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Abstract. The accuracy and robustness of many types of analyses performed using RNA-seq data are
directly impacted by the quality of the transcript and gene abundance estimates inferred from this data.
However, a certain degree of uncertainty is always associated with the transcript abundance estimates.
This uncertainty may make many downstream analyses, such as differential testing, difficult for certain
transcripts. Conversely, gene-level analysis, though less ambiguous, is often too coarse-grained. To circum-
vent this problem, methods have proposed grouping transcripts together into distinct inferential units that
should be used as a base unit for analysis. However, these methods don’t take downstream analysis into
account.

We introduce TreeTerminus, a data-driven approach for grouping transcripts into a tree structure where leaves
represent individual transcripts and internal nodes represent an aggregation of a transcript set. TreeTerminus
constructs trees such that, on average, the inferential uncertainty decreases as we ascend the tree topology. The
tree provides the flexibility to analyze data at nodes that are at different levels of resolution in the tree and
can be tuned depending on the analysis of interest. To obtain fixed groups for the downstream analysis, we
provide a dynamic programming (DP) approach that can be used to find a cut through the tree that optimizes
one of several different objectives.

We evaluated TreeTerminus on two simulated and two experimental datasets, and observed an improved
performance compared to transcripts (leaves) and other methods under several different metrics.
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2 Singh et al.

1 Introduction

Transcript abundance estimation is among the key target applications of RNA-Seq. The variation in transcript expres-
sion plays a key role in development [3,40, 28]; and characterization of diseases and their subtypes [41, 46, 35]. One of the
approaches towards estimation of transcript abundances is to probabilistically assign a given fragment to the transcripts
using maximum likelihood or Bayesian inference [24, 6, 30]. This has to be done since there exists an ambiguity towards
finding the true locus of origin for a given sequencing fragment, when it can map equally well to the shared sequences
within transcripts. Thus, a certain degree of uncertainty is associated with the transcript abundance estimates, depending
on the nature of the fragments. This in turn makes downstream analysis, such as differential testing, difficult for certain
transcripts. Uncertainty also exists for gene expression estimates but is less compared to transcripts, since there will be less
ambiguity when mapping fragments to genes. The uncertainty of a transcript/gene can be estimated from the inferential
replicates generated either through MCMC/Gibbs Sampling; or through bootstrap sampling of the reads [24, 30, 44, 15, 6].

The highly uncertain transcripts/genes may become invisible when the inferential replicates are incorporated into the
downstream tasks To circumvent this problem, some methods have grouped transcripts/genes into distinet inferential
units that share a lot of multi-mapping reads [32]. mmcollpase[43] proposes to group transcripts by computing
correlation between every pair of transcripts on the posterior replicates and the pair that has the most negative
correlation is grouped. This process is repeated for multiple iterations until a stopping criterion is reached, where at
each iteration the correlation is recomputed for every transcript/group with the group from the previous iteration and
a new group is formed. Terminus[33] also provides transcript groups as an output but employs difference in inferential
relative variance [48] between the group and the mean of its underlying transcripts/subgroups as the statistic for
group creation. It first creates a graph on the transcripts, with an edge denoting that the transcripts co-occur in
at least one range-factorized equivalence class [47] and only the transcripts that are connected by a path on the
graph are considered for grouping. Terminus first finds groups across each individual sample and uses a consensus
approach to output consensus groups across samples. Importantly, both mmcollapse and Terminus provide a single
level of resolution for analysis, not permitting analysis across different levels.

Another limitation with both of the above methods, is that the resolution at which grouping is stopped is governed
by a threshold determined heuristically that does not take the downstream analysis into account. When performing
downstream tasks such as differential analysis, these methods can either thus over-aggregate transcripts, masking
the signal in the process or under-aggregate leading to weaker signals, and an inability to make confident calls. Since
the goal of these methods is to provide concrete groups as an output without doing much aggregation, they introduce
many filtering constraints on transcripts in order for them to be considered for aggregation which might further lead
to missing good candidates for aggregation.

In this work we introduce TreeTerminus, a new method that aims to address some of the above mentioned
shortcomings. TreeTerminus expands upon the idea of Terminus and groups transcripts in a tree structure where
leaves represent individual transcripts and internal nodes represent an aggregated set of leaf transcripts. Across the
samples in the experiment, inferential uncertainty decreases on an average, ascending the tree topology. TreeTerminus
can be run on a single sample and we provide two different approaches in order to extend it for the multi-sample
settings. The tree provides the flexibility to analyze data at nodes that are at different levels of resolution in the
tree and can be tuned depending on the analysis of interest. To obtain fixed groups for downstream analysis, we
provide a dynamic programming (DP) approach that can be used to find a cut through the tree that optimizes one
of several different objectives. In addition, the DP approach has the ability to optimize for other user-defined objective
functions provided they adhere to the required constraints necessary to be efficiently optimized on a tree.

To the best of our knowledge this is the first time that transcripts have been arranged in a tree-like struc-
ture, that too in a data-driven manner. We evaluated TreeTerminus on two simulated and two experimental
datasets, and observed an improved performance compared to transcripts (leaves) and other methods under several
different metrics. TreeTerminus has been implemented in Rust and the source code can be downloaded from
https://github.com/COMBINE-1lab/TreeTerminus. We have also created an R Package beaveR that parses the
output of TreeTerminus, implements DP algorithms for finding an optimal cut, and provides helper functions to obtain
useful statistics for subtrees within the TreeTerminus-derived tree structures. The R Package can be downloaded
from https://github.com/NPSDC/beaveR.

2 Methods

We first briefly describe Terminus[33], as our method builds on top of it. The group step of Terminus takes as
input an individual Salmon [30] quantified sample from an RNA-Seq experiment and outputs a set of transcript
groups. It makes use of the range-factorized equivalence classes £ [47], and inferential replicates P obtained after
running Salmon with the appropriate flags. An equivalence class denotes an association from a set of transcripts to
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a set of reads, that are mapped to all the transcripts in that set. A range-factorized equivalence class in addition
also encodes the mapping quality, with a single class constituting a set of pairs (¢;,w;) rather than just set of ¢;,
where t; denotes the transcript and w; represents the average conditional probability with which the fragments in
the equivalence class arose from that transcript. The Terminus groups consist of transcripts that share large numbers
of ambiguously-mapped fragments. It employs a union-find data structure, with the first step being to scan over & and
group the transcripts that appear in the same set of equivalence classes and have near-identical conditional probability
vectors using the Union operation. This ensures that these transcripts will belong to the same partition, when checked
through the Find operation. It then constructs a graph with the transcripts as nodes, where an edge between any
two nodes v;,v; implies that they co-occur in at least one equivalence class and have the edge score s(v;,v;) <7 where

RV, 4+ infRV
s(vi,v;) =infRV, . ; — m (1)
2
i, 0
infRv, = 220 . 0) (2)
ﬂp,-"’pc

p; are the posterior (Gibbs) replicates for transcript i, 012” and fip, are the variance and mean over the posterior
replicates, pc is the pseudocount (default is 5), d is a small global shift (default is 0.01) and 7 is a threshold of difference
in inferential relative variance. A min heap His constructed over the edges keyed by s(v;,v;) and at each iteration ¢
an edge with the lowest score is popped out till the iteration H becomes empty. If the partition(group) of any endpoint
vertex for the popped edge has been modified but its corresponding score was not updated, then the edge is called
stale. If the edge is not stale then the corresponding nodes v;,v; are grouped using the Union operation and the
posterior samples for v; are updated with p; =p; +p;, assuming ¢ < j. The score s(v;,x) is recomputed for all the
vertices {x|z € adj(v;)Uadj(v;) —{v;,v;}} with adj(v;) denoting the neighbours of vertex ¢ in the graph at iteration
t. The edge with the updated s(v;,x) is pushed to H, if s(v;,z) <7. The consensus step outputs a set of transcript
groups across samples using the groups obtained for the individual samples (see Section S1.1).

2.1 TreeTerminus

The transcripts in a Terminus group consist of at least two transcripts that have reads multi-mapped to them, which
is the source of uncertainty for transcript abundance estimation. TreeTerminus outputs a tree for each individual
group, encoding the summarized order in which a set of transcripts should be aggregated within a group, such that
across the samples, average uncertainty decreases as we ascend the tree created for that group.

TreeTerminus has a group step, that constructs transcript-trees for a single sample. It starts by creating a single
node tree corresponding to each transcript. For any pair of transcripts/subgroups that are aggregated in the group
step of Terminus, a binary tree is created with its children being the individual trees corresponding to the node-pairs
that are grouped. The process of tree creation continues till the time heap H becomes empty. In addition, some of the
constraints that Terminus imposed on transcripts/groups before they could be even considered for further grouping
have also been relaxed. It is no longer necessary that a node v; should have infRV (v;) >¢ (called filtered or Filt)
and that for a pair of nodes v;,v;, s(v;,0;) <7 (called early stop or ES). For the NV groups that will be obtained from
a sample m, a set of N trees T ={Tp,...,Tnm} will be generated, such that for a group g, A(g)=A(Tym), with A
representing the set of transcripts covered by a tree or a group and A™ represents all the trees belonging to sample m.
We next propose and describe two different approaches to obtain trees, representative of all samples in the experiment.

Mean Tree - This is a single step procedure where all the samples are processed together and a single tree is
produced from all the samples w.r.t a group. The steps in the tree construction follow directly from what we have
described above, with some modifications. To find transcripts that have near identical conditional probability weights
across all the equivalence classes, the search space is expanded to all samples rather than a single sample. Later, when

the graph across transcripts is constructed, an edge between any two nodes implies that they co-occur in the same
M
2 85 (visv;)
equivalence class in at least one sample where the edge score s'(v;,v;) is updated as, §'(v;,v,)= HT, and M
represents the total number of samples in the experiment. The indicator function h(.) that determines whether a
transcript is a good candidate for aggregation when considered in isolation is also updated as:
M M
1 if max p;; >1 and max sp;; > A
hw)=q = PSR Q
0 otherwise
_ _ (pij)—min(pi;)
where p1;; =mean(p;;) and sp;; = =2 gan(;i?; L

j and A is a user-defined parameter that is set to 0.1 that serves as a threshold for spread.

, with p;; denoting the posterior replicates for transcript ¢ in sample
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a) Individual tree/s across samples that contain overlapping transcripts b) Final Updated Group
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
T Tr2 Tis Tia Tis

) 2 Transcript Group (g') -
1

c) Creating tree Tg'm for each sample corresponding to the transcript group g'

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Tg1 Tg2 Tgs Tga Tos
2 3 5 2 3
1 5 1 1 1
3 2 3 3 2
5 1 2 5 5

Fig. 1. Example of a sample group to demonstrate why consensus step cannot be directly applied on the trees obtained
from group step for samples and the modifications made in order to apply the consensus tree algorithm. a Trees across the
5 different samples that contain overlapping transcripts. Each tree is labelled as Ty, where m denotes the sample and g
denotes a group in that sample. b Updated group that is a superset of all the transcripts in the individual trees across samples.
¢ Tree created for each sample w.r.t updated group ¢, with A(Ty)=A(g').

2.2 Consensus tree

Construction of consensus trees is more involved and takes as input the sample group trees obtained by running
group step on each sample. Given a set of trees for a given transcript group across samples, we want to find a tree that
summarizes the topological structure of the input trees. Such a tree is called consensus tree [1,19]. There exists a wide
variety of methods to get consensus trees, depending on the input and downstream applications [8,27,19,7]. In this
work we have used the majority rule extended or greedy consensus tree algorithm[8, 11], and is described in Section S1.2.

A constraint of a consensus tree algorithm is that it requires all the input trees should span the same leaf set. To obtain
a consensus tree Ty for group ¢ in an experiment containing M samples, we want to provide group trees across samples
Ay={Tp,....Tynm} as an input to the Majority Rule Extended Consensus Tree Algorithm, with T; representing the
tree for sample i for the group g and A(g)=A(T;) , Vi€ {l,...,M}. A represents the transcripts covered by a tree or a
group. However, a group covering a transcript set in one sample might not be preserved in other samples. We can have
tree/s within a sample that covers a transcript set that overlaps but is not the same as the transcript(leaf) set in a tree
from some other sample in the experiment. This is demonstrated in the example shown in Figure 1a. For the five different
samples, we have trees that cover different transcript sets, covering overlapping transcripts. First sample contains the tree
built on 5 transcripts. The second and fifth samples span the same set of 4 transcripts but are subsets of the transcripts
covered by T71. The third and fourth samples each have two trees containing transcripts that are also a subset of A(T%1).
Thus, we cannot directly apply the consensus tree algorithm on the trees obtained by the group step of TreeTerminus.

To resolve this issue, we thus first create a set of updated groups G’ ={g{,....gy }, with updated group g; representing
a union of all transcripts for all trees across samples that contain overlapping transcripts. Further, the transcripts covered
by any such tree should not contain any overlapping transcripts with the transcripts of any other updated group gg or:

M N,
Algh)= U U A(Tym) where A(Tyy,) C A(g;) and A(Tgm)ﬂ/l(g;):(/), vVie{l,..N},j#i.

m=1g=1
To create the updated group g, we employ the union-find data structure. We scan through the trees across all samples
and apply Union operation on the transcript set covered by the tree, which will group these transcripts covered.

This ensures that the transcripts belonging to any two trees 7;,7; across the samples where A(T;)NA(T};)#0 will
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be grouped together. For the toy example in Figure 1b, this leads to creation of the updated group spanning transcript
set {1,2,3,4,5}. The consensus tree Ty, will be created for the updated group g;, with A(Ty/)=A(g;).

We next create trees Ty, for every sample m € {1,...M} w.r.t each updated group g; € G’, such that tree Ty,
covers same set of transcripts as the updated group or g; or A(Ty )= A(g;). Tree Ty, on the updated group g;
for sample m is created using the following steps:

1. For each sample m, all the trees Ty, from A™ which cover transcripts that overlap with the transcripts covered
by g. are extracted to form the set Ay, where

{Agim ={TimyTam} CA™ | A( gm)C/l(gi) Vge{L,...d} & A(g)NA(T;)=0, VI; €A™ = Ay }.
2. A transcript set D is constructed that consists of transcripts covered by the updated group g, but not by the

d
trees in Aysyy,. Formally D= A(g;)— U A(Tim), with Ty, € Agry.
i=1
3. If the set Ag;m consists of only one tree Ty, and D is empty, it implies that the tree Ty, already covers the
same transcript set as g, and thus we can safely output Ty, as Tyim-

4. Otherwise, an empty tree is constructed and added to it’s children are all the trees in Agém along with the
transcripts in the set D. This newly created tree forms T/,,.

For each group g; € {g],...,g)y}, there now exists a set of M trees Ay ={Ty1,... Ty}, - one for every sample.
PHYLIP’s [13,12] implementation of Majority Rule Extended Consensus Algorithm is then applied on the set A,
to get the consensus tree Ty, for the updated group g;. The motivation behind using the majority rule extended
consensus algorithm is to pr0V1de a chance to preserve a topology present in set of samples that represent a phenotype
not present in the majority of samples, which would have been ignored otherwise.

2.3 Creating a unified tree from the output of TreeTerminus

Given the output of TreeTerminus A= {Tgi 7"'7T9§v}’ a unified tree Ty is created such that its children consist
of all the trees in A. This is done through our R package beaveR, which also provides the option to append transcripts
to the children of Ty that are not covered by the trees in A but still should be considered for downstream analysis.

2.4 Solving objective functions to obtain discrete inferential units

In order to do any downstream analysis and interpret its results, we require discrete inferential units. These can
be obtained by optimizing for an objective. We provide a dynamic programming (DP) approach that can used to
optimize different objective functions on a tree, following certain constraints. The DP solving a given objective function
outputs a set of nodes in the tree T or cut C'=(cy,...,cq), where C has the following properties:

d
— The union of leaf nodes belonging to nodes in the cut should cover all the leaf nodes in the tree T or |J A(¢;)=A(Ty).
i=1
— The intersection of leaf nodes belonging to any two distinct nodes in the cuts should lead to an empty set or

A(e;)NA(cj)=0Vi,je{1...d}.

The DP optimizes the objective functions of the following form to obtain the optimal value and a cut C"

argéninf( ) or argmax f(C )

where f(C Zmetrlc

ceC

where metric(c) represents the metric for node ¢ in the tree 7', whose sum we want to optimize over all nodes
in the cut. We solve for f(C) using the procedure described in Algorithm 1. For a given metric of interest, it outputs
the optimal value for the objective function and a set of nodes (cut), on which summing up the metric provides the
optimal value. Algorithm 2 returns the optimal value for the objective function at a given node and Algorithm 3
returns the cut for a tree/subtree for that obejctive function.
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Algorithm 1 Finding optimal value of the objective function and the corresponding cut for a given metric

Input: T met_arrtype > T is the tree, met_arr is the array containing the value of the
metric for all nodes in the tree, type tells whether to minimize
or maximize the objective function

Output: cut=|ci,...,cq)

procedure FINDOPTVALCUT

root +FindRoot(T) > get the index corresponding to the root node in the tree
t-nodes <+ length(T) > t_nodes are the total number of nodes in the tree
cut <]

opt_arr < [0;t_-nodes]
for n in 0..t_nodes do
opt_arr[n] <+ CompOptVal(T,n,met_arrtype) > Optimal value at all nodes for the objective function
end for
CompOptCuts (T, root,met_arr,opt_arr,cut) .
return [opt_arr(root],cut]
end procedure

We

Algorithm 2 Function for finding optimal value of Algorithm 3 Function for finding optimal cuts
objective function at given node

Input: T node,opt_arr,met_arr,opt_cut

Input: T,node,met_arrtype Output: cut=|ci,...,cd]
Output: opt_val node procedure CoMPOPTCUTS
procedure coMPOPTVAL if opt_arrinode]=met_arr[node] then
if node isLeaf then opt_cut.append(node)
return met_arr[node] return opt_cut
end if end if
children < findChildren(T,node) children « £indChildren(T'node)
child_opt + Z CompOptVal(n, for child in children do
néchildren return CompOptCuts(child,opt_arr,
met_arr,type) met_arr,opt_cut)
if type = min then end for
return min(met_arr[node],child_opt) end procedure
else
return max(met_arr[node],child_opt)
end if

end procedure

have solved for the objective functions employing two different metrics to obtain cuts on the tree Ty which we describe
in the section below.

Minimize mean infRV and height - For the first objective function, we want to find nodes that have a low mean
inferential relative variance and at the same time are at a level close to the leaf in order to provide the finest resolution
for downstream analysis. Therefore, in the objective function we minimize the sum for the node metric - sum of mean
inferential relative variance and height weighted by -; and then multiplied by the number of descendant leaf nodes.
This metric is called irv_height_desc and is described formally below with the objective function as:

argminZirvjleight _desc(c) (4)

ceC
irv_height_desc(c) =irv_height(c)*|A(c)| (5)
irv_height(c) =mirv(c)+vheight(c) (6)

mirv(c) is the mean inferential relative variance for a node across samples, height(c) is defined as the number of
edges on the longest path from node c to its descendant leaf, A(c) represents the descendant leafs for a given node
¢, with |A(e)|=1, if ¢ is a leaf node. The reason that the number of descendants of a node are multiplied is because
the value of the objective function is dependent on the number of nodes in the cut and will be biased towards nodes
with higher height as they end up replacing multiple lower height descendant nodes. To get the optimal value and
desired cut for the above objective function we use the Procedure defined in Algorithm 1 as:

opt_val, cut =FindOptValCut (7, irv_height_desc, min) (7)

Maximize Weighted log fold change - For the second objective function, we want to find nodes that have a
high log fold change but a low mean inferential variance. In this objective function, we thus maximize the sum of
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node metric - absolute log fold change weighted by mean inferential variance multiplied by the size of the descendant
leaves for that node. This metric is called wlfc_desc and is described formally below with the objective function as:

argmaxZwlfc,desc(c) (8)
ceC
wlfc_desc(c) =wlfc(c)-|A(c)] 9)
o )]
wife(c) mirv(c) (10

where 1fc is the logs fold change. Assuming the samples can be grouped into two conditions represented by the
sets my and my, 1fc is given by:

Ifc(c) =median{lfc(c), },k € {1..R} (11)
2Py APy
Ifc(c), =log, <Jmlljk +pc | —log,y ]‘T;‘]k—i-pc (12)

where R represents the total number of inferential replicates, Dejk, Tepresents the scaled count for sample j’s inferential
replicate k for node ¢, obtained by dividing the count of inferential replicate’s transcript by the depth of inferential
replicate. We again use the procedure defined in Algorithm 1 to get the optimal value and the cut as:

opt_val, cut =FindOptValCut(Ty ,wlfc_desc, max) (13)

3 Experimental Setup

3.1 Creation of a baseline anti-correlation tree

For comparison with TreeTerminus, we are unaware of any other existing methods that creates transcript-trees. Thus,
to create a baseline tree, we create a tree using anti-correlation (negative correlation) between transcripts computed
on the inferential replicates, which we also refer to as the AC tree. The motivation for using anti-correlation comes from
mmcollapse[43] which was also used as a baseline method for comparison in Terminus[33]. Since mmcollapse does
not create trees, we use UPGMA[37]. UPGMA applies a hierarchical clustering procedure on the leaf set to generate a tree,
which based on the current input, will group anti-correlated set of transcripts, leading to a reduced uncertainty. We
thus believe UPGMA tree is a fair baseline for comparison with the TreeTerminus trees, where uncertainty decreases
as we ascend the tree.The exact details of constructing the AC tree are provided in Section S1.3.

3.2 Datasets and quantification pipeline

We ran TreeTerminus on two simulated and two experimental bulk RNA-Seq datasets [42,39]. TPM estimates
extracted from GTEx V8 frontal cortex dataset were used as an input to generate the simulated datasets, containing
12 samples in 2 conditions with 6 samples in each. Two variations of the simulated data were created and are referred
to as BrSimNorm and as BrSimLow respectively. The first experimental dataset is derived from two different mouse
muscle tissues, consisting of 6 samples in each and we refer it to as MouseMuscle. The second experimental dataset
is obtained for the brain tissues of Chimpanzee, consisting a total of 73 samples. The two groups for our analysis
consist of 5 and 68 tissues respectively. The datasets are described in detail in Section S1.4. Salmon was used to
quantify the reads from the different datasets, and Gibbs sampling was used to generate the inferential replicates.
The quantification pipeline is described in Section S1.5.

3.3 Different tree methods that have been compared in this study

In this study, we have used both the variations of TreeTerminus, with the unified tree obtained after running the
procedure in Section 2.3 on the consensus and mean trees referred to as Cons and Mean. We evaluate their performance
on several parameters. To see if there are any benefits of removing the constraints imposed in Terminus, we also compare
with the unified trees obtained after running the consensus algorithm on the sample trees that were constructed with the
variations of those constraints. In the first variation, the consensus tree approach is applied on trees obtained using both
constraints i.e Filt and ES which is referred by ConsFiltES. In the second variation, we only apply the constraint Filt
and the corresponding consensus tree that is created is referred by ConsFilt. The Anti-Correlation (AC) tree serves as the
baseline tree. We create trees for all the above mentioned methods for both the simulated and experimental datasets. We
also compare with Terminus groups (Term) and transcripts(Txp) whenever possible. The total number of transcripts cov-
ered by different methods across the different datasets are provided in Table S2. Mean tree covers the most transcripts fol-
lowed closely by Cons tree while ConsFiltES tree and Term cover the least number of transcripts. In order to facilitate the
comparison between the methods, we ensure that all trees cover the same transcripts. A transcript set is created by taking
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Type

Fig. 2. Distribution of loga MIRV (mean inferential relative variance) across the inner nodes stratified by their height for different
trees for the BrSimNorm Dataset, with the total number of inner nodes belonging to a method at a given height written on
top of the violin plot. Also plotted for comparison at each height is the distribution of Ig of MIRV for the transcripts and genes.

the union of the transcripts covered by the trees in the set {Mean, Cons, ConsFilt, ConsFiltES, AC}, and groups in Term,
with Txp referring to that transcript set. To the children of the root node of the above trees, we append any transcripts
that were present in Txp but missing in the transcripts covered by the individual trees. Similarly, nodes in Term consist of
all nodes output by Terminus along with any transcripts that are present in Txp but not covered by Terminus groups.

4 Results

4.1 TreeTerminus nodes have the lowest mean inferential variance

The violin plot in Figure 2 compares the distribution of logs MIRV (mean inferential relative variance) for the
inner nodes across trees stratified by their height for the BrSimNorm dataset. For comparison, logs MIRV for genes and
transcripts has been plotted along with the trees at each height. The transcripts have the highest range of variation
in the mean inferential relative variance (MIRV) and as expected have the largest values. Genes have the lowest
MIRV with the majority of genes having the lowest possible value of 0.01 that can be obtained using the default
thresholds(Equation 2). Among the trees, the nodes of Cons and Mean trees have the lowest MIRV across different
heights followed by ConsFilt and Anti-Correlation trees (AC). The nodes belonging to ConsFiltES tree have the
highest MIRV. As expected, going up the tree, MIRV decreases across the methods getting closer to gene MIRV
levels. These trends are summarized by the median values of MIRV in Table S3. The above pattern is also repeated
in the BrSimLow dataset(Table S4, Figure S1). A similar trend is observed for the MouseMuscle dataset (Figure S2,
Table S5). The only change is observed on the nodes at height greater than or equal to 5 for the ConsFiltES tree
which shows the most downward shift in MIRV distribution. It is important to note that that across all the datasets,
ConsFiltES has the lowest the number of nodes. For the ChimpBrain dataset, a very similar distribution is observed
for the trees across all the methods and a modest downward shift in the upper tail is observed as the height increases.
The MIRV though is very low for the height 2 inner nodes to begin with(Table S6, Figure S3). However, a considerable
downward shift in the distribution of MIRV is still observed for the inner nodes compared to the transcripts.

4.2 TreeTerminus nodes map to relatively fewer genes and gene families

We next look at the distribution of number of uniquely mapped genes at the inner nodes located at different heights
across the trees. The mapped genes associated with a node are found by mapping the descendant leaves (transcripts)
for that node to the genes. Figure 3, S4, S5 and S6 plots this distribution for the different datasets. The proportion
of nodes that map to more than one gene is considerably higher for the AC tree compared to others, with the number
of nodes at height two that map to two genes, tens to hundreds of times larger for the anti-correlation (AC) trees.
The increase in the relative number of multi-gene mapping nodes is also the highest for the AC tree and it has the
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Fig. 3. Comparison of different methods with respect to the number of genes to which an inner node in the tree maps for the
BrSimNorm dataset, stratified by their height. The x-axis represents the number of unique genes that transcripts belonging to
the inner nodes map to and y-axis represents the frequency of such mappings at a given height for a tree. For all the inner nodes
located at a height greater than or equal to 5, number of unique genes were binned using the set {1,2,4,16,128,1024,16384},
with the bin representing number of unique genes less than or equal to the bin but larger than the bin left to it.

highest magnitude of the number of unique genes to which an inner node can map. With the exception of AC tree,
the proportion of nodes that map to only one unique gene dominate nodes mapping to multiple genes across different
heights in the other trees. The AC tree has the highest number of inner nodes that map to more than one hundred
genes across the datasets (Table S7). No such nodes exist in the other trees obtained across the datasets, barring the
MouseMuscle dataset, for which there exists a reasonable number of such inner nodes, with some even mapping to more
than a thousand genes. When we looked at the genes mapping to these nodes, we found that a large proportion of such
genes were either predicted or pseudogenes, which was not necessarily the case for most of such nodes in the AC tree.

We also explored the distribution of the number of gene families to which inner nodes belonging to different trees
map in Figure 4. The procedure for finding the gene families that map to a given inner node is described in S1.6. The
number of gene families have been binned into bin numbers {1,2,4,10,100,500,1000,12000} so that each bin represents
the number of unique gene families less than or equal to the bin but larger than the bin left to it. For the MouseMuscle
dataset, the number of nodes mapping to more than one family is the largest for the AC tree and the difference in the
number of nodes increases between AC and the remaining trees as the magnitude of number of gene families they map to
is increased on the x-axis. While the AC tree has more than 5000 nodes that map to (10,100] gene families, this number
is only 124 for the Mean tree and much less for the other trees. There are more than 500 nodes that map to more than
100 gene families for the AC tree while hardly any such node exists for the other trees. A similar trend is observed for
the ChimpBrain dataset, while for the AC tree there are more than 2500 nodes that map to more than 10 gene families,
such nodes don’t exist for the other trees. The nodes belonging to AC tree thus map to many more gene families. While
the nodes belonging to the other trees map to a fewer gene families, we have not explored them in the current work.

4.3 TreeTerminus produces better optimal cuts for different objective functions

Figure 5, ST plots the optimal values and the cut sizes obtained by solving for the objective function that minimizes
the metric irv_height_desc (Section 2.4) on the different trees for each dataset. Also plotted for comparison are
these values when the cut consists of only the transeripts(Txp). The cuts for different trees have been obtained by using
7y values from the set {0.05,0.1,0.5,1,5}. The highest(worst) optimal value is seen for the cut consisting of transcripts,
whereas the cuts obtained for Cons, ConsFilt, Mean trees consistently have the lowest(best) optimal values. The
relative differences in the optimal value between them is smaller compared to differences in optimal values for the
cuts obtained from the other trees. As 7 increases, the size of the cut increases as expected along with the increase
in the optimal value. Further, the differences in the optimal values and cut sizes between the methods also decreases,
with these values individually becoming comparable at v=>5 across the trees. We also looked at the distribution of
the values of the metric in the cuts for the different trees and the transcripts in Figure S8. A large proportion of nodes
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Fig. 4. Comparison of different tree methods with respect to the number of gene families to which an inner nodes maps.
Number of gene families that map to an inner node have been binned into the set {1,2,4,10,100,500,1000,12000}, with the
bin representing the number of unique gene families less than or equal to the bin but larger than the bin left to it. The x-axis
represents the bin and y-axis represents the total frequency of inner nodes mapping to the gene families in that bin for a
given tree. This has been plotted for A) MouseMuscle Dataset and B) ChimpBrain Dataset.
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Fig. 5. Barplot representing the values for the objective function on the cut obtained by minimizing the sum of metric - sum of the
metric (irv_height_desc) on the different datasets. For each dataset, optimal values of the objective function are compared across
the methods for a range of «y values. Also plotted for comparison is the optimal value obtained by using transcripts(Txp) as the cut.

for the Cons, Mean, ConsFilt trees show a very low value for the metric compared to the other methods, showing
that the net value of the objective function is not dominated by just a few outlier nodes.

We next compared the optimal values and the corresponding cut sizes, obtained by solving for the objective function
that maximizes the sum of the metric wlfc_desc (see Section 2.4) for the different trees on each dataset in Figure
S9. Also compared are these values that are obtained when the cut consists of - Terminus (Term) groups and the
transcripts(Txp). The cuts obtained from Mean tree have the highest (best) optimal value followed closely by Cons
tree. These are then followed by the cuts obtained for the ConsFilt and AC tree. The cuts obtained for ConsFiltES
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tree, Term and Txp have the lowest (worst) optimal values. An opposite trend is observed for the cut sizes, with Txp
having the largest size followed by cuts from Term, and ConsFiltES tree. There was also a rightward shift in the
distribution of the metric for the nodes obtained from the Cons,Mean trees, indicating that the increased optimal
value for these trees was not due to the presence of just a few outlier nodes (Figure S10).

5 Discussion

TreeTerminus organizes the transcripts in a tree structure, with the leaves representing the transcripts. The tree
accounts for experiment-wide inferential uncertainty and provides the flexibility to analyze data at nodes that are
at different levels of resolution, that are best supported by data for the downstream analysis of interest. The cut
given by the dynamic programming (DP) implementation on the objective functions used in this paper provides one
possible way to get a set of nodes that can be used for downstream tasks. The DP is generalized and the base metric
inside the objective function can be easily replaced by a user-defined function. Furthermore, the end user can also
define a completely different approach to find a cut from the tree.

We have provided two different approaches for getting the transcript trees as output from an RNA-Seq experiment,
Mean and Cons trees. They both cover a similar number of transcripts and have comparable performance across the
different datasets for the various analysis that have been explored in this paper. They have a superior performance
compared to the consensus trees that were obtained when the constraints were kept on the various evaluation metrics
and cover the largest number of transcripts. The sub-par performance for the other methods, especially ConsFiltES and
Term perhaps indicate that these methods under-aggregate. While no other method exists that arrange the transcripts in
a tree-like structure, for comparison we also provide the AC tree as a baseline, that is constructed using UPGMA - a well
known method for tree construction in phylogenetics. However, construction of the AC tree is both highly memory and
time intensive, with the tree construction process not taking into account the equivalence class information. As a result,
we observe that the nodes belonging to AC tree map to a large number of distinct genes and gene families, not offering
much biological interpretation. The nodes belonging to trees constructed from TreeTerminus map to a smaller number
of distinct gene and gene families, even though annotation of the underlying organism was not a part of the input.

There do exist some areas where the underlying tree constructions methods can be improved further. Taking the mean
of difference in inferential relative variance on all samples for constructing Mean tree might prevent transcripts from
aggregation that had high uncertainty but were expressed only in the samples belonging to a population that was not
in the majority in the experiment. This can be replaced by weighted reduction in inferential relative variance, where the
mean is computed over the samples in which the transcripts are expressed. A limitation with the Cons tree is the consensus
tree algorithm that requires all the underlying input trees to span the same leaf set, causing us to modify the individual
sample group trees that were provided as an input. An alternative to consensus algorithms can be supertree methods such
as STELAR [18] and FastRFS [45], which don’t require that all the input trees should cover the same leaf set. However,
STELAR is very slow for trees that span large leaf sets and FastRFS provides an unrooted tree as an output, which
makes using them as a direct replacement not trivial. Modifications to these approaches can be explored in the future.

Differential expression or differential abundance analysis is an important downstream application of RNA-Seq and
other sequencing-based datasets. Various differential testing methods that leverage a tree structure [16,25, 4, 29] have
been proposed, reporting an increased power. In microbiome analysis, investigators have tried to associate nodes, located
at different levels on the tree built through phylogenetic analysis, with a response variable of interest[5], with some
using replicability as a metric to determine optimal levels of aggregation[9]. We believe that the tree(unified) provided
by TreeTerminus can be used with these methods for an improved differential analysis in RNA-Seq. Since none of the
methods have been designed taking RNA-Seq analysis into account, there lies an opportunity to develop tree differential
testing methods for RNA-Seq data that output nodes that are at the finest resolution and at the same time have a robust
signal. Further, TreeTerminus in the future can also be extended to tagged-end scRNA-seq protocols where the trees
will be constructed on genes rather than transcripts, owing to read mapping ambiguity at the gene level itself since the
exons of one gene can overlap with exons or introns of other genes [38], as these are 3™- biased, often single end reads.
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