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Abstract

Summary methods are one of the dominant approaches for estimating species trees
from genome-scale data. However, they can fail to produce accurate species trees
when the input gene trees are highly discordant due to gene tree estimation error as
well as biological processes, like incomplete lineage sorting. Here, we introduce a new
summary method TREE-QMC that offers improved accuracy and scalability under
these challenging scenarios. TREE-QMC builds upon the algorithmic framework of
QMC (Snir and Rao 2010) and its weighted version wQMC (Avni et al. 2014). Their
approach takes weighted quartets (four-leaf trees) as input and builds a species tree in
a divide-and-conquer fashion, at each step constructing a graph and seeking its max
cut. We improve upon this methodology in two ways. First, we address scalability by
providing an algorithm to construct the graph directly from the input gene trees. By
skipping the quartet weighting step, TREE-QMC has a time complexity of O(n®k) with
some assumptions on subproblem sizes, where n is the number of species and k is the
number of gene trees. Second, we address accuracy by normalizing the quartet weights
to account for “artificial taxa,” which are introduced during the divide phase so that
solutions on subproblems can be combined during the conquer phase. Together, these
contributions enable TREE-QMC to outperform the leading methods (ASTRAL-III,
FASTRAL, wQFM) in an extensive simulation study. We also present the application
of these methods to an avian phylogenomics data set.

. Introduction

> Estimating the evolutionary history for a collection of species is a fundamental problem in

3 evolutionary biology. Increasingly, species trees are estimated from multi-locus data sets,
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+  with molecular sequences partitioned into (recombination-free) regions of the genome (re-
s ferred to as loci or genes). A popular approach to species tree estimation involves concate-
¢ nating the alignments for individual loci together and then estimating a phylogeny under
7 some model of molecular sequence evolution, like the Generalized Time Reversible (GTR)
s model (Tavaré 1986).

9 Standard models assume the genes have a shared evolutionary history; however, this
10 is not necessarily the case. The evolutionary histories of individual genes (referred to as
u  gene trees) can differ from each other due to biological processes (Maddison 1997). Incom-
12 plete lineage sorting (ILS), one of the most well-studied sources of gene tree discordance, is
13 an outcome of genes evolving within populations of individuals, as modeled by the multi-
1 species coalescent (MSC) (Pamilo and Nei 1988; Rosenberg 2002; Degnan and Salter 2005).
15 Concatenation-based approaches to species tree estimation can be statistically inconsistent
16 under the MSC (Roch and Steel 2015). Moreover, simulation studies have shown concatena-
v tion can perform poorly when the amount of ILS is high (e.g. Kubatko and Degnan 2007).
18 ILS is expected to impact many major groups, including birds (Jarvis et al. 2014), placental
1w mammals (McCormack et al. 2012), and land plants (Wickett et al. 2014). Thus, species
2 tree estimation methods that account for ILS, either explicitly or implicitly, are of interest.
21 An alternative to concatenation involves estimating gene trees (typically one per locus)
» and then applying a summary method. The most popular summary method to date, AS-
s TRAL (Mirarab et al. 2014b), is a heuristic for the NP-hard Maximum Quartet Support
2 Species Tree (MQSST) problem (Lafond and Scornavacca 2019), which can be framed as
5 weighting quartets (four-leaf trees) by their frequencies in the input gene trees and then
% seeking a species tree T that maximizes the total weight of the quartets displayed by T.
x  The optimal solution to MQSST is a statistically consistent estimator of the (unrooted)
;s species tree under the MSC model, which is why heuristics for this problem are widely used
2 in the context of multi-locus species tree estimation. Proofs of consistency typically assume
w0  the input gene trees are error-free (Roch et al. 2018); however, this is rarely the case. Gene
a1 trees estimated in recent studies have had low bootstrap support on average (Table 1 in

2 Molloy and Warnow 2018), suggesting that gene tree estimation error (GTEE) is pervasive
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33 in modern phylogenomics data sets. GTEE has been shown to negatively impact the accu-
u racy of summary methods in both simulation (e.g. Xi et al. 2015) and systematic studies
s (e.g. Meiklejohn et al. 2016). Together, GTEE and ILS present significant challenges to
3 species tree estimation.

37 Scalability is also an issue when estimating species trees from large heterogeneous data
s sets. ASTRAL executes an exact (dynamic programming) algorithm for MQSST within a
3 constrained version of the solution space constructed from the input gene trees. There have
w0 been many improvements to ASTRAL, with the latest version ASTRAL-III (Zhang et al.
o 2018) running in O((nk)>75x) time, where n is the number of species (also called taxa),
2k is the number of gene trees, and x = O(nk) is the size of the constrained solution space.
s In addition, a recent method FASTRAL (Dibaeinia et al. 2021) runs ASTRAL-IIT in an
w aggressively constrained solution space to speedup species tree estimation. Importantly, the
s ASTRAL operates directly on the input set of k gene trees instead of explicitly constructing
w a set of O(n*) weighted quartets. This is in stark contrast to the other popular MQSST
« heuristics: weighted Quartet Max Cut (wQMC; Avni et al. 2014) and weighted Quartet
s Fiduccia-Mattheyses (wQFM; Mahbub et al. 2021).

29 The wQMC and wQFM methods take weighted quartets as input and thus require a
0 preprocessing step, in which ©(n*) quartets are weighted by the number of gene trees that
s display them. Both implement divide-and-conquer approach to species tree estimation,
52 which is quite different than the approach used by ASTRAL. Interestingly, a recent study
53 found wQFM outperforms ASTRAL-IIT under model conditions characterized by high ILS
s« and high GTEE (Mahbub et al. 2021); however, the scalability of wQFM is limited due
ss  to the required preprocessing. In this paper, we enable improved accuracy and scalability

ss under these challenging scenarios by introducing TREE-QMC.
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= Results

s Overview of TREE-QMC Method

so  TREE-QMC builds upon the first widely-used MQSST heuristic, wQMC, which reconstructs
e the species tree in a divide-and-conquer fashion. At each step in the divide phase, an internal
s branch in the output species tree is identified; this branch splits the taxa into two disjoint
s subsets (Figure 1). The algorithm continues by recursion on the subproblems implied by the
63 two subsets of taxa. Importantly, “artificial taxa” are introduced to represent the species
e on the opposite of the branch so that solutions to subproblems can be combined during the
e conquer phase. The recursion terminates when the subproblem has three or fewer taxa, as
s there is only one possible tree that can be returned (Supplementary Figure S1). At each step
o7 in the conquer phase, trees for complementary subproblems are connected at their artificial
e taxa, until there is a single tree on the original set of species.

69 Central to wQMC’s divide-and-conquer approach is a graph built from the (weighted)
7 quartets. This graph is constructed in such a way that its max cut should correspond
7 to a branch in the output species tree (Snir and Rao 2010, 2012; Avni et al. 2014). Our
7= observation is that quartets with artificial taxa can have higher weights than quartets with
7z only non-artificial taxa (called singletons) when looking at a single gene tree (Figure 1).
n  As we will show, normalizing the quartet weights so that each gene tree gets one vote for
75 every subset of four species greatly improves accuracy. The best performing normalization
7 scheme (n2) weights quartets based on subproblem decomposition; specifically, quartets
77 are upweighted if the species labeling their leaves are more closely related to the current
7 subproblem (note: nl denotes uniform normalization and n0 denotes no normalization).
7 Moreover, we provide an algorithm to build the (normalized) quartet graph directly from
00 the input gene trees, enabling TREE-QMC to have a time complexity of O(n3k) with some
s assumptions on subproblem sizes (see Methods section for details).

8 In the remainder of this section, we evaluate the performance of TREE-QMC (and its
e different normalization schemes) against the leading MQSST heuristics on simulated data.

s We then apply these methods to a real avian phylogenomics data set (Jarvis et al. 2014).
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Figure 1: At each step in the divide phase, taxa are split into two disjoint subsets and
then artificial taxa are introduced to represent the species on the other side of the split.
To compute the quartet weights for a given subproblem, the leaves of each gene tree are
relabeled by the artificial taxa. Without normalization (column n0), quartet 1,2|Y, Z gets
0 votes and the alternative quartets get 6 votes each (note: quartet 1,Y2,Z gets 6 votes
by taking either species 5, 3, or 4 for label Y and either species 0 or 9 for label Z). With
normalization, each gene tree gets one vote for each subset of four labels, although this vote
can be split across the three possible quartets. In the uniform normalization scheme (column
nl), we simply divide column n0 by the total number of votes cast in the unnormalized case.
In the non-uniform normalization scheme (column n2), we leverage that structure implied
by the divide phase of the algorithm; the idea is that species should have lesser importance
each time they are re-labeled by artificial taxa.

» KExperimental Evaluation

s We now give an overview of our simulation study; see Supplementary Materials for details.

&z Methods

s TREE-QMC is compared against five leading MQSST heuristics: wQMC v1.3, wQFM v3.0,
s ASTRAL v5.5.7 (denoted ASTRAL-III or ASTRAL3), and FASTRAL. Two of these meth-
w ods, wQMC and wQFM, which take weighted quartets instead of gene trees as input (the
o preprocessing step is performed using the script distributed on Github with wQFM). All
oo methods are run in default mode. The current version of TREE-QMC requires binary
03 gene trees as input so polytomies in the estimated gene trees are arbitrarily before running
u TREE-QMC (the same refinements are used in all runs of TREE-QMC to ensure a fair

s comparison across the normalization schemes).
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s Evaluation Metrics

o7 All methods are compared in terms of species tree error, quartet score, and runtime. Species
e tree error is the percent Robinson-Foulds (RF) error (i.e., normalized RF distance between
o the true and estimated species trees multiple by 100). Because the true and estimated
w0 species tree are both binary, this quantity is equivalent to the percentage of false positive
w1 branches (i.e., internal branches in the estimated species tree that are incorrect and thus
02 missing from the true species tree). Two-sided Wilcoxon signed-rank tests are used to
13 evaluate differences between TREE-QMC-n2 versus FASTRAL as well as TREE-QMC-n2
e versus ASTRAL3 (TREE-QMC-n2 is also compared against wQFM when possible). The
s quartet score is the number of quartets in the input gene trees that are displayed by the
s estimated species tree. All methods are run on the same data set on the same compute
w7 node, with a maximum wall clock time of 18 hours. The runtime of wQFM and wQMC
s includes the time to weight quartets based on the input gene trees (the fraction of time

100 spent on this preprocessing phase is reported in the Supplementary Materials).

1w Simulated data sets

m  Our benchmarking study utilizes data simulated in prior studies, specifically the ASTRAL-
uz II simulated data sets (Mirarab and Warnow 2015) as well as the avian and mammalian
us  simulated data sets (Mirarab et al. 2014a). These data are generated by (1) taking a model
us  species tree, (2) simulating gene trees within the species tree under the MSC, (3) simulating
us  sequences down each gene tree under the GTR model, and (4) estimating a tree from set
ue of gene sequences. Either the true gene trees from step 2 or the estimated gene trees from
u7  step 4 can be given as input to methods. This process is repeated for various parameter
us  settings.

119 The avian and mammalian simulated data sets are generated from published species trees
120 estimated for 48 birds (Jarvis et al. 2014) and 37 mammals (Song et al. 2012), respectively.
121 The species tree branches are scaled to vary the amount of ILS, and the sequence length is
12 changed to vary the amount of GTEE. There are 20 replicates for each model condition.

123 The ASTRAL-II data sets are generated from model species trees simulated under the
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124 Yule model given three parameters: species tree height, speciation rate, and number of taxa.
s The speciation rate is set so that speciation events are clustered near the root (deep) or
s near the tips (shallow) of the species tree. There are 50 replicates for each model condition
27 (note that a new model species tree is simulated each replicate data set)

128 The data properties (ILS and GTEE levels) are summarized in Supplementary Tables
120 S1 and S2. The ILS level is the percent RF error (between the true species tree and the true
10 gene tree) averaged across all gene trees, and GTEE level is the percent RF error (between
w the true and estimated gene trees) averaged across all gene trees. Overall, these data sets
12 cover a range of important model conditions. The results are presented in four experiments
13 looking at the impact of varying the number of taxa, the species tree scale/height (proxy

1 for ILS), the sequence length (proxy for GTEE), and the number of genes.
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Figure 2: Impact of number of taxa. (A) Percent species tree error across replicates (bars
represent medians; triangles represent means; outliers are not shown). The symbols *, **,
and *** indicate significance at p < 0.05, 0.005, and 0.0005, respectively (all but * survive
Bonferroni multiple comparison correction; see Supplementary Table S4 for details). (B)
Mean runtime across replicates (shaded region indicates standard error). All data sets have
species tree height 1X, shallow speciation, and 1000 estimated genes trees. The ILS level is
17-35% (ILS level), and GTEE level is 19-30%.
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135 Number of Taxa

136 Figure 2 shows the impact of varying the number of taxa. The pipelines that need weighted
wr quartets to be given as input (WQFM and wQMC) run on the order of seconds for 10 taxa,
133 minutes for 50 taxa, and hours for 100 taxa, and did not complete within 18 hours (our
1o maximum wallclock time) for the vast majority of data sets with 200 taxa. Importantly,
1w the runtime of these pipelines is dominated by the time to weight ©(n?) quartets by their
i frequency in the input gene trees (Supplementary Table S3). In contrast, TREE-QMC
12 implements the same approach as wQMC but bypasses this preprocessing step, scaling to
13 1000 taxa and 1000 genes. For these data sets, FASTRAL, TREE-QMC-n2, and ASTRAL-
s IIT complete on average in 32 minutes, 64 minutes, and 5.3 hours, respectively (although
s ASTRAL-III fails to complete on 3/50 replicates within 18 hours). Thus, TREE-QMC-n2 is
us much faster than ASTRAL-IIT and is not much slower than FASTRAL. More importantly,
1w TREE-QMC-n2 is significantly more accurate than either FASTRAL or ASTRAL-III when
s the number of taxa is 200 or greater. For these same conditions, quartet weight normaliza-

1o tion, and especially the non-uniform (n2) scheme, improves TREE-QMC’s accuracy.

10 Incomplete Lineage Sorting (ILS)

151 ASTRAL-II data (200 taxa, 1000 estimated gene trees). Figure 3 shows the impact
12 of varying the species tree height and thus the amount of ILS for the ASTRAL-IT data
13 sets. TREE-QMC-n2, FASTRAL, and ASTRAL-IIT produce highly accurate species trees,
12 with median species tree error at or below 6% for all model conditions (note that wQMC
155 and wQFM cannot be run on these 200-taxon data sets within the maximum wall clock
156 time). For some conditions, TREE-QMC-n2 is significantly more accurate than FASTRAL
157 or ASTRAL-III, and there is no significant difference between pairs of methods for the other
158 conditions. Notably, quartet weight normalization improves the accuracy of TREE-QMC;
150 this effect is most pronounced when the amount of ILS was very high (species tree height:
10 0.5X). On these same conditions, ASTRAL-IIT is much slower than the other methods,
11 taking taking 73 minutes on average for the highest amount of ILS (species tree height:

12 0.5X) compared to 5 minutes on average for the lowest amount of ILS (species tree height:
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5X). In contrast, both TREE-QMC-n2 and FASTRAL are quite fast, taking on average less

than 3 minutes for model conditions with 200 or fewer taxa.
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Figure 3: Impact of the amount of ILS on MQSST heuristics. (A) Percent species tree
error across replicates (bars represent medians; triangles represent means; outliers are not
shown). The symbols *, ** and *** indicate significance at p < 0.05, 0.005, and 0.0005,
respectively (three tests survive multiple comparison corrections; see Supplementary Table
S5 for details). (B) Mean runtime across replicates (shaded region indicates standard error).
All data sets have 200 taxa and 1000 estimated gene trees. One model condition with species
tree height 1X and shallow speciation is repeated from Figure 2. For species tree heights

0.5X, 1X, and 5X, the ILS level is 68-69% , 34%, and 9-21%, respectively, and the GTEE
level is 44%, 27%—-34%, and 21-28%, respectively.

Avian simulated data (48 taxa, 1000 estimated gene trees). Figure 4A—C shows
the impact of varying the species tree scale and thus ILS on the avian simulated data sets.
The original wQMC method is the least accurate method and is even less accurate than
TREE-QMC-n0 (no normalization). Normalization improves the performance of TREE-
QMC for these data, enabling TREE-QMC-n2 to be among the most accurate methods
when the amount of ILS is higher (species tree scales: 0.5X and 1X). Testing for differences
between TREE-QMC-n2 versus wQFM, FASTRAL, and ASTRAL-III reveals that either
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12 TREE-QMC-n2 is significantly better or there are no significant differences between the
173 pairs of methods. All methods finish quickly: wQMC and wQFM completes in less than
s 13 minutes on average, ASTRAL-III completes in less than 4 minutes on average, and the
175 other methods finish in less than 1 minute on average.

176 Figure 4D-F shows the difference between the quartet score of the estimated species tree
w7 minus the quartet score of the true species tree (species trees were scored with the same gene
s trees used to estimate them). Higher quartet scores do not necessarily correspond to greater
o accuracy. For example, TREE-QMC-n0 is always less accurate than TREE-QMC-n2 but
180 the former a higher quartet score for the lowest ILS level (Figure 4D) and a lower quartet
w1 score for the middle ILS level (Figure 4E). In general, the best performing methods find
12 species trees with higher quartet scores than the true species tree when gene trees have high

183 estimation error.

1 Mammalian simulated data (37 taxa, 200 estimated gene trees). All methods have
15 similar performance for the mammalian data, although these data sets represent easier model
18 conditions in terms of ILS and GTEE levels (Supplementary Figure S3, Supplementary Table
w7 S5).

s Gene Tree Estimation Error (GTEE)

1o Avian simulated data (48 taxa, 1000 gene trees). Figure 4A—C also shows the impact
wo of GTEE for each species tree scale (ILS level). Across all ILS levels, methods are either
w1 given true gene trees or estimated gene trees with substantial error (60-62%). Without
12 GTEE, there is no significant differences between TREE-QMC-n2 versus the other leading
s methods (wQFM, FASTRAL, and ASTRAL-III), and all versions of TREE-QMC perform
104 similarly so the utility of normalization is diminished. In addition, methods find species
105 trees with similar quartet scores to the true species tree when given true gene trees as input.
s Lastly, the performance of wQMC is inline with the other methods (Figure 4C) when there

17 is very little gene tree heterogeneity due to ILS or GTEE.

10


https://doi.org/10.1101/2022.06.25.497608

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.25.497608; this version posted January 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A Species tree scale 0.5X B Species* lree scale 1X C Species tree scale 2X
25.0 1 12
*%
225 14
5 * 10
: fs-z@ ] 12
w 17 8
w 15.0 '—| 10
o 125 I I%I 8 6 |
€ 100 A 6 -
=
sl ] W .| WO &
S P Il 5 2 P TR
0.0 - 0 0
estimated - 500bp true estimated - 500bp true estimated - 500bp true
D Species tree scale 0.5X E Species tree scale 1X F Species tree scale 2X
o 15 1.5 1.2
o
S 12 I 1.2 0.9
« 0.9 1 0.9 1
o 06 o6 | 0.6
S 03 A ! 0'3 0.3 QA
@ 00 ? - ’ I é! a 0.0 T nﬁﬁﬁiﬁﬁ
:@ _03 | | 0.0 @T
x(:‘-, —06 | 03 | | -0.3 A
g -09 -0.6 0.6
q —12LL —09LL —0.9 L1
estimated - 500bp true estimated - 500bp true estimated - 500bp true
Gene Trees Gene Trees Gene Trees
I wQMC [ TREE-QMC-n0 [ n1 [ 12 wQFM [ FASTRAL [ ASTRAL3

Figure 4: Impact of ILS and GTEE on MQSST heuristics. (A), (B, and (C) Percent species
tree error for the avian data set with 1000 estimated or true gene trees and species tree
scales 0.5X, 1X, and 2X, respectively. Two-sided Wilcoxon-signed ranked tests were used
to evaluate differences between TREE-QMC-n2 versus wQFM, FASTRAL, and ASTRAL3
(9 tests per subfigure). The symbols *, ** and *** indicate significance at p < 0.05, 0.005,
and 0.0005, respectively (for 0.5X species tree scale with estimated gene trees, the difference
between TREE-QMC-n2 and ASTRAL-II survives Bonferroni multiple comparison correc-
tion; see Supplementary Table S6 for details). (D), (E), and (F) show the quartet score for
the estimated species tree minus the quartet score for the true species tree times 1000 for
species tree scales 0.5X, 1X, and 2X, respectively. For species tree heights 0.5X, 1X, and
2X, the ILS level is 60% , 47%, and 35%, respectively, and the GTEE level is 60%, 60%,
and 62%, respectively. Results for wQMC are cut off because otherwise the trends cannot
be observed (see Supplementary Figure S2 for full y-axes).

vs  Mammalian simulated data (37 taxa, 200 gene trees). Similar trends between meth-
19 ods are observed for mammalian simulated data sets when varying the sequence lengths
20 (Supplementary Figure S4). TREE-QMC is significantly more accurate than FASTRAL
20 and ASTRAL-IIT for the shortest sequence length (250 bp; GTEE level 43%) and there are

202 no differences between methods otherwise.

11
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203 Number of Genes

204 Similar trends between methods are observed for varying the number of genes (Supplemen-
25 tary Figures S5). Overall, TREE-QMC-n2 is the best performing method, with error rates
25 similar to wQFM (although, as shown in the first experiment, TREE-QMC-n2 scales to

27 data sets with larger numbers of taxa).

s Avian phylogenomics data set

20  We also re-analyze the avian data set from Jarvis et al. (2014) with 3,679 ultraconserved
20 elements (UCEs). This data set includes the best maximum likelihood tree and the set of
an 100 bootstrapped trees for each UCE. Although the true species tree is unknown, we discuss
a2 the presence and absence of strongly corroborated clades, such as Passerea and six of the
23 magnificent seven clades excluding clade IV (Braun and Kimball 2021). We also compare
22 methods to the published concatenation tree estimated by running RAxML (Stamatakis
a5 2014) on UCEs only (Jarvis et al. 2014); thus the comparison between concatenation and
26 the MQSST heuristics is on the same data set. Branch support is computed for the estimated
ar - species trees using ASTRAL-III’s local posterior probability (Sayyari and Mirarab 2016) as
28 well as using multi-locus bootstrapping (MLBS) (Seo 2008). We repeat this analysis (except
20 MLBS) on the TENT data (14,446 gene trees), which includes gene trees estimated on UCEs
20 as well as exons and introns. In this case, methods are compared to the published TENT

a1 concatenation tree estimated by running ExaML (Kozlov et al. 2015).

22 UCE data

23 For the UCE data (48 taxa, 3679 gene trees), ASTRAL-III complete in 65 minutes, making
24 it the most time consuming method. All other methods run in less than a minute; however,
25 the preprocessing step to weight quartets for wQFM takes 41 minutes.

26 FASTRAL and ASTRAL-IIT produce the same species tree, and TREE-QMC-n2 and
27 wQFM produce the species tree. We compare these two trees to the published concatenation

28 tree for UCEs (Figure 5). There are many similarities between these three trees, as all
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29 contain the magnificent seven clades. The TREE-QMC-n2 and FASTRAL trees differ from
20 the concatenation tree by 7 and 9 branches, respectively, putting the TREE-QMC-n2 tree
2 slightly closer to the concatenation tree than the FASTRAL tree. Notably, the TREE-QMC-
22 12 tree recovers Passerea and Afroaves and fails to recover Columbea, like the concatenation
23 tree and unlike the ASTRAL-III tree (note that Passerea was considered to be strongly
24 corroborated, after accounting for data type effects, by Braun and Kimball 2021). Overall,
25 there are only five branches that differ between the TREE-QMC-n2 tree and the FASTRAL
26 tree; all of these branches have nearly equal quartet support for their alternative resolutions

27 8o that both trees represent reasonable hypotheses.

22 TENT data

20 For the TENT data (48 taxa, 14446 gene trees), TREE-QMC-n2 and FASTRAL complete
20 in less than 3 minutes, whereas it takes 2.35 hours to weight quartets. wQFM completes
an in less than a minute after this preprocessing phase. We do not run ASTRAL-III as this
22 analysis was reported to take over 30 hours (Dibaeinia et al. 2021).

23 All three methods produce a different tree, which is compared to the published concate-
2¢  mnation tree for TENT data (Supplementary Figure S6). None of the trees recover Passera,
25 and only the concatenation and wQFM trees recover Afroaves, although this branch has very
26 local support (local posterior probability of 0.0) in the wQFM tree. Once again, the TREE-
a7 QMC-n2 and wQFM trees are closest to the concatenation tree, with the TREE-QMC-n2,
us - wQFM, and FASTRAL trees differing from it by 8, 8, and 10 branches, respectively. There
u9 are 5 branches that differ between the wQFM tree and the TREE-QMC-n2 tree (notably
0 two of these branches in the wQFM have very low support: local posterior probability of
s 0.03 and 0.0). There are only 3 branches that differ between the TREE-QMC-n2 tree and
»  the FASTRAL tree; as with the UCE data, these branches are reasonable based on quartet

»3  support for their alternative resolutions.

13
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Figure 5: (A) Species tree estimated from UCE gene trees using TREE-QMC-n2 or wQFM.
(B) Species tree estimated from concatenated UCE alignment using RAxML. (C) Species
tree estimated from UCE gene tres using ASTRAL-IIT or FASTRAL. Above the branch, we
show support values X/Y | where X is estimated using ASTRAL’s local posterior probability
(multiplied by 100) and Y is using MLBS for subfigures A and C and Y is the bootstrap
support computed by RAxXxML for subfigure B. Support values are only shown when X
is less than 100. Below the branch, we show the quartet support (the two values below
it correspond to quartet support for the two alternative resolutions of the branch). Taxa
outside of Neoaves are not shown as all methods recovered the same topology outside of
Neoaves.
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» 1Discussion

355 Our method TREE-QMC builds upon the algorithmic framework of wQMC (Avni et al.
6 2014) by introducing the normalized quartet graph and showing that it can be computed
»7  directly from gene trees. These contributions together enable our new method TREE-QMC
»8  to be highly competitive with the leading MQSST heuristics, even outperforming them. In
30 our simulation study, TREE-QMC (with non-uniform normalization) is more accurate than
x%0  other methods when the amount of gene tree heterogeneity due to ILS and/or GTEE is high
1 and when the number of species is large. These scenarios are known challenges to species tree
»%  estimation and the issue of GTEE, in particular, has motivated a new version of ASTRAL,
%3 dubbed weighted ASTRAL (Zhang and Mirarab 2022), which was published during our
x4 study. The idea behind weighted ASTRAL is that quartets should be weighted based on
x5 the estimated gene trees, specifically branch support on the internal branch of the quartet
x%6 and/or branch lengths on the terminal edges of the quartet. TREE-QMC’s non-uniform
s normalization scheme also weights quartets but does so based subproblem division (i.e.,
xs quartets are upweighted if they are on species in more closely related subproblems, which
x%0 ideally reflects closeness in the true species tree). In the future, it would be interesting to
oo compare TREE-QMC to weighted ASTRAL as well as to implement other quartet weighting
on schemes within TREE-QMC.

272 There are several other opportunities for future work worth mentioning. First, the ver-
a3 sion of TREE-QMC presented here requires binary gene trees as input. Thus, TREE-QMC
s was given gene trees that are randomly refined in our experimental study, whereas all other
a5 methods were given gene trees with polytomies. This did not have a negative impact on
as  TREE-QMC’s performance relative to the other MQSST heuristics; however, it would be
o worth exploring this issue further. Ultimately, this inherent limitation of TREE-QMC could

4

as be addressed by devising an efficient algorithm for computing the “ edges” in the quartet
a9 graph (see Methods section), although this would come at the cost of increased runtime.
20 Second, the experimental study presented here only evaluates TREE-QMC in the context of

2 multi-locus species tree estimation where gene tree can be discordant with the species tree
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2 due to ILS and/or GTEE. Our study does not address the use of TREE-QMC as a more
23 general quartet-based supertree method, and future work should explore whether quartet
24 weight normalization is beneficial in this context. Lastly, TREE-QMC’s algorithm operates
265 on gene trees that are multi-labeled due to artificial taxa, so the algorithms presented here
25 can be applied to gene trees that are multi-labeled due to other causes, such as multiple
2w individuals being sampled per species (Rabiee et al. 2019) or genes evolving via duplica-
28 tions (Legried et al. 2021; Zhang et al. 2020; Yan et al. 2021; Smith et al. 2022). Future
29 work should explore the effectiveness of TREE-QMC under these conditions as well those

20 characterized by missing data due to gene loss or other causes (Nute et al. 2018).

» Methods

20 We begin with some notation and terminology for phylogenetic trees. A phylogenetic tree T
23 s a triplet (g, £, ¢), where g is a connected acyclic graph, £ is a set of labels (species), and ¢
20 maps leaves in g to labels in L. If ¢ is a bijection, we say that T is singly-labeled; otherwise,
205 we say 1 is multi-labeled. Trees may be either unrooted or rooted. Henceforth, all trees
206 are binary, meaning that non-leaf, non-root vertices (referred to as internal vertices) have
207 degree 3. For a tree T, we denote its edge set as F(T), its internal vertex set as V(T), and
208 its leaf set as L(T'). Edges in an unrooted tree are undirected, whereas edges in a rooted tree
20 are directed away from the root, a special vertex with in-degree 0 (all other vertices have
s0 in-degree 1). To transform an unrooted tree T' into a rooted tree 7)., we select an edge in T,
sn  sub-divide it with a new vertex r (the root), and then orient the edges of T' away from the
s root. Conversely, we transform a rooted tree T, into an unrooted tree T' by undirecting its
;3 edges and then suppressing any vertex with degree 2. Sometimes we consider a phylogenetic
s tree T' restricted to a subset of its leaves R C L(X). Such a tree, denoted T|g, is created
ws by deleting leaves in L(T) \ R and suppressing any vertex with degree 2 (while updating
ws  branch lengths in the natural way).

307 To present TREE-QMC, we need two additional concepts: bipartitions and quartets. A

w8 bipartition splits a set £ of labels into two disjoint sets: £ and F = £\ £. Each edge in a
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w0 (singly-labeled, unrooted) tree T' induces a bipartition because deleting an edge creates two
s rooted subtrees whose leaf labels form the bipartition w(e) = £|F. A given bipartition is
su  displayed by T if it is in the set {n(e) : e € E(T)}. The bipartition is trivial if |£] or |F|
sz is 1; otherwise, it is non-trivial. A quartet ¢ is an unrooted, binary tree with four leaves
a3 a,b,c,d labeled by A, B, C, D, respectively. It is easy to see that there are three possible
s quartet trees given by their one non-trivial bipartition: a,blc,d, a,c|b,d, and a, d|b, c (note
a5 that we typically use lower case letters to denote leaf vertices and capital letters to denote
a6 leaf labels, although this distinction is only important when trees are multi-labeled). A set
sz of quartets can be defined by a unrooted tree T' by restricting T to every possible subset of
as  four leaves in L(T); the resulting set Q(T) is referred to as the quartet encoding of 7. If T'
a0 is multi-labeled, then some of the quartets in Q(T") will have multiple leaves labeled by the

20 same label. Lastly, we say that T displays a quartet ¢ if ¢ € Q(T).

321 Review of WQMC

2 As previously mentioned, our new MQSST heuristic, TREE-QMC, builds upon the divide-
23 and-conquer method wQMC (Avni et al. 2014). To produce a bipartition on X', wQMC
3¢ constructs a graph from Q, referred to as the quartet graph, and then seeks its maximum
25 cut (Snir and Rao 2010, 2012; Avni et al. 2014). The quartet graph is formed from two
26 complete graphs, B and G, both on vertex set V' (i.e., there exists a bijection between V' and
a2 X). All edges in B and G are initialized to weight zero. Then, each quartet ¢ = A, B|C, D €
28 Quy contributes its weight w(g) to two “bad” edges in B and four “good” edges in G, where
a0 w7 (q) corresponds to the number of gene trees in the input set T that display ¢. The bad
a0 edges are based on sibling pairs: (A4, B) and (C, D). The good edges are based on non-sibling
s pairs: (A,C), (A, D), (B,C), and (B, D). We do not want to cut bad edges because siblings
s should be on the same side of the bipartition; conversely, we want to cut good edges because
a3 non-siblings should be on different sides of the bipartition. Ultimately, we seek a cut C to
3 maximize )y yyeo(GIX, Y] — aB[X,Y]), where a > 0 is a hyperparameter that can be
35 optimized using binary search. Although MaxCut is NP-complete (Karp 1972), fast and

16 accurate heuristics have been developed (Dunning et al. 2018). The cut gives a bipartition
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37 in the output species tree and the wQMC method proceeds by recursion on the two subsets
38 of species on each side of the bipartition. Artificial taxa are introduced to represent the

330 species on the other side of the bipartition.

w0  Quartet Weight Normalization

s Our key observation is that artifical taxa change the quartet weights so that a single gene
s tree will vote multiple times for quartets on artificial taxa and only once for quartets on
s only non-artificial taxa (called singletons). As shown in Figure 1, the weight of quartet

344 M,N‘O,P is

foM,NO,P)=>" 3" "> wr(m,nlo,p) (1)

meM neN 0€O peP

ss  where M C L denotes the set of leaves (i.e., species) in T' associated with label M (and and
us  similarly for N, O, P). When labels M, N, O, P are all singletons, each gene tree casts exactly
wr  one vote for one of the three possible quartets: M, N|O,P or M,O|N,P or M,P|N,O
s (assuming no missing data). Otherwise, each gene tree casts [M|-|N|-|O]- |P| votes (again
s assuming no missing data) and thus can vote for more than one topology.

350 We propose to normalize the quartet weights so that each gene tree casts one vote for
1 each subset of four labels, although it may split its vote across the possible quartet topologies
2 in the case of artificial taxa. In the simplest case, we simply divide by the number of votes
353 cast so the weight of M, N|O, P becomes

fO<M7N|O’P) (2)
[M] - [N|-|O] - [P|

fl(MaNlovp) =

This can be implemented efficiently by assigning an importance value I(z) to each species

x € § and then compute the weight as

f(MaN|OaP) = Z I(man707p) 'wT(man|Oap) (3)
meM,neN,0€0,peP

where I(m,n,o,p) = I(m)-1(n)-I(o)-I(p). Specifically, Equation 3 reduces to Equation 2

when I(m) = |[M|~! for all m € M (and similarly for N, O, P). Because all species with

18


https://doi.org/10.1101/2022.06.25.497608

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.25.497608; this version posted January 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the same label are assigned the same importance value, we refer to this approach as uni-
form normalization (n1). More broadly, the quartet weights will be normalized whenever

Equation 3 corresponds to a weighted average, meaning that

Z ZZZI(m,n,o,p): Z I(m,n,o0,p) =1 (4)

meM neN o€O peP meM,neN,0€0,peP

s It is easy to see that this will be the case whenever ) _\;I(m) = 1 (and similarly for
5 N, O,P). Note that in unnormalized (n0) case, we assign all species an importance value
s of 1 so that Equation 3 reduces to Equation 1.

357 We now describe how to normalize quartet weights while leveraging the hierarchical
s structure implied by artificial taxa by assigning importance values to species with the same
0 label. The idea is that species should have lesser importance each time they are re-labeled
w0 by an artificial taxon. In Figure 1, artificial taxon Z represents species Z = {0,6,7,9}
1 but species 0 and 9 were previously labeled by artificial taxon X. This relationship can be

w2 represented as the rooted “phylogenetic” tree T given by newick string: (6,7,(0,9)X)Z.

3 We use Tz to assign importance values to all species z € Z, specifically

1
I(z) = _ 5
(2) H outdegree(v) (5)
vepath(Tz,z)
e where outdegree(v) is the out-degree of vertex v and path(Tz, z) contains the vertices on the
s path in Tz from the root to the leaf labeled z, excluding the leaf. Continuing the example,

s [(6) = I(7) = % and 1(0) = I(9) = 1.1 = 1 By construction,

3 3°5 =% I(z) = 1 so this

z€Z
7 approach normalizes the quartet weights. Because different species with the same label can
s have different weights, we refer to this approach non-uniform normalization (n2). In our

0 experimental study, normalizing the quartet weights in this fashion improved species tree

s accuracy for challenging model conditions.
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s Efficient Quartet Graph Construction

sz We now describe our approach for constructing the quartet graph directly from the input
sz gene trees, which is implemented within our new method TREE-QMC. The total weight of
s bad edges between X and Y, denoted B[X, Y], is the number of quartets (displayed by the
w5 input gene trees) with X, Y as siblings (and similarly for G[X,Y] but non-siblings). Note
s that these quantities can be computed by summing over the number of bad and good edges
sr - contributed by each gene tree T'. Henceforth, we consider how to compute B and G for a
sz single gene tree.

379 We begin by considering a singly-labeled, binary gene tree T with n leaves. In this case,
s we can compute the number of good edges between X,Y via G[X,Y] = (";?) — B[X,Y],
3 where n is the number of leaves in 1. Because T is singly-labeled, there is exactly one
s leaf associated with label X, denoted x, and one leaf associated with label Y, denoted
s y. To compute B efficiently, we consider the unique path connecting leaves x and y in T
¢ (Figure 6a). Deleting the edges on this path (and their end points) produces a forest of K
s rooted subtrees, denoted {ti1,t2,...,tx}. Let w and z be two leaves of subtrees ¢; and t;,
s respectively. Then, T displays quartet x,w|z,y for i < j, quartet z,y|lw, z for i = j, and
s quartet x, z|w,y for ¢ > j. To summarize, x,y are siblings if and only if leaves w, z are
;s in the same subtree off the path from x to y. It follows that B[X,Y] can be computed by
9 considering all ways of selecting two other leaves from the same subtree for all subtrees on
w0 the path from z to y.

301 This observation can be used to count the quartets efficiently when gene trees are singly-
s labeled. However, we need to be more careful when 7' is multi-labeled, which is typically
a3 the case due to artificial taxa. Following our example, suppose that we want to count the
ss  number of bad edges between 0 and 17 contributed by the subtree with leaves 4, 5, and
s 6. However, if leaves 4 and 5 are both re-labeled by artificial taxon M, the quartet on
s 0,17]4,5 corresponds to quartet 0,17|M, M has no topological information and should not
s7 be counted. The other quartets 0,17|4,6 and 0,17|5,6 correspond to 0,17|M,6 and thus
s should be counted.

399 We now present an algorithm for computing B in O(s?n) time, where n is the number
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Figure 6: To count the quartets induced by T with 0 and 17 as siblings, we consider the
path between them (shown in blue in (a)). The deletion of the path produces 6 rooted
subtrees (highlighted in grey). Because 0 and 17 are siblings in a quartet if and only if the
other two taxa are drawn from the same subtree, the number of bad edges can be computed
as (S) + (g) + (g) + (g) + (g) + (;) = 16. Here we show how to compute the number of
quartets induced by T with 0 and 17 as siblings after rooting T arbitrarily. Subfigure (b)
shows that we need to consider the number of ways of selecting two taxa from the same
subtree for three cases: (1) the subtree above the lca(0,17) (highlighted in green), (2) all
subtrees off the path from the lca(0,17) to the left taxon 0 (highlighted in red), and (3) all
subtrees off the path from the lca(0,17) to the right taxon 17 (highlighted in pink). Case
1 can be computed in constant time if we know the number of leaves below the LCA, that
is, A[0,17] = 6 (Eq. 8). Cases 2 and 3 can also be computed in constant time as follows.
Subfigure (c) shows the prefix of the left child of the lca(0,17), denoted plica(0,17).left] is
the number of ways of selecting two taxa from the same subtree for all subtrees circled in
red, which are off the path from the root to this vertex. Similarly, the the prefix of taxon
0, denoted p[0], is the number of ways of selecting two taxa from the same subtree for all
subtrees circled in blue, which are off the path from the root to 0. Therefore, the number
of ways of selecting two taxa from all subtrees in case 2 (i.e., subtrees highlighted in red
in subfigure (b)) is L[0, 17] = p[0] — p[lca(0,17).left] = 7 (Eq. 9). Case 3 (not shown) can
be computed as R[0,17] = p[17] — p[lca(0,17).right] = 3 (Eq. 10). Putting this all together
gives B[0,17] = 16 (Eq. 6).

w0 of leaves in gene tree T, and s is the number of labels in the subproblem (henceforth we
w1 let a denote the number of singletons and b denote the number of artificial taxa so the

w2 subproblem size is s = a + b). Our approach breaks down the calculation into three cases:
403 1. X,Y are both singletons,

204 2. X is a singleton and Y is an artificial taxon (or vice versa), and

405 3. X,Y are both artificial taxa.

ws To summarize our results, B[X,Y] can be computed for all pairs X,Y in case 1, case 2,
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w7 and case 3 in O(a?) time, O(abn) and O(b*n) time, respectively. Thus, we can construct
ws the quartet graph from k gene trees in O(s?>nk) time (Theorem 1 in the Supplementary
wo  Materials). Afterwards, we seek a max cut using an O(s3) heuristic implemented in the open
a0 source library MQLib (Dunning et al. 2018). This gives us the final runtime of O(s*nk + s)
a1 for each subproblem. If the division into subproblems is perfectly balanced, the divide-
a2 and-conquer algorithm runs in O(n3k) time (Theorem 2 in the Supplementary Materials).
a3 Although we do not expect perfectly balanced subproblems in practice, we found TREE-

as - QMC to be fast in our experiments.

a5 Computing the number of bad edges given a singly-labeled gene tree

as  We first present an algorithm for computing the number of bad edges given a singly-labeled
a7 gene tree T'. After rooting T' arbitrarily, we again consider the path between x and y, which
as  now goes through their lowest common ancestor, denoted lca(z,y) (Figure 6b). This allows

a0 uS to break the computation into three parts

B[X,Y] = A[X,Y] + L[X,Y] + R[X,Y] (6)

«20 where A[X, Y] is the number of ways of selecting two leaves from the subtree above lca(x, y),
2 L[X,Y] the number of ways of selecting two leaves from the same subtree for all subtrees off
2 the path from leca(x,y) to leaf in it’s left subtree (say z), and R[X, Y] the number of ways
s of selecting two leaves from the same subtree for all subtrees off the path from lca(z,y) to
w2 the leaf in its right (say y). As we will show, each of these quantities can be computed in
w5 constant time, after an O(n) preprocessing phase, in which we compute two values for each
ws  vertex v in T. The first value c[v] is the number taxa below vertex v. The second value p[v],
a7 which we refer to as the “prefix” of v, is the number of ways to select two taxa from the
«2s same subtree for all subtrees off the path from the root to vertex v (Figure 6¢). It is easy

29 to see that ¢ can be computed in O(n) time via a post-order traversal. After which, p can
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10 be computed in O(n) via a preorder traversal, setting

c[v.sibling])

plv] = plv.parent] + ( 5

after initializing p[root] = 0. Now we can compute the quantities:

ALX,Y] = (“ - clleates y”) (®)
L[X,Y] = plz] — p[lca(x,y).left] 9)
RX,Y] = ply] — pllca(z,y).right] (10)

= where v.left denotes the left child of v and v.right denotes the right child of v (see Figure 6¢).
2 It is possible to access lca(x,y) in constant time after O(n) preprocessing step (Gusfield
3 1997), although we implemented this implicitly by computing the entries of B during a
s post-order traversal of T. Thus, we can compute B in O(n?) time, provided that T is

a5 singly-labeled.

s Computing the number of bad edges given a multi-labeled gene tree

s We now present an algorithm for computing the number of bad edges B[ X, Y] given a multi-
as  labeled gene tree T. As previously mentioned, this breaks down into three cases. The first
a0 case (X,Y are both singletons) is below and the remaining two cases are presented in the
w0 Supplementary Materials.

aa1 Again, we focus on the number of ways to select two leaves w, z from a collection of
a2 subtrees. When T is multi-labeled, it is possible for two leaves w, z to have the same label.
w3 Thus, we now need to count the number of ways to select two leaves z, w below vertex u so
ws  that they are uniquely labeled Z # W (note that we use capital letters W and Z to denote
ws  the current labels of leaves w and z, respectively). This modified binomial is computed by
us  revising the preprocessing phase. We now let ¢g[v] denote the number of leaves labeled by
wr  singletons below vertex v and let cplv] denote the number of leaves labeled by artificial

us  taxon D below vertex v. Thus, for each vertex v, we store a vector c[v] of length b+ 1,
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uo  where b is the number of artificial taxa in T. As before, we can compute ¢ in O(bn) time
w0 Vvia a postorder traversal. However, the number of ways to select two leaves with different

1 labels is now broken into three cases:

252 1. the number of ways to select two singletons, which equals (002[”]),

453 2. the number of ways to select one singleton and one artificial taxa, which equals ¢q[v] -
454 >_peA(w) cplv], where A(v) is the set of artificial taxa below vertex v, and

455 3. the number of ways to select two artificial taxa, which equals 3 pe 4,y cp[V] - cE[V].

Putting this all together gives the modified binomial coefficient:

Gl[U]Z — GQ['U}

. (11)

golv] = <C°2[”]> ¥ eofv] - Galo] +

s where G1[v] = 3 - pe 4, cn[v] and Galv] = Y- pe 4y CD [v]2. At each vertex, the calculation
w7 of G1[v] and Ga[v] takes O(b) time, after which we can compute go[v] in constant time. Thus,
w8 go can be computed in O(bn) time. Note that we also need to compute modified binomial
w0 coefficient for the subtree “above” vertex v, denoted go[v.above]. This can be computed in a
w0 similar fashion by noting that number of singletons above v is a — ¢p[v] and that the number
w1 of leaves above v labeled by each artificial taxon D is |[D| — ¢p[v].

162 Using the modified binomial, we can apply our algorithm for singly-labeled trees by
w3 redefining prefix sum:

po[v] = polv.parent] + go[v.sibling] (12)

we and then redefining the quantities from which we can compute B[z, y| in constant time, that
ws 18, A[X,Y] = go[lca(z,y).above], and L[ X, Y] = polz] — pollca(x,y).left], and R[X,Y] =
ws  poly] — po[lca(x,y).right]. As there are a® pairs of singletons in the subproblem, the total

wr  runtime is O(a? + bn).

ws INormalizing quartet weights when computing bad edges

w0 To normalize the quartet weights, B[X, Y] becomes the weighted sum of quartets with X,V

a0 are siblings, where each quartet z,y|z,w is weighted by I(z,y,z,w) = I(x)I(y)I(z)I(w),
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m  where I(z) is the importance value assigned to leaf 2 (which corresponds to a species in the

m  singly-labeled gene tree). When X,Y are singletons,

BIX, Y] = I(z)I(y) > I(2)I(w) (13)
w,zEL(T): Z#W #X#Y,
q(z,y,2,y)=2,y|z,y

w3 where the importance values of singletons are set to 1 so we know that I(x) = I(y) = 1.
aa Note that all of the importance values are set to 1 in the unnormalized case.

a5 To compute the normalized version of B[X, Y] using the previous algorithm, we set cp[v]
w6 to be the sum of the importance values of the leaves below v that are labeled by D (i.e.,
a1 cplv] = 32, crw),m—p I(m) where L(v) denotes the set of leaves below v). The proof of
as  correctness follows from Lemma 1, in which we show that the total weight of selecting two
a9 uniquely labeled leaves below vertex u equals golu]. Intuitively, this is because all other

w0 quantities (p, A,L,R) are computed from go|u].

w1 Lemma 1. The total weight of all taxon pairs in the subtree rooted at internal verter u

Y 1(=)I(w) = golu] (14)
z,uéil{é/u)

w2 where L(u) is the set of leaves below vertex u.

283 See Supplementary Materials for proof.
a8 Lastly, we need to compute the good edges G[X, Y], which is the total weight of quartets

a5 in which XY are not siblings. This can be done in constant time, following Lemma 2.

Lemma 2. Let T be a multi-labeled gene tree, and let X, Y be singletons. Then,

G1 [7“]2 — G2 [T]

- (15)

olx.v]+800v] = (V) 7%) + @bl -2 Gilr +

s where r is the root vertex of T.

ag7 See Supplementary Materials for proof.
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This concludes our treatment of case 1, in which X,Y are both singletons. In order to
compute all entries of B and G, we also need to consider the other two cases. In case 2, X
is a singleton and Y is an artificial taxon (or vice versa), and in case 3, both X and Y are
artificial taxa. These cases are more complicated because the naive approach would consider
all paths in the tree between a leaf labeled X and a leaf labeled Y, which is not efficient.

The algorithms and proofs for these cases are provided in the Supplementary Materials.

Software and Data Availability

TREE-QMC is available on Github: https://github.com/molloy-lab/TREE-QMC. The
scripts used to run methods and analyze the results are also available on Github: https:
//github.com/molloy-lab/tree-gmc-study. The data (including true and estimated gene
trees as well as true and estimated species trees) are available on Dryad: https://doi.org/

10.5061/dryad .mOcfxpp6g.
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