRAL. Two of these meth-89

ods, wQMC and wQFM, which take weighted quartets instead of gene trees as input (the90

preprocessing step is performed using the script distributed on Github with wQFM). All91

methods are run in default mode. The current version of TREE-QMC requires binary92

gene trees as input so polytomies in the estimated gene trees are arbitrarily before running93

TREE-QMC (the same refinements are used in all runs of TREE-QMC to ensure a fair94

comparison across the normalization schemes).95
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Evaluation Metrics96

All methods are compared in terms of species tree error, quartet score, and runtime. Species97

tree error is the percent Robinson-Foulds (RF) error (i.e., normalized RF distance between98

the true and estimated species trees multiple by 100). Because the true and estimated99

species tree are both binary, this quantity is equivalent to the percentage of false positive100

branches (i.e., internal branches in the estimated species tree that are incorrect and thus101

missing from the true species tree). Two-sided Wilcoxon signed-rank tests are used to102

evaluate differences between TREE-QMC-n2 versus FASTRAL as well as TREE-QMC-n2103

versus ASTRAL3 (TREE-QMC-n2 is also compared against wQFM when possible). The104

quartet score is the number of quartets in the input gene trees that are displayed by the105

estimated species tree. All methods are run on the same data set on the same compute106

node, with a maximum wall clock time of 18 hours. The runtime of wQFM and wQMC107

includes the time to weight quartets based on the input gene trees (the fraction of time108

spent on this preprocessing phase is reported in the Supplementary Materials).109

Simulated data sets110

Our benchmarking study utilizes data simulated in prior studies, specifically the ASTRAL-111

II simulated data sets (Mirarab and Warnow 2015) as well as the avian and mammalian112

simulated data sets (Mirarab et al. 2014a). These data are generated by (1) taking a model113

species tree, (2) simulating gene trees within the species tree under the MSC, (3) simulating114

sequences down each gene tree under the GTR model, and (4) estimating a tree from set115

of gene sequences. Either the true gene trees from step 2 or the estimated gene trees from116

step 4 can be given as input to methods. This process is repeated for various parameter117

settings.118

The avian and mammalian simulated data sets are generated from published species trees119

estimated for 48 birds (Jarvis et al. 2014) and 37 mammals (Song et al. 2012), respectively.120

The species tree branches are scaled to vary the amount of ILS, and the sequence length is121

changed to vary the amount of GTEE. There are 20 replicates for each model condition.122

The ASTRAL-II data sets are generated from model species trees simulated under the123
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Yule model given three parameters: species tree height, speciation rate, and number of taxa.124

The speciation rate is set so that speciation events are clustered near the root (deep) or125

near the tips (shallow) of the species tree. There are 50 replicates for each model condition126

(note that a new model species tree is simulated each replicate data set)127

The data properties (ILS and GTEE levels) are summarized in Supplementary Tables128

S1 and S2. The ILS level is the percent RF error (between the true species tree and the true129

gene tree) averaged across all gene trees, and GTEE level is the percent RF error (between130

the true and estimated gene trees) averaged across all gene trees. Overall, these data sets131

cover a range of important model conditions. The results are presented in four experiments132

looking at the impact of varying the number of taxa, the species tree scale/height (proxy133

for ILS), the sequence length (proxy for GTEE), and the number of genes.134
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Figure 2: Impact of number of taxa. (A) Percent species tree error across replicates (bars
represent medians; triangles represent means; outliers are not shown). The symbols *, **,
and *** indicate significance at p < 0.05, 0.005, and 0.0005, respectively (all but * survive
Bonferroni multiple comparison correction; see Supplementary Table S4 for details). (B)
Mean runtime across replicates (shaded region indicates standard error). All data sets have
species tree height 1X, shallow speciation, and 1000 estimated genes trees. The ILS level is
17–35% (ILS level), and GTEE level is 19–30%.
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Number of Taxa135

Figure 2 shows the impact of varying the number of taxa. The pipelines that need weighted136

quartets to be given as input (wQFM and wQMC) run on the order of seconds for 10 taxa,137

minutes for 50 taxa, and hours for 100 taxa, and did not complete within 18 hours (our138

maximum wallclock time) for the vast majority of data sets with 200 taxa. Importantly,139

the runtime of these pipelines is dominated by the time to weight Θ(n4) quartets by their140

frequency in the input gene trees (Supplementary Table S3). In contrast, TREE-QMC141

implements the same approach as wQMC but bypasses this preprocessing step, scaling to142

1000 taxa and 1000 genes. For these data sets, FASTRAL, TREE-QMC-n2, and ASTRAL-143

III complete on average in 32 minutes, 64 minutes, and 5.3 hours, respectively (although144

ASTRAL-III fails to complete on 3/50 replicates within 18 hours). Thus, TREE-QMC-n2 is145

much faster than ASTRAL-III and is not much slower than FASTRAL. More importantly,146

TREE-QMC-n2 is significantly more accurate than either FASTRAL or ASTRAL-III when147

the number of taxa is 200 or greater. For these same conditions, quartet weight normaliza-148

tion, and especially the non-uniform (n2) scheme, improves TREE-QMC’s accuracy.149

Incomplete Lineage Sorting (ILS)150

ASTRAL-II data (200 taxa, 1000 estimated gene trees). Figure 3 shows the impact151

of varying the species tree height and thus the amount of ILS for the ASTRAL-II data152

sets. TREE-QMC-n2, FASTRAL, and ASTRAL-III produce highly accurate species trees,153

with median species tree error at or below 6% for all model conditions (note that wQMC154

and wQFM cannot be run on these 200-taxon data sets within the maximum wall clock155

time). For some conditions, TREE-QMC-n2 is significantly more accurate than FASTRAL156

or ASTRAL-III, and there is no significant difference between pairs of methods for the other157

conditions. Notably, quartet weight normalization improves the accuracy of TREE-QMC;158

this effect is most pronounced when the amount of ILS was very high (species tree height:159

0.5X). On these same conditions, ASTRAL-III is much slower than the other methods,160

taking taking 73 minutes on average for the highest amount of ILS (species tree height:161

0.5X) compared to 5 minutes on average for the lowest amount of ILS (species tree height:162
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5X). In contrast, both TREE-QMC-n2 and FASTRAL are quite fast, taking on average less163

than 3 minutes for model conditions with 200 or fewer taxa.164
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Figure 3: Impact of the amount of ILS on MQSST heuristics. (A) Percent species tree
error across replicates (bars represent medians; triangles represent means; outliers are not
shown). The symbols *, **, and *** indicate significance at p < 0.05, 0.005, and 0.0005,
respectively (three tests survive multiple comparison corrections; see Supplementary Table
S5 for details). (B) Mean runtime across replicates (shaded region indicates standard error).
All data sets have 200 taxa and 1000 estimated gene trees. One model condition with species
tree height 1X and shallow speciation is repeated from Figure 2. For species tree heights
0.5X, 1X, and 5X, the ILS level is 68–69% , 34%, and 9–21%, respectively, and the GTEE
level is 44%, 27%–34%, and 21-28%, respectively.

Avian simulated data (48 taxa, 1000 estimated gene trees). Figure 4A–C shows165

the impact of varying the species tree scale and thus ILS on the avian simulated data sets.166

The original wQMC method is the least accurate method and is even less accurate than167

TREE-QMC-n0 (no normalization). Normalization improves the performance of TREE-168

QMC for these data, enabling TREE-QMC-n2 to be among the most accurate methods169

when the amount of ILS is higher (species tree scales: 0.5X and 1X). Testing for differences170

between TREE-QMC-n2 versus wQFM, FASTRAL, and ASTRAL-III reveals that either171
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TREE-QMC-n2 is significantly better or there are no significant differences between the172

pairs of methods. All methods finish quickly: wQMC and wQFM completes in less than173

13 minutes on average, ASTRAL-III completes in less than 4 minutes on average, and the174

other methods finish in less than 1 minute on average.175

Figure 4D–F shows the difference between the quartet score of the estimated species tree176

minus the quartet score of the true species tree (species trees were scored with the same gene177

trees used to estimate them). Higher quartet scores do not necessarily correspond to greater178

accuracy. For example, TREE-QMC-n0 is always less accurate than TREE-QMC-n2 but179

the former a higher quartet score for the lowest ILS level (Figure 4D) and a lower quartet180

score for the middle ILS level (Figure 4E). In general, the best performing methods find181

species trees with higher quartet scores than the true species tree when gene trees have high182

estimation error.183

Mammalian simulated data (37 taxa, 200 estimated gene trees). All methods have184

similar performance for the mammalian data, although these data sets represent easier model185

conditions in terms of ILS and GTEE levels (Supplementary Figure S3, Supplementary Table186

S5).187

Gene Tree Estimation Error (GTEE)188

Avian simulated data (48 taxa, 1000 gene trees). Figure 4A–C also shows the impact189

of GTEE for each species tree scale (ILS level). Across all ILS levels, methods are either190

given true gene trees or estimated gene trees with substantial error (60-62%). Without191

GTEE, there is no significant differences between TREE-QMC-n2 versus the other leading192

methods (wQFM, FASTRAL, and ASTRAL-III), and all versions of TREE-QMC perform193

similarly so the utility of normalization is diminished. In addition, methods find species194

trees with similar quartet scores to the true species tree when given true gene trees as input.195

Lastly, the performance of wQMC is inline with the other methods (Figure 4C) when there196

is very little gene tree heterogeneity due to ILS or GTEE.197
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Figure 4: Impact of ILS and GTEE on MQSST heuristics. (A), (B, and (C) Percent species
tree error for the avian data set with 1000 estimated or true gene trees and species tree
scales 0.5X, 1X, and 2X, respectively. Two-sided Wilcoxon-signed ranked tests were used
to evaluate differences between TREE-QMC-n2 versus wQFM, FASTRAL, and ASTRAL3
(9 tests per subfigure). The symbols *, **, and *** indicate significance at p < 0.05, 0.005,
and 0.0005, respectively (for 0.5X species tree scale with estimated gene trees, the difference
between TREE-QMC-n2 and ASTRAL-II survives Bonferroni multiple comparison correc-
tion; see Supplementary Table S6 for details). (D), (E), and (F) show the quartet score for
the estimated species tree minus the quartet score for the true species tree times 1000 for
species tree scales 0.5X, 1X, and 2X, respectively. For species tree heights 0.5X, 1X, and
2X, the ILS level is 60% , 47%, and 35%, respectively, and the GTEE level is 60%, 60%,
and 62%, respectively. Results for wQMC are cut off because otherwise the trends cannot
be observed (see Supplementary Figure S2 for full y-axes).

Mammalian simulated data (37 taxa, 200 gene trees). Similar trends between meth-198

ods are observed for mammalian simulated data sets when varying the sequence lengths199

(Supplementary Figure S4). TREE-QMC is significantly more accurate than FASTRAL200

and ASTRAL-III for the shortest sequence length (250 bp; GTEE level 43%) and there are201

no differences between methods otherwise.202
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Number of Genes203

Similar trends between methods are observed for varying the number of genes (Supplemen-204

tary Figures S5). Overall, TREE-QMC-n2 is the best performing method, with error rates205

similar to wQFM (although, as shown in the first experiment, TREE-QMC-n2 scales to206

data sets with larger numbers of taxa).207

Avian phylogenomics data set208

We also re-analyze the avian data set from Jarvis et al. (2014) with 3,679 ultraconserved209

elements (UCEs). This data set includes the best maximum likelihood tree and the set of210

100 bootstrapped trees for each UCE. Although the true species tree is unknown, we discuss211

the presence and absence of strongly corroborated clades, such as Passerea and six of the212

magnificent seven clades excluding clade IV (Braun and Kimball 2021). We also compare213

methods to the published concatenation tree estimated by running RAxML (Stamatakis214

2014) on UCEs only (Jarvis et al. 2014); thus the comparison between concatenation and215

the MQSST heuristics is on the same data set. Branch support is computed for the estimated216

species trees using ASTRAL-III’s local posterior probability (Sayyari and Mirarab 2016) as217

well as using multi-locus bootstrapping (MLBS) (Seo 2008). We repeat this analysis (except218

MLBS) on the TENT data (14,446 gene trees), which includes gene trees estimated on UCEs219

as well as exons and introns. In this case, methods are compared to the published TENT220

concatenation tree estimated by running ExaML (Kozlov et al. 2015).221

UCE data222

For the UCE data (48 taxa, 3679 gene trees), ASTRAL-III complete in 65 minutes, making223

it the most time consuming method. All other methods run in less than a minute; however,224

the preprocessing step to weight quartets for wQFM takes 41 minutes.225

FASTRAL and ASTRAL-III produce the same species tree, and TREE-QMC-n2 and226

wQFM produce the species tree. We compare these two trees to the published concatenation227

tree for UCEs (Figure 5). There are many similarities between these three trees, as all228
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contain the magnificent seven clades. The TREE-QMC-n2 and FASTRAL trees differ from229

the concatenation tree by 7 and 9 branches, respectively, putting the TREE-QMC-n2 tree230

slightly closer to the concatenation tree than the FASTRAL tree. Notably, the TREE-QMC-231

n2 tree recovers Passerea and Afroaves and fails to recover Columbea, like the concatenation232

tree and unlike the ASTRAL-III tree (note that Passerea was considered to be strongly233

corroborated, after accounting for data type effects, by Braun and Kimball 2021). Overall,234

there are only five branches that differ between the TREE-QMC-n2 tree and the FASTRAL235

tree; all of these branches have nearly equal quartet support for their alternative resolutions236

so that both trees represent reasonable hypotheses.237

TENT data238

For the TENT data (48 taxa, 14446 gene trees), TREE-QMC-n2 and FASTRAL complete239

in less than 3 minutes, whereas it takes 2.35 hours to weight quartets. wQFM completes240

in less than a minute after this preprocessing phase. We do not run ASTRAL-III as this241

analysis was reported to take over 30 hours (Dibaeinia et al. 2021).242

All three methods produce a different tree, which is compared to the published concate-243

nation tree for TENT data (Supplementary Figure S6). None of the trees recover Passera,244

and only the concatenation and wQFM trees recover Afroaves, although this branch has very245

local support (local posterior probability of 0.0) in the wQFM tree. Once again, the TREE-246

QMC-n2 and wQFM trees are closest to the concatenation tree, with the TREE-QMC-n2,247

wQFM, and FASTRAL trees differing from it by 8, 8, and 10 branches, respectively. There248

are 5 branches that differ between the wQFM tree and the TREE-QMC-n2 tree (notably249

two of these branches in the wQFM have very low support: local posterior probability of250

0.03 and 0.0). There are only 3 branches that differ between the TREE-QMC-n2 tree and251

the FASTRAL tree; as with the UCE data, these branches are reasonable based on quartet252

support for their alternative resolutions.253
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Figure 5: (A) Species tree estimated from UCE gene trees using TREE-QMC-n2 or wQFM.
(B) Species tree estimated from concatenated UCE alignment using RAxML. (C) Species
tree estimated from UCE gene tres using ASTRAL-III or FASTRAL. Above the branch, we
show support valuesX/Y , whereX is estimated using ASTRAL’s local posterior probability
(multiplied by 100) and Y is using MLBS for subfigures A and C and Y is the bootstrap
support computed by RAxML for subfigure B. Support values are only shown when X
is less than 100. Below the branch, we show the quartet support (the two values below
it correspond to quartet support for the two alternative resolutions of the branch). Taxa
outside of Neoaves are not shown as all methods recovered the same topology outside of
Neoaves.
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Discussion254

Our method TREE-QMC builds upon the algorithmic framework of wQMC (Avni et al.255

2014) by introducing the normalized quartet graph and showing that it can be computed256

directly from gene trees. These contributions together enable our new method TREE-QMC257

to be highly competitive with the leading MQSST heuristics, even outperforming them. In258

our simulation study, TREE-QMC (with non-uniform normalization) is more accurate than259

other methods when the amount of gene tree heterogeneity due to ILS and/or GTEE is high260

and when the number of species is large. These scenarios are known challenges to species tree261

estimation and the issue of GTEE, in particular, has motivated a new version of ASTRAL,262

dubbed weighted ASTRAL (Zhang and Mirarab 2022), which was published during our263

study. The idea behind weighted ASTRAL is that quartets should be weighted based on264

the estimated gene trees, specifically branch support on the internal branch of the quartet265

and/or branch lengths on the terminal edges of the quartet. TREE-QMC’s non-uniform266

normalization scheme also weights quartets but does so based subproblem division (i.e.,267

quartets are upweighted if they are on species in more closely related subproblems, which268

ideally reflects closeness in the true species tree). In the future, it would be interesting to269

compare TREE-QMC to weighted ASTRAL as well as to implement other quartet weighting270

schemes within TREE-QMC.271

There are several other opportunities for future work worth mentioning. First, the ver-272

sion of TREE-QMC presented here requires binary gene trees as input. Thus, TREE-QMC273

was given gene trees that are randomly refined in our experimental study, whereas all other274

methods were given gene trees with polytomies. This did not have a negative impact on275

TREE-QMC’s performance relative to the other MQSST heuristics; however, it would be276

worth exploring this issue further. Ultimately, this inherent limitation of TREE-QMC could277

be addressed by devising an efficient algorithm for computing the “ edges” in the quartet278

graph (see Methods section), although this would come at the cost of increased runtime.279

Second, the experimental study presented here only evaluates TREE-QMC in the context of280

multi-locus species tree estimation where gene tree can be discordant with the species tree281
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due to ILS and/or GTEE. Our study does not address the use of TREE-QMC as a more282

general quartet-based supertree method, and future work should explore whether quartet283

weight normalization is beneficial in this context. Lastly, TREE-QMC’s algorithm operates284

on gene trees that are multi-labeled due to artificial taxa, so the algorithms presented here285

can be applied to gene trees that are multi-labeled due to other causes, such as multiple286

individuals being sampled per species (Rabiee et al. 2019) or genes evolving via duplica-287

tions (Legried et al. 2021; Zhang et al. 2020; Yan et al. 2021; Smith et al. 2022). Future288

work should explore the effectiveness of TREE-QMC under these conditions as well those289

characterized by missing data due to gene loss or other causes (Nute et al. 2018).290

Methods291

We begin with some notation and terminology for phylogenetic trees. A phylogenetic tree T292

is a triplet (g,L, ϕ), where g is a connected acyclic graph, L is a set of labels (species), and ϕ293

maps leaves in g to labels in L. If ϕ is a bijection, we say that T is singly-labeled ; otherwise,294

we say T is multi-labeled. Trees may be either unrooted or rooted. Henceforth, all trees295

are binary, meaning that non-leaf, non-root vertices (referred to as internal vertices) have296

degree 3. For a tree T , we denote its edge set as E(T ), its internal vertex set as V (T ), and297

its leaf set as L(T ). Edges in an unrooted tree are undirected, whereas edges in a rooted tree298

are directed away from the root, a special vertex with in-degree 0 (all other vertices have299

in-degree 1). To transform an unrooted tree T into a rooted tree Tr, we select an edge in T ,300

sub-divide it with a new vertex r (the root), and then orient the edges of T away from the301

root. Conversely, we transform a rooted tree Tr into an unrooted tree T by undirecting its302

edges and then suppressing any vertex with degree 2. Sometimes we consider a phylogenetic303

tree T restricted to a subset of its leaves R ⊆ L(X). Such a tree, denoted T |R, is created304

by deleting leaves in L(T ) \ R and suppressing any vertex with degree 2 (while updating305

branch lengths in the natural way).306

To present TREE-QMC, we need two additional concepts: bipartitions and quartets. A307

bipartition splits a set L of labels into two disjoint sets: E and F = L \ E . Each edge in a308

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2022.06.25.497608doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.25.497608


(singly-labeled, unrooted) tree T induces a bipartition because deleting an edge creates two309

rooted subtrees whose leaf labels form the bipartition π(e) = E|F . A given bipartition is310

displayed by T if it is in the set {π(e) : e ∈ E(T )}. The bipartition is trivial if |E| or |F|311

is 1; otherwise, it is non-trivial. A quartet q is an unrooted, binary tree with four leaves312

a, b, c, d labeled by A,B,C,D, respectively. It is easy to see that there are three possible313

quartet trees given by their one non-trivial bipartition: a, b|c, d, a, c|b, d, and a, d|b, c (note314

that we typically use lower case letters to denote leaf vertices and capital letters to denote315

leaf labels, although this distinction is only important when trees are multi-labeled). A set316

of quartets can be defined by a unrooted tree T by restricting T to every possible subset of317

four leaves in L(T ); the resulting set Q(T ) is referred to as the quartet encoding of T . If T318

is multi-labeled, then some of the quartets in Q(T ) will have multiple leaves labeled by the319

same label. Lastly, we say that T displays a quartet q if q ∈ Q(T ).320

Review of wQMC321

As previously mentioned, our new MQSST heuristic, TREE-QMC, builds upon the divide-322

and-conquer method wQMC (Avni et al. 2014). To produce a bipartition on X , wQMC323

constructs a graph from Q, referred to as the quartet graph, and then seeks its maximum324

cut (Snir and Rao 2010, 2012; Avni et al. 2014). The quartet graph is formed from two325

complete graphs, B and G, both on vertex set V (i.e., there exists a bijection between V and326

X ). All edges in B and G are initialized to weight zero. Then, each quartet q = A,B|C,D ∈327

QX contributes its weight wT (q) to two “bad” edges in B and four “good” edges in G, where328

wT (q) corresponds to the number of gene trees in the input set T that display q. The bad329

edges are based on sibling pairs: (A,B) and (C,D). The good edges are based on non-sibling330

pairs: (A,C), (A,D), (B,C), and (B,D). We do not want to cut bad edges because siblings331

should be on the same side of the bipartition; conversely, we want to cut good edges because332

non-siblings should be on different sides of the bipartition. Ultimately, we seek a cut C to333

maximize
∑

(X,Y )∈C(G[X,Y ] − αB[X,Y ]), where α > 0 is a hyperparameter that can be334

optimized using binary search. Although MaxCut is NP-complete (Karp 1972), fast and335

accurate heuristics have been developed (Dunning et al. 2018). The cut gives a bipartition336
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in the output species tree and the wQMC method proceeds by recursion on the two subsets337

of species on each side of the bipartition. Artificial taxa are introduced to represent the338

species on the other side of the bipartition.339

Quartet Weight Normalization340

Our key observation is that artifical taxa change the quartet weights so that a single gene341

tree will vote multiple times for quartets on artificial taxa and only once for quartets on342

only non-artificial taxa (called singletons). As shown in Figure 1, the weight of quartet343

M,N |O,P is344

f0(M,N |O,P ) =
∑
m∈M

∑
n∈N

∑
o∈O

∑
p∈P

wT (m,n|o, p) (1)

where M ⊂ L denotes the set of leaves (i.e., species) in T associated with label M (and and345

similarly forN,O,P). When labelsM,N,O, P are all singletons, each gene tree casts exactly346

one vote for one of the three possible quartets: M,N |O,P or M,O|N,P or M,P |N,O347

(assuming no missing data). Otherwise, each gene tree casts |M| · |N| · |O| · |P| votes (again348

assuming no missing data) and thus can vote for more than one topology.349

We propose to normalize the quartet weights so that each gene tree casts one vote for350

each subset of four labels, although it may split its vote across the possible quartet topologies351

in the case of artificial taxa. In the simplest case, we simply divide by the number of votes352

cast so the weight of M,N |O,P becomes353

f1(M,N |O,P ) =
f0(M,N |O,P )

|M| · |N| · |O| · |P| (2)

This can be implemented efficiently by assigning an importance value I(x) to each species

x ∈ S and then compute the weight as

f(M,N |O,P ) =
∑

m∈M,n∈N,o∈O,p∈P

I(m,n, o, p) · wT (m,n|o, p) (3)

where I(m,n, o, p) = I(m) · I(n) · I(o) · I(p). Specifically, Equation 3 reduces to Equation 2

when I(m) = |M|−1 for all m ∈ M (and similarly for N,O,P). Because all species with
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the same label are assigned the same importance value, we refer to this approach as uni-

form normalization (n1). More broadly, the quartet weights will be normalized whenever

Equation 3 corresponds to a weighted average, meaning that

∑
m∈M

∑
n∈N

∑
o∈O

∑
p∈P

I(m,n, o, p) =
∑

m∈M,n∈N,o∈O,p∈P

I(m,n, o, p) = 1 (4)

It is easy to see that this will be the case whenever
∑

m∈M I(m) = 1 (and similarly for354

N,O,P). Note that in unnormalized (n0) case, we assign all species an importance value355

of 1 so that Equation 3 reduces to Equation 1.356

We now describe how to normalize quartet weights while leveraging the hierarchical357

structure implied by artificial taxa by assigning importance values to species with the same358

label. The idea is that species should have lesser importance each time they are re-labeled359

by an artificial taxon. In Figure 1, artificial taxon Z represents species Z = {0, 6, 7, 9}360

but species 0 and 9 were previously labeled by artificial taxon X. This relationship can be361

represented as the rooted “phylogenetic” tree TZ given by newick string: (6, 7, (0, 9)X)Z.362

We use TZ to assign importance values to all species z ∈ Z, specifically363

I(z) =
∏

v∈path(TZ ,z)

1

outdegree(v)
(5)

where outdegree(v) is the out-degree of vertex v and path(TZ , z) contains the vertices on the364

path in TZ from the root to the leaf labeled z, excluding the leaf. Continuing the example,365

I(6) = I(7) = 1
3 and I(0) = I(9) = 1

3 · 1
2 = 1

6 . By construction,
∑

z∈Z I(z) = 1 so this366

approach normalizes the quartet weights. Because different species with the same label can367

have different weights, we refer to this approach non-uniform normalization (n2). In our368

experimental study, normalizing the quartet weights in this fashion improved species tree369

accuracy for challenging model conditions.370
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Efficient Quartet Graph Construction371

We now describe our approach for constructing the quartet graph directly from the input372

gene trees, which is implemented within our new method TREE-QMC. The total weight of373

bad edges between X and Y , denoted B[X,Y ], is the number of quartets (displayed by the374

input gene trees) with X,Y as siblings (and similarly for G[X,Y ] but non-siblings). Note375

that these quantities can be computed by summing over the number of bad and good edges376

contributed by each gene tree T . Henceforth, we consider how to compute B and G for a377

single gene tree.378

We begin by considering a singly-labeled, binary gene tree T with n leaves. In this case,379

we can compute the number of good edges between X,Y via G[X,Y ] =
(
n−2
2

)
− B[X,Y ],380

where n is the number of leaves in T . Because T is singly-labeled, there is exactly one381

leaf associated with label X, denoted x, and one leaf associated with label Y , denoted382

y. To compute B efficiently, we consider the unique path connecting leaves x and y in T383

(Figure 6a). Deleting the edges on this path (and their end points) produces a forest of K384

rooted subtrees, denoted {t1, t2, . . . , tK}. Let w and z be two leaves of subtrees ti and tj ,385

respectively. Then, T displays quartet x,w|z, y for i < j, quartet x, y|w, z for i = j, and386

quartet x, z|w, y for i > j. To summarize, x, y are siblings if and only if leaves w, z are387

in the same subtree off the path from x to y. It follows that B[X,Y ] can be computed by388

considering all ways of selecting two other leaves from the same subtree for all subtrees on389

the path from x to y.390

This observation can be used to count the quartets efficiently when gene trees are singly-391

labeled. However, we need to be more careful when T is multi-labeled, which is typically392

the case due to artificial taxa. Following our example, suppose that we want to count the393

number of bad edges between 0 and 17 contributed by the subtree with leaves 4, 5, and394

6. However, if leaves 4 and 5 are both re-labeled by artificial taxon M , the quartet on395

0, 17|4, 5 corresponds to quartet 0, 17|M,M has no topological information and should not396

be counted. The other quartets 0, 17|4, 6 and 0, 17|5, 6 correspond to 0, 17|M, 6 and thus397

should be counted.398

We now present an algorithm for computing B in O(s2n) time, where n is the number399
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Figure 6: To count the quartets induced by T with 0 and 17 as siblings, we consider the
path between them (shown in blue in (a)). The deletion of the path produces 6 rooted
subtrees (highlighted in grey). Because 0 and 17 are siblings in a quartet if and only if the
other two taxa are drawn from the same subtree, the number of bad edges can be computed
as
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= 16. Here we show how to compute the number of

quartets induced by T with 0 and 17 as siblings after rooting T arbitrarily. Subfigure (b)
shows that we need to consider the number of ways of selecting two taxa from the same
subtree for three cases: (1) the subtree above the lca(0, 17) (highlighted in green), (2) all
subtrees off the path from the lca(0, 17) to the left taxon 0 (highlighted in red), and (3) all
subtrees off the path from the lca(0, 17) to the right taxon 17 (highlighted in pink). Case
1 can be computed in constant time if we know the number of leaves below the LCA, that
is, A[0, 17] = 6 (Eq. 8). Cases 2 and 3 can also be computed in constant time as follows.
Subfigure (c) shows the prefix of the left child of the lca(0, 17), denoted p[lca(0, 17).left] is
the number of ways of selecting two taxa from the same subtree for all subtrees circled in
red, which are off the path from the root to this vertex. Similarly, the the prefix of taxon
0, denoted p[0], is the number of ways of selecting two taxa from the same subtree for all
subtrees circled in blue, which are off the path from the root to 0. Therefore, the number
of ways of selecting two taxa from all subtrees in case 2 (i.e., subtrees highlighted in red
in subfigure (b)) is L[0, 17] = p[0] − p[lca(0, 17).left] = 7 (Eq. 9). Case 3 (not shown) can
be computed as R[0, 17] = p[17]− p[lca(0, 17).right] = 3 (Eq. 10). Putting this all together
gives B[0, 17] = 16 (Eq. 6).

of leaves in gene tree T , and s is the number of labels in the subproblem (henceforth we400

let a denote the number of singletons and b denote the number of artificial taxa so the401

subproblem size is s = a+ b). Our approach breaks down the calculation into three cases:402

1. X,Y are both singletons,403

2. X is a singleton and Y is an artificial taxon (or vice versa), and404

3. X,Y are both artificial taxa.405

To summarize our results, B[X,Y ] can be computed for all pairs X,Y in case 1, case 2,406
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and case 3 in O(a2) time, O(abn) and O(b2n) time, respectively. Thus, we can construct407

the quartet graph from k gene trees in O(s2nk) time (Theorem 1 in the Supplementary408

Materials). Afterwards, we seek a max cut using an O(s3) heuristic implemented in the open409

source library MQLib (Dunning et al. 2018). This gives us the final runtime of O(s2nk+s3)410

for each subproblem. If the division into subproblems is perfectly balanced, the divide-411

and-conquer algorithm runs in O(n3k) time (Theorem 2 in the Supplementary Materials).412

Although we do not expect perfectly balanced subproblems in practice, we found TREE-413

QMC to be fast in our experiments.414

Computing the number of bad edges given a singly-labeled gene tree415

We first present an algorithm for computing the number of bad edges given a singly-labeled416

gene tree T . After rooting T arbitrarily, we again consider the path between x and y, which417

now goes through their lowest common ancestor, denoted lca(x, y) (Figure 6b). This allows418

us to break the computation into three parts419

B[X,Y ] = A[X,Y ] + L[X,Y ] + R[X,Y ] (6)

where A[X,Y ] is the number of ways of selecting two leaves from the subtree above lca(x, y),420

L[X,Y ] the number of ways of selecting two leaves from the same subtree for all subtrees off421

the path from lca(x, y) to leaf in it’s left subtree (say x), and R[X,Y ] the number of ways422

of selecting two leaves from the same subtree for all subtrees off the path from lca(x, y) to423

the leaf in its right (say y). As we will show, each of these quantities can be computed in424

constant time, after an O(n) preprocessing phase, in which we compute two values for each425

vertex v in T . The first value c[v] is the number taxa below vertex v. The second value p[v],426

which we refer to as the “prefix” of v, is the number of ways to select two taxa from the427

same subtree for all subtrees off the path from the root to vertex v (Figure 6c). It is easy428

to see that c can be computed in O(n) time via a post-order traversal. After which, p can429
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be computed in O(n) via a preorder traversal, setting430

p[v] = p[v.parent] +

(
c[v.sibling]

2

)
(7)

after initializing p[root] = 0. Now we can compute the quantities:

A[X,Y ] =

(
n− c[lca(x, y)]

2

)
(8)

L[X,Y ] = p[x]− p[lca(x, y).left] (9)

R[X,Y ] = p[y]− p[lca(x, y).right] (10)

where v.left denotes the left child of v and v.right denotes the right child of v (see Figure 6c).431

It is possible to access lca(x, y) in constant time after O(n) preprocessing step (Gusfield432

1997), although we implemented this implicitly by computing the entries of B during a433

post-order traversal of T . Thus, we can compute B in O(n2) time, provided that T is434

singly-labeled.435

Computing the number of bad edges given a multi-labeled gene tree436

We now present an algorithm for computing the number of bad edges B[X,Y ] given a multi-437

labeled gene tree T . As previously mentioned, this breaks down into three cases. The first438

case (X,Y are both singletons) is below and the remaining two cases are presented in the439

Supplementary Materials.440

Again, we focus on the number of ways to select two leaves w, z from a collection of441

subtrees. When T is multi-labeled, it is possible for two leaves w, z to have the same label.442

Thus, we now need to count the number of ways to select two leaves z, w below vertex u so443

that they are uniquely labeled Z ̸= W (note that we use capital letters W and Z to denote444

the current labels of leaves w and z, respectively). This modified binomial is computed by445

revising the preprocessing phase. We now let c0[v] denote the number of leaves labeled by446

singletons below vertex v and let cD[v] denote the number of leaves labeled by artificial447

taxon D below vertex v. Thus, for each vertex v, we store a vector c[v] of length b + 1,448
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where b is the number of artificial taxa in T . As before, we can compute c in O(bn) time449

via a postorder traversal. However, the number of ways to select two leaves with different450

labels is now broken into three cases:451

1. the number of ways to select two singletons, which equals
(
c0[v]
2

)
,452

2. the number of ways to select one singleton and one artificial taxa, which equals c0[v] ·453 ∑
D∈A(v) cD[v], where A(v) is the set of artificial taxa below vertex v, and454

3. the number of ways to select two artificial taxa, which equals
∑

D ̸=E∈A(v) cD[v] ·cE [v].455

Putting this all together gives the modified binomial coefficient:

g0[v] =

(
c0[v]

2

)
+ c0[v] ·G1[v] +

G1[v]
2 −G2[v]

2
(11)

where G1[v] =
∑

D∈A(v) cD[v] and G2[v] =
∑

D∈A(v) cD[v]2. At each vertex, the calculation456

of G1[v] and G2[v] takes O(b) time, after which we can compute g0[v] in constant time. Thus,457

g0 can be computed in O(bn) time. Note that we also need to compute modified binomial458

coefficient for the subtree “above” vertex v, denoted g0[v.above]. This can be computed in a459

similar fashion by noting that number of singletons above v is a−c0[v] and that the number460

of leaves above v labeled by each artificial taxon D is |D| − cD[v].461

Using the modified binomial, we can apply our algorithm for singly-labeled trees by462

redefining prefix sum:463

p0[v] = p0[v.parent] + g0[v.sibling] (12)

and then redefining the quantities from which we can compute B[x, y] in constant time, that464

is, A[X,Y ] = g0[lca(x, y).above], and L[X,Y ] = p0[x] − p0[lca(x, y).left], and R[X,Y ] =465

p0[y] − p0[lca(x, y).right]. As there are a2 pairs of singletons in the subproblem, the total466

runtime is O(a2 + bn).467

Normalizing quartet weights when computing bad edges468

To normalize the quartet weights, B[X,Y ] becomes the weighted sum of quartets with X,Y469

are siblings, where each quartet x, y|z, w is weighted by I(x, y, z, w) = I(x)I(y)I(z)I(w),470
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where I(x) is the importance value assigned to leaf x (which corresponds to a species in the471

singly-labeled gene tree). When X,Y are singletons,472

B[X,Y ] = I(x)I(y)
∑

w,z∈L(T ):Z ̸=W ̸=X ̸=Y,
q(x,y,z,y)=x,y|z,y

I(z)I(w) (13)

where the importance values of singletons are set to 1 so we know that I(x) = I(y) = 1.473

Note that all of the importance values are set to 1 in the unnormalized case.474

To compute the normalized version of B[X,Y ] using the previous algorithm, we set cD[v]475

to be the sum of the importance values of the leaves below v that are labeled by D (i.e.,476

cD[v] =
∑

m∈L(v),M=D I(m) where L(v) denotes the set of leaves below v). The proof of477

correctness follows from Lemma 1, in which we show that the total weight of selecting two478

uniquely labeled leaves below vertex u equals g0[u]. Intuitively, this is because all other479

quantities (p,A,L,R) are computed from g0[u].480

Lemma 1. The total weight of all taxon pairs in the subtree rooted at internal vertex u481

∑
z,w∈L(u):

Z ̸=W

I(z)I(w) = g0[u] (14)

where L(u) is the set of leaves below vertex u.482

See Supplementary Materials for proof.483

Lastly, we need to compute the good edges G[X,Y ], which is the total weight of quartets484

in which X,Y are not siblings. This can be done in constant time, following Lemma 2.485

Lemma 2. Let T be a multi-labeled gene tree, and let X,Y be singletons. Then,

G[X,Y ] + B[X,Y ] =

(
c0[r]− 2

2

)
+ (c0[r]− 2) ·G1[r] +

G1[r]
2 −G2[r]

2
(15)

where r is the root vertex of T .486

See Supplementary Materials for proof.487
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This concludes our treatment of case 1, in which X,Y are both singletons. In order to488

compute all entries of B and G, we also need to consider the other two cases. In case 2, X489

is a singleton and Y is an artificial taxon (or vice versa), and in case 3, both X and Y are490

artificial taxa. These cases are more complicated because the naive approach would consider491

all paths in the tree between a leaf labeled X and a leaf labeled Y , which is not efficient.492

The algorithms and proofs for these cases are provided in the Supplementary Materials.493

Software and Data Availability494

TREE-QMC is available on Github: https://github.com/molloy-lab/TREE-QMC. The495

scripts used to run methods and analyze the results are also available on Github: https:496

//github.com/molloy-lab/tree-qmc-study. The data (including true and estimated gene497

trees as well as true and estimated species trees) are available on Dryad: https://doi.org/498

10.5061/dryad.m0cfxpp6g.499
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