
Envy-free Chore Division for An Arbitrary Number of Agents∗

Sina Dehghani †‡ Alireza Farhadi †‡ MohammadTaghi HajiAghayi †‡ Hadi Yami †‡

Abstract

Chore division, introduced by Gardner in 1970s [10], is
the problem of fairly dividing a chore among n different
agents. In particular, in an envy-free chore division, we
would like to divide a negatively valued heterogeneous
object among a number of agents who have different
valuations for different parts of the object, such that
no agent envies another agent. It is the dual variant of
the celebrated cake cutting problem, in which we would
like to divide a desirable object among agents. There
has been an extensive amount of study and effort to
design bounded and envy-free protocols/algorithms for
fair division of chores and goods, such that envy-free
cake cutting became one of the most important open
problems in 20-th century mathematics according to
Garfunkel [11]. However, despite persistent efforts, due
to delicate nature of the problem, there was no bounded
protocol known for cake cutting even among four agents,
until the breakthrough of Aziz and Mackenzie [2],
which provided the first discrete and bounded envy-free
protocol for cake cutting for four agents. Afterward,
Aziz and Mackenzie [3], generalized their work and
provided an envy-free cake cutting protocol for any
number of agents to settle a significant and long-
standing open problem. However, there is much less
known for chore division. Unfortunately, there is no
general method known to apply cake cutting techniques
to chore division. Thus, it remained an open problem
to find a discrete and bounded envy-free chore division
protocol even for four agents.

In this paper, we provide the first discrete and
bounded envy-free protocol for chore division for an ar-
bitrary number of agents. We produce major and pow-
erful tools for designing protocols for the fair division
of negatively valued objects. These tools are based on
structural results and important observations. In gen-

∗The omitted proofs can be found in the full version of this
paper.
†University of Maryland. Email:

Sina.Dehghani@gmail.com,{farhadi,hajiagha}@cs.umd.edu,
hyami@umd.edu
‡Supported in part by NSF CAREER award CCF-1053605,

NSF BIGDATA grant IIS-1546108, NSF AF:Medium grant CCF-
1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423,
and another DARPA SIMPLEX grant.

eral, we believe these structures and techniques may
be useful not only in chore division but also in other
fairness problems. Interestingly, we show that apply-
ing these techniques simplifies Core Protocol provided
in Aziz and Mackenzie [3].

1 Introduction

The chore division problem is the problem of fairly
dividing an object deemed undesirable among a number
of agents. The object is possibly heterogeneous, and
hence agents may have different valuations for different
parts of the object. Chore division was first introduced
by Gardner [10] in 1970s, and is the dual problem of
the celebrated cake cutting problem. In cake cutting,
we would like to fairly divide a good (such as a cake) for
which everyone has a positive valuation. In some sense,
chore division is a minimization problem while cake
cutting is a maximization problem. Recently Aziz and
Mackenzie [2] provided a bounded envy-free protocol for
4-person cake cutting, and later on a bounded envy-free
protocol for n-person cake cutting [3]. Chore division or
cake-cutting with negative utilities is less explored and
much less is known about it. In this paper, we provide
the first discrete and bounded envy-free chore division
protocol for any number of agents.

The fair cake-cutting problem was introduced in
the 1940s. There are different ways one can define
fairness. Initially, proportional division was studied.
An allocation is proportional if everyone receives at
least a 1

n fraction of the cake according to his/her
valuation. Proportional division was solved soon in 1950
[23]. A stronger criterion of envy-freeness was proposed
by George Gamow and Marvin Stern in 1950s, which
is, no one envies another. In other words, each agent
receives a part he thinks is the largest part.1. The
envy-free cake cutting problem became “one of the most
important open problems in 20th-century mathematics”
according to Garfunkel [11].

For the case of two agents, the “I cut you choose”
protocol simply provides an envy-free allocation for
both cake cutting and chore division. However, the
problem is highly more complicated for more agents.
In general, since the valuations of agents for different

1It is easy to see an envy-free allocation is also proportional

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2564

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

parts of the object may be complex, the standard
is to assume a query access model for evaluations.
We can ask an agent its value for a part of the
object, and also ask an agent to trim the object up
to a certain value. For the case of three agents,
Selfridge and Conway independently found an envy-free
protocol for cake cutting. Oskui (see [20]) provided a
solution for 3-person chore division, which is similar
to Selfridge-Conway procedure for cake cutting, but
is more complicated and needs 9 cuts instead of 5.
Finding a finite protocol for cake cutting with more than
three agents remained an open problem for a long time
until [6] presented a finite envy-free protocol for cake
cutting for any number of agents in 1995. Although
this was a breakthrough in the field, their protocol is
finite but unbounded, i.e., it does not guarantee any
bound on the number of queries and even the number
of cuts. Later Peterson and Su Peterson and Su [16]
provided an unbounded envy-free protocol for chore
division. Brams et al. [5] and Saberi and Wang [21]
gave “moving-knife” protocols for cake-cutting for four
and five agents. Peterson and Su [15] gave a moving-
knife procedure for 4-person chore division. A moving-
knife procedure involves one or more agents moving
knives simultaneously with some restrictions until one
agent calls “stop”. Although moving-knife procedures
are more than existence theorems, “a moving knife
protocol is certainly less than an effective procedure
in the algorithmic sense” according to [12]. That is
because the continuous movement of a knife cannot be
captured by any finite protocol.

Having a bounded envy-free protocol even for four
agents remained an important open problem [4, 6, 7, 8,
9, 13, 14, 18, 19, 20, 21, 22]. The unboundedness of cake
cutting protocols was mentioned as a “serious flaw” [19],
and finding a bounded protocols was highlighted as “the
central open problem in the field of cake-cutting” [14]
and “one of the most important open problems in the
field” [21]. Brams and Taylor [6] were aware of their
protocols drawback and explicitly mentioned “even for
n = 4, the development of finite bounded envy-free cake
cutting protocols still appears to be out of reach and a
big challenge for the future”. Finally, the prominent
work of Aziz and Mackenzie [2] provided a bounded
envy-free cake cutting protocol for four agents. Later
they generalized their work and provided an envy-free
cake cutting protocol for any number of agents to settle
a major and long-standing open problem. However, it
remained an open problem to find a bounded envy-free
chore division protocol even for n = 4. In this paper,
we provide the first discrete and unbounded envy-free
protocol for chore division among any number of agents.

1.1 Prelimiaries In chore division, we are asked to
partition a given chore R among n agents. Let A =
{a1, . . . , an} be the set of agents, and Ca(P) denote the
cost of some piece P ⊆ C for agent a. w.l.o.g we assume
that For every agent a, the cost of the whole chore is
1, i.e., ca(C) = 1. An envy-free partition is a partition
of R into n pieces P1, . . . , Pn and assigning them to the
agents accordingly such that for every two agents a and
b, Ca(Pa) ≤ Ca(Pb), where Pa and Pb denote the pieces
assigned to agents a and b respectively.

For any protocol, we use the standard Robertson-
Webb model [20]. In Robertson-Webb model, the
chore is modeled as an interval R = [0, 1]. We
have absolutely no knowledge about the agents’ cost
functions in advance, except that the functions are
defined on sub-intervals of [0, 1], non-negative, additive,
divisible, and normalized. Therefore every information
is obtained via queries. The complexity of a protocol is
defined by the number of queries it makes. There are
two types of information queries:

• Trima(α): given a cost value 0 ≤ α ≤ 1, agent a
returns an 0 ≤ x ≤ 1, such that his cost for interval
[0, x] equals α.

• Evala(x): returns the cost value of interval [0, x]
for agent a.

In this paper, we distinguish between cutting and
trimming of a piece. Cutting a piece P refers to dividing
P into two pieces, but in trimming we only find a
subinterval in P and do not cut the piece. Note that
in this paper a piece P is not necessarily an interval,
but a union of intervals, since we may cut and join
pieces. Although Eval and Trim queries are defined
on intervals, whenever we cut a piece we maintain the
cost of the new pieces. Thus we can translate a query
on a piece to a query on the interval [0, 1].

1.2 Results and Techniques Our main result is a
discrete and bounded envy-free protocol for dividing a
chore among n agents. Many techniques have been pro-
posed for envy-free cake cutting. Aziz and Mackenzie
[3] provide a bright and powerful framework to obtain a
bounded and envy-free protocol for cake cutting among
n agents. However the components of their framework
and their protocols do not work for chore division. The
protocols for positive valuations are not usually appli-
cable for negative valuations, and “in general there are
no reductions from allocation to chores to goods or vice
versa”[1]. To solve the chore variant of the problem,
we borrow the general idea of their framework, but we
have to provide novel techniques and structural results
and also rebuild their framework’s components. These
new techniques and structures not only deliver powerful

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2565

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

tools for designing chore division protocols, but also are
useful in cake cutting.

In the following, we present the very high-level
concepts and techniques used in this paper. The basic
idea is to use an inductive algorithm. More precisely we
use induction on the number of agents and try to divide
a chore only among a subset of the agents.

Initially, we need an envy-free protocol which par-
tially divides a chore among the agents. The proto-
col does not necessarily allocate the whole chore, but
roughly speaking assigns a fraction of the chore, main-
taining the envy-freeness. The protocol has other plau-
sible features to be mentioned later.

Having a partial allocation, we use the concept
of irrevocable advantage (dominance). It is the key
of many fair allocation protocols [2, 3, 6, 15, 16, 21].
Assume that the partial allocation is envy-free and we
have a remaining or unallocated chore R. We say
an agent a has an irrevocable advantage to another
agent b or a dominates b, if a thinks she is assigned
much less chore than b, such that she may not envy
b even if we assign the whole R to her. In other
words, Ca(Pb) − Ca(Pa) ≥ Ca(R), where Pa and Pb

are the pieces allocated to a and b respectively in the
partial allocation. We use a similar but weaker notion
of significant advantage. Agent a has a significant
advantage over b if Pa is much more desirable than Pb to
a with respect to the remaining chore, or more precisely
Ca(Pb)−Ca(Pa) ≥ α×Ca(R), where α is a constant to
be defined later. Importantly we show that significant
advantage and irrevocable advantage are in some sense
equivalent. If agent a has an irrevocable advantage over
b, then her advantage is significant as well. On the other
hand if agent a has a significant advantage over agent b,
using some partial allocation protocols we make R small
enough for agent a to make the advantage irrevocable.

Assume that we have a partial envy-free allocation.
If there exists a set of agents S ⊂ A, such that each
agent in S has irrevocable advantage to every agent
in A \ S, we can leave A \ S unchanged, and assign
the remaining chore inductively to S. Thus the main
goal of our protocol is to make a set of agents have
significant/irrevocable advantage over the rest of the
agents.

The other very useful concept, introduced by Aziz
and Mackenzie [3], is the notion of snapshots. Recall
that we have a partial allocation protocol. Every time
we may partially allocate the remaining chore to the
agents. Each of these partial allocations is called a
snapshot. The chore assigned to each agent is the
union of her assigned chores in all the snapshots. A
critical thing about snapshots is that we can use an
agent’s advantage in one snapshot to compensate her

for modifications in other snapshots. Basically, if agent
a has a lot of advantage over b in one snapshot, we can
for example assign some of b’s chore to a in some other
snapshot. Also note that, as long as every snapshot
is envy-free, if an agent a has irrevocable advantage
to agent b, then she also has irrevocable advantage in
total. Thus we can focus on one snapshot and deliver
irrevocable advantage among some agents in that single
snapshot. Then we can use other snapshots for having
irrevocable advantage among other agents. Another
very handy use of snapshots is that we may have as
many of them as we need. Then we can concentrate on
a set of similar snapshots. More precisely, in a snapshot
every agent can order the other agents based on how
much is their value for her allocated piece. [2] define
two snapshots isomorphic if, roughly speaking, those
orderings of the agents are exactly the same. Here
we need a stronger notion of isomorphism. First, we
define a mask of a snapshot, which somehow codes
the significance of agents’ advantages. We say two
snapshots are isomorphic if each agent orders the other
agents exactly the same and also their masks are the
same. Having isomorphic snapshots, we can modify
the allocated pieces easier, and thus we construct as
many snapshots to be able to have a large enough set of
isomorphic snapshots, using pigeon hole principle. We
initially call this set of snapshots the working set. We set
aside the other snapshots and only modify the working
set.

The other useful concept that we introduce is a
matching. A set of trimmed pieces and agents have
a matching if we can match every trimmed piece to
an agent such that the allocation is envy-free. We
use this extra information about pieces to obtain more
structural protocols. We show that if we have a
matching we can define monotone protocols, which
means we may only make the trimmed pieces larger,
obtaining an envy-free allocation. We also use matching
in the Sub Core protocol, in which we put a lower bound
on the trims of pieces and try to trim the pieces and
guarantee to maintain a matching.

Now we describe a technical overview of the main
protocols. As aforementioned we need a partial envy-
free allocation protocol called the core protocol. The
Core protocol is the main and most fundamental proto-
col of our algorithm. The Core protocol has to have the
following properties.

• Assigns each agent a piece such that no agent envies
another agent;

• Assigns at least a 1
n fraction of the chore in one

agent’s point of view;

• Most importantly, given a specific agent, guaran-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2566

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

tees that this agent has significant advantage to
another agent in this allocation.

The Core protocol is the “engine” of Aziz and Macken-
zie [2, 3]’s protocol for cake cutting, but unfortunately
their protocols are not applicable for the chore divi-
sion. Instead we design a much simpler Core protocol.
Although our Core protocol is very simple, its proof
is based on a much more complicated infinite protocol
which guarantees the existence of the desired allocation.
The basic idea of a Core protocol is as follows. We se-
lect a cutter agent that divides the chore into n equal
pieces. Note that the pieces are not necessarily equal
to other agents. Then we try to match each agent to
one piece such that every agent receives a part of its
matched piece, but at least one agent may be given a
whole piece. Thus, at least 1

n fraction of the cake is
allocated in the cutter’s point of view. Also, the cutter
receives some considerable advantage to the agent who
has been given a whole piece. The heart of our Core
protocol is the following structural lemma, which is the
restatement of Lemma 3.8.

Lemma 1.1. Given n pieces and n different agents,
there exists an allocation of pieces to agents such that a
whole piece is allocated to one agent, and a trim of each
piece is allocated to exactly one agent, if and only if,
there exists an ordering of the agents and an ordering
of the pieces such that the following protocol provides
an envy-free allocation. Agents receive their pieces one
by one. The first agent receives the first piece. The
i-th agent trims the i-th piece in such a way that she
receives the largest part of it without envying the first
i− 1 agents. In other words she considers the first i− 1
allocated pieces, if her cost for any of those pieces is less
than her cost for the i-th piece, she trims the i-th piece
to make it equal to that piece.

Note that in such a protocol, the i-th agent may
not envy the first i − 1 agents, but some of the first
i−1 agents may envy the i-th agent. Roughly speaking,
this lemma shows that if there exists some “core-like”
allocation of some pieces to agents, there exist an
ordering of both agents and pieces such that the first
i − 1 agents also do not envy the i-th agent, using
the aforementioned protocol. Thus, if there exists
such allocation, we can try every ordering of agents
and pieces to find an envy-free allocation using that
simple protocol. Interestingly, we design a protocol
which is even infinite but outputs a core-like allocation.
However, knowing that there exists such a protocol is
sufficient to be able to design a much simpler Core
protocol.

Another important aspect of this structural result is
that it also holds for cake cutting. Aziz and Mackenzie

[2] provide a relatively complicated Core protocol. Us-
ing our structure, we may design a much simpler proto-
col. Since they provide a Core protocol, it implies that
there exists a core-like allocation, and thus our simple
protocol also works for cake cutting.

The other important component of our protocol
is the Permutation protocol. Assume that there is
a set S ⊂ A of agents, such that every agent in S
has significant advantage to some agent a ∈ A in
a set of snapshots. If we could exchange the piece
allocated to a with the allocated piece of some other
agent b /∈ S in some snapshot, then every agent in S
also has significant advantage to b. In Permutation we
try to find such set S, that has significant advantage
to a, and then somehow move the a’s piece among
every agent not in S. Therefore every agent in S has
significant advantage to every agent in A \ S, and we
can do the chore division inductively as we discussed.
For exchanging the agents’ pieces we find a chain of
agents, a1, a2, . . . , ak, such that ai receives ai−1’s piece
and a1 receives ak’s piece. Since each snapshot is envy-
free after changing the pieces, agents a1, . . . , ak may
envy each other or other agents. Thus we modify many
other snapshots to guarantee envy-freeness. Aziz and
Mackenzie [3] also have a Permutation protocol. The
key difference between our Permutation protocol is that
in cake cutting we can add a piece of cake from R to
a piece that is assigned to an agent, such that another
agent accepts to receive it. However in chore division
we have to remove a part of chore from a piece to be
able to assign it to some other agent. The difference
is huge and makes the Permutation much more subtle
because of the two following reasons. First the part that
we remove from a piece assigned to an agent goes back
to the remaining chore, or R. Since R becomes larger,
the significance of the advantages, which are defined
based on R may change. Second, since the pieces that
we want to remove are already allocated, it is not easy
to divide them between agents, or remove similar pieces
from other agents.

Moreover, we make use of two previously known fair
division protocols. The protocols are used as infinite
protocols for cake cutting, but we show that one can use
them as powerful tools for bounded protocols as well.
The first protocol is the Near-exact protocol introduced
by Pikhurko [17]. In the Near-exact protocol, given a
chore R, n agents, an integer m, and a real number
ε > 0, we divide E into m pieces, such that for each
agent a and piece P , |Ca(P) − 1

mCa(R)| ≤ εCa(R).
In other words the pieces have almost equal costs for
the agents. We also show how one can use the Near-
exact protocol to improve Aziz and Mackenzie [3]. The
other protocol is the Oblige protocol, first used by

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2567

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Peterson and Su [16]. In Oblige protocol we partition
the chore into 2n+1 pieces, and output a partial envy-
free allocation such that every agent is assigned at least
one of the pieces completely. The combination of these
protocols is used in our Discrepancy protocol, described
below.

Another important component of our protocol is the
Discrepancy protocol. We use the Discrepancy protocol
when we have a piece P that is very costly for a set of
agents S and R is relatively small, and in the contrary
the rest of agents think R costs much more than P .
Thus we use a combination of Near-exact and Oblige
protocols to divide R among S and P among the rest
of the agents, such that no agent envies another agent.
In this way we may inductively divide the chore among
smaller set of agents.

2 Main Protocol

Main Protocol is responsible for allocating the whole
chore among the agents in an envy-free manner. It
first makes a set of agents dominant to the others and
then allocates the remaining chore to a smaller number
of agents. Main Protocol achieves this goal by using
two other protocols, Core Protocol, and Permutation
Protocol. As we mentioned in Introduction, in Core
Protocol we are Given an agent a as the cutter who
divides the chore into n equally preferred pieces, and
then the protocol partially allocates the chore to
the agents such that at least one piece is completely
allocated and each agent gets part of a single piece.
Permutation Protocol gets a partial allocation of the
chore and makes a set of agents dominant to others by
slightly changing the allocation.

In the beginning, Main Protocol calls Core Protocol
many times, each time on the remaining chore to create
a large number of partial allocations. We call each of
these partial allocations a snapshot.

Definition 1. A snapshot s is a partial envy-free
allocation returned by Core Protocol. We use sa to
denote the allocated piece to agent a.

After generating many snapshots, Main Protocol
finds a set of similar snapshots and makes some slight
changes on these snapshots in Permutation Protocol.
Each time we call Core protocol, we get an envy-
free partial allocation of the chore. In each of these
snapshots, each agent thinks that the cost of her piece
is less than the cost of the others’. In particular,
considering a snapshot s and agents a and b, since the
partial allocation obtained by Core Protocol is envy-
free, agent a thinks that the cost of piece sa is not

Algorithm 1: Main Protocol
Data: List of agents A = {a1, a2, . . . , an} and chore R

1 if n = 1 then
2 allocate the whole chore to agent a1 ;
3 return the allocation;

4 else if n = 2 then
5 Run cut and choose procedure for agents a1 and a2 and

chore R ;
6 return the allocation;

7 else

8 for i = 1toISn × nnnn

do
9 Run Core Protocol(a1, A,R) to create snapshot si

and to update the remaining chore;

10 for i = 1toISn × nnnn

do
11 for every pair of agent a and b such that Adv

si
a,b

is not significant do

12 Ask agent a to place a trim on sbi to make it
equal to sai ;

13 while there exists a snapshot si and pair of agents a

and b such that Ca(R)(
1

22n
) ≤ Adv

si
a,b ≤ 22nCa(R) or

14 Ca(R)(
1

22n
) ≤ Ca(e

si,b

j) ≤ 22nCa(R) for some j do

15 Run Core Protocol(a,A,R);
16 if an agent c has a significant advantage over

agent d in a snapshot s′ then

17 Remove the trim of agent c from s′d ;

18 if there exists a set of agents B ⊂ A such that every
agent in B has a significant advantage over every
other agent in A \ B then

19 for each agent ai do
20 Call Core Protocol(ai, A,R) ;

21 Call Main Protocol (B,R) ;
22 return the allocation ;

23 Find set S of isomorphism snapshots such that
|S| = ISn;

24 Run Permutation Protocol(C, A, R);
25 Let B be the set of agents returned by Permutation

Protocol;
26 for each agent ai do
27 Call Core Protocol(ai, A,R) ;

28 Call Main Protocol(B,R) ;
29 return the allocation ;

greater than cost of sb. We define the advantage of
agent a over agent b in this snapshot, the amount of
chore that a thinks that she got less than agent b, i.e:

Advsa,b = Ca(sb)− Ca(sa)

If the advantage that agent a has over b is greater than
the cost of the residual chore, agent a does not envy
b, no matter how the residual chore will be allocated
among the agents. In this case, we say that agent b is
dominated by agent a. In Particular agent a dominates
agent b in the partial allocation s if Advsa,b ≥ Ca(R).
Since in Core Protocol the cutter cuts the chore into
n equal pieces according to her own perspective and
the protocol allocates at least one piece completely,

the cost of the residual chore is at most
n− 1

n
for the

cutter. In Permutation Protocol, we modify a set of

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2568

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

similar snapshots such that if we reduce the size of
chore by calling Core Protocol nBn times with each
agent as the cutter Bn times where Bn = nn, then
we can find set of agents B such that each agent in A
dominates every other agent in A \B. Therefore, if the
advantage of agent a over another agent b is at least

Ca(R) × (
n− 1

n
)Bn during Permutation Protocol, this

agent will dominate agent b after reducing the size of
the chore.

We define a value to be significant for agent a

if it is at least Ca(R) × (
n− 1

n
)Bn and otherwise

insignificant. Here, a key idea is that if agent a has
a significant advantage over agent b, we can reduce
the size of the remaining chore such that a dominates
b. In Permutation Protocol, we mainly try to modify
snapshots such that it gives a significant advantage to
a set of agents over all other agents. Since a significant
value could become insignificant or vice versa by slightly
modifying the residual chore or allocated pieces, we need
enlarge the gap between significant and insignificant
values to make sure that a significant value remains
significant if we only slightly modify the allocated pieces
and R. To this end, we define very significant and very
insignificant values as follows:

Definition 2. A value v is very significant for an
agent if it is at least 22n times the cost of R in her
perspective.
A value v is very insignificant for an agent if R costs
at least 22n times more than v.

Aziz and Mackenzie [3] show that we can enlarge the
gap between significant and insignificant values using
a bounded number of queries by calling Core Protocol
many times.

In the beginning of Main Protocol, we run Core

Protocol ISn × nn
nn

times where ISn = nn
n

. Our
goal is to find a set of ISn similar snapshots. In each
run, we set the first agent as the cutter and partially
allocate the residual chore between agents. Let si be the
snapshot generated in the ith call of Core Protocol. The
following claim shows that in each snapshot the cutter
has a significant advantage over some other agent.

Claim 1. In each snapshot returned by Core Protocol,
the cutter has a significant advantage over at least one
other agent.

After generating snapshots, in each snapshot s, for
every agent a, we ask a to place a trim on any piece
other than sa to make it equal to her piece if the cost

of this piece is not significantly larger than sa in her
perspective. Main Protocol passes these trim lines
to Permutation Protocol which uses the trim lines to
modify the allocated pieces and make them desirable
for other agents, and then exchanges the pieces between
the agents. An important observation is that if in
snapshot s an agent a has a significant advantage over
some other agent b, and we give sb to some other agent
c while preserving the envy-freeness, then a receives a
significant advantage over c in s.

We use ts,a1 , ts,a2 , · · · , ts,als,a
to denote the trim lines

from right to left on the piece sa where s is an arbitrary
snapshot and a is an arbitrary agent, and ls,a is the
number of agents with a trim on this piece. In the same
way, we denote the agents with a trim on this piece
from right to left by ds,a1 , ds,a2 , · · · , ds,als,a

. Moreover, we
can partition each piece based on the trim lines. We
use es,a1 , es,a2 , · · · , es,als,a

to partition sa, where es,ai is a
part of sa between two consecutive trims such that the
left trim is ts,ai .

Permutation Protocol detaches some part of the
pieces from the trim lines. We want the cost of all
detached pieces be very small for all the agents, so that
very significant advantages remain significant after this
procedure. To this end, we make sure that every es,ai

costs either very significant or very insignificant for all
the agents. For this purpose, while there is an agent
who thinks at least one part is neither very significant
or very insignificant, we keep reducing the size of the
residual chore for this agent by calling Core Protocol.
After that for every part es,ai , we define mask of this
piece or masks,ai to be the set of agents who think this
part costs very significantly. After that, if we find a part
es,ai which costs very significant to agent b, and trim line
of this agent lies on the left of ts

a

i , we can say that agent
b receives a very significant advantage over agent a in
this snapshot and removes the trim of this agent from
sa.

The set of snapshots given to Permutation Protocol
should have very similar properties. In particular, the
protocol needs that the order of trims on each piece be
the same between different snapshots and every part has
the same mask in all the snapshots.

Definition 3. We call two snapshots s and s′ iso-
morphic if :

• For every pieces sa and s′a, they have the same
number of trims on them and order of agents with a
trim on these pieces be the same in both snapshots.

• For every part es,ai and es
′,a

i , the mask of these parts

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2569

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

be the same.

In the following lemma, we show that if we generate at

least ISn × nn
nn

snapshots, then we can find at least
ISn isomorphic snapshots. Main Protocol finds these
isomorphic snapshots and gives them to Permutation
Protocol.

Lemma 2.1. Every set of ISn × nn
nn

has at least ISn

isomorphic snapshots.

3 Core Protocol

Aziz and Mackenzie in [3] present a Core Protocol as
the core engine of their discrete and bounded algorithm
for the cake cutting problem. In each call of Core
Protocol, they allocate some cake from the residue to
all the agents in an envy-free manner. By each call of
this protocol, they make the remaining cake smaller,
but there is no guarantee that calling this protocol for
bounded times suffices to allocate all the cake in an
envy-free manner. Nonetheless, they use this protocol
several times in different parts of their main algorithm.

In the chore division problem, we have a Core
Protocol, Algorithm 2, for allocating additional chore
from the residue to all the agents in an envy-free
manner. Our Core Protocol works as follows: First we
ask the specified cutter to cut the chore into n equal
pieces p1, p2, . . . , pn according to her own perspective.
Then, for each ordering of the agents and each ordering
of the pieces, we make a new allocation of the pieces
to the agents. In the new allocation, agents receive
their pieces one by one. The first agent receives the
first piece. The ith agent trims the ith piece in such a
way to equalize it with her most preferred piece among
the first i − 1 allocated pieces (we consider the cost
value of each piece from its leftmost side to its trim.)
If this allocation be envy-free we return the allocation.
In Lemma 3.8, we guarantee an ordering of agents and
ordering of pieces exists such that the protocol returns
an envy-free allocation. In Subsections 3.1 through 3.7,
we provide another core protocol, which is not bounded
but we use it to guarantee such an ordering of the agents
and the pieces exists. For this reason, we call the new
core protocol Existential Core Protocol, Algorithm 3.

3.1 Existential Core Protocol We call our Exis-
tential Core Protocol on set of agents A with one spec-
ified cutter, and unallocated chore R. In the first step
of the protocol we ask the cutter to cut the chore into
n equal pieces p1, p2, . . . , pn according to her own per-
spective. From now, we work on these n pieces, and
we frequently ask the agents to make trims on them.
In different steps of the algorithm, we may have many
trims on each piece, but we have one specific trim that

Algorithm 2: Core Protocol
Data: Agent set A = 〈a1, a2, . . . , an〉, specified cutter

acutter ∈ A, and unallocated chore R
1 Specified cutter acutter divides the chore into n equal pieces

according to her own perspective;
2 Define p1, p2, . . . , pn the pieces that we have after the

division of acutter;

3 for each permutation 〈a′1, a
′
2, . . . , a

′
n〉 of the agents do

4 for each permutation 〈pa′1
, pa′2

, . . . , pa′n
〉 of the pieces

do
5 Allocate pa′1

to a′1 completely;

6 for i from 2 to n do
7 Ask a′i to trim pa′

i
to equalize it with her most

preferred piece among the first i− 1 allocated
pieces (we consider the cost value of each piece
from its leftmost side to its trim.);

8 Allocate pa′
i
, from its leftmost side to its trim,

to a′i;

9 if none of the agents envies to another agent then
10 return the envy-free partial allocation (at

least one of the pieces has been completely
allocated) and the unallocated chore;

11 Ignore the previous trims and deallocate the
allocated pieces;

we call it the main trim. We may change the position
of the main trim on a piece, but we always have ex-
actly one main trim on each piece. As we mentioned
before, our Existential Core Protocol does not neces-
sarily allocate whole of the chore to the agents, and it
finally allocates each of these pieces from their leftmost
side to their main trim. Initially the main trim of each
piece is on its rightmost side, and we change their place
frequently during the algorithm. In each step of the al-
gorithm we may allocate a piece up to its main trim to
only one agent. It is very crucial to note that, in this
section, when we say we allocate a piece to an agent we
mean that it is allocated from its leftmost side to its
main trim. Also, when we ask the cost value of a piece
from a specific agent, she reports her cost value from
the leftmost side of the piece to its main trim.

In Algorithm 3, after the cutter cuts the chore, we
run the Separated Chore Core Protocol on all the agents
and all the pieces with their main trims. The Separated
Chore Core Protocol receives n pieces of the chore with
their main trims and a set of n agents, and it returns an
envy-free partial allocation of the pieces to the agents.
The properties of Separated Chore Core Protocol are as
follows:

Definition 4. (Separated Chore Core Protocol
Properties)

• It does not change the main trim of pieces to a
position on the right side.

• It does not change the main trim of at least one of
the pieces.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2570

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 3: Existential Core Protocol
Data: Agent set A = 〈a1, a2, . . . , an〉, specified cutter

acutter ∈ A, and unallocated chore R
1 Specified cutter acutter divides the chore into n equal pieces

according to her own perspective;
2 Define p1, p2, . . . , pn the pieces that we have after the

division of acutter;
3 Define main trims t1, t2, . . . , tn for pieces p1, p2, . . . , pn

respectively where they are initially on the rightmost side of
the pieces;

4 Run Separated Chore Core Protocol on all the agents and all
the pieces with their main trims. The call gives an envy-free
partial allocation (at least the main trim of one of the pieces
is not changed);

5 return envy-free partial allocation (at least one of the pieces
has been completely allocated) and the unallocated chore;

In Algorithm 3, when we call Separated Chore Core
Protocol, all the main trims are on the rightmost side of
the pieces, but we make many other calls on Separated
Chore Core Protocol such that the main trims are not
necessarily on the rightmost side of the pieces. Sepa-
rated Chore Core Protocol guarantees that its returned
allocation does not change the main trim of at least one
piece. Therefore, we can imply that from the cutter’s
perspective, at least 1/n of the chore is allocated. Exis-
tential Core Protocol, Algorithm 3, returns the alloca-
tion that Separated Chore Core Protocol returned. In
the following Lemma we prove that if Separated Chore
Core Protocol works, Existential Core Protocol works
as well.

Lemma 3.1. If Separated Chore Core Protocol, Algo-
rithm 4, works, Existential Core Protocol, Algorithm 3,
gives an envy-free partial allocation to n agents in which
one of the agents is the cutter who cuts the chore into n
pieces, each agent gets a part of one of the pieces, and
at least one agent gets a complete piece.

Proof. If Algorithm 4 works correctly, its returned
allocation is an envy-free partial allocation, and it
does not change the main trim of at least one of the
pieces. Since in Algorithm 3, we call Separated Chore
Core Protocol for the pieces with a main trim on the
rightmost side, at least one of the pieces is completely
allocated in the returned allocation by Separated Chore
Core Protocol.

3.2 Separated Chore Core Protocol In this Sub-
section we describe Separated Chore Core Protocol, Al-
gorithm 4. As we mentioned in Subsection 3.1, this
protocol receives a chore with n pieces as well as a set
of n agents, and it returns an envy-free partial alloca-
tion of the pieces to the agents such that the main trim
of at least one of the pieces remains intact. We say a
piece is intact during a protocol P if its main trim does
not change during the call of P .

This protocol is based on an iterative idea in lines
2-15 of Algorithm 4. After the ith iteration of the loop
we ensure that we have a neat allocation for the first
i agents. We define a neat property for allocations as
follows:

Definition 5. We call an allocation of m disjoint
pieces of the chore to n agents (where n ≤ m) neat
if the following properties hold:

• The allocation allocates a (not necessarily whole)
part of exactly one of the pieces to each agent.

• no agent prefers an unallocated piece or another
agent’s allocation to her allocation.

In the ith step of the loop, before running Line 15,
we already have a neat allocation of pieces to the first i
agents (we describe it in details later), and in Line 15,
by running Best Piece Equalizer Protocol, it modifies
the neat allocation. Best Piece Equalizer Protocol,
Algorithm 7, is a protocol receiving a neat allocation
of some pieces to some agents (one piece each agent),
and it returns a modified neat allocation of pieces to the
agents (one piece each agent). The properties of Best
Piece Equalizer Protocol are as follows:

Definition 6. (Best Piece Equalizer Protocol
Properties)

• The protocol is monotone.

• The returned allocation does not have any subset of
bad agents.

We define the monotonicity of a protocol as follows:

Definition 7. Assume that P is a protocol which re-
ceives a neat allocation of pieces to agent set A as input,
and outputs another neat allocation of the pieces to the
same set of agents. We call protocol P monotone if
and only if it does not change the main trim of any
piece p to the left side position.

We also define a bad subset of agents as follows:

Definition 8. When we have a neat allocation of the
pieces to some of the agents, we call a subset of agents
S bad if the following conditions hold:

• One piece is allocated to each agent in S.

• None of the allocated pieces to the agents in S is
intact.

• For each agent a ∈ S, the cost of the piece that we
have allocated to a is less than the cost of any other
piece.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2571

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

We describe Best Piece Equalizer Protocol in more
details in Subsection 3.5.

Now, we describe how the protocol makes a neat
allocation of pieces to the first i agents before running
Best Piece Equalizer Protocol in Line 15. In the ith

step of the loop, agent ai chooses piece p which is her
most preferred piece among all pieces. However, p may
be allocated before. If in the end of the (i − 1)th step
of the loop, p is not allocated to any agent, then we
can simply allocate it to ai (As mentioned before, we
emphasize that when we allocate a piece to an agent,
we allocate a partial part of it from its leftmost side
to its main trim). Although we easily handled the case
that p is not allocated, the other case is much harder.
If p has been allocated to another agent aj before, we
have a conflict of interest on piece p. We define a popular
piece and its happy or sad fan agents as follows:

Definition 9. When at least two agents a and b prefer
a specific piece p to all other pieces, we call p a popular
piece, and we call agents a and b the fans of piece p.
We also call agent a a happy fan of p if she is a fan
of p and p is already allocated to her, and we call her
a sad fan of p if she is a fan of p but p is not already
allocated to her.

According to Definition 9, piece p is a popular piece,
agent aj is its happy fan, and agent ai is its sad fan. We
handle this conflict of interest based on two different
cases whether the main trim of p is the same its initial
main trim or not. First, we deal with the case that
the main trim of p is not changed. In this case, we
run Allocation Extender Protocol for all the pieces with
their main trims, the first i agents with their current
allocation, the popular piece p, and its fan agents ai
and aj . Allocation Extender Protocol is a protocol
which receives a neat allocation of pieces to the agents,
a popular piece p, and its two specific happy and sad
fan agents a and b. Note that in the allocation that this
protocol receives, agent b is the only agent who does not
have any piece. This protocol returns a neat allocation
of pieces to the agents such that every agent has a piece
and the main trim of piece p is not changed during the
call of the protocol. We describe Allocation Extender
Protocol in more details in Subsection 3.3.

Now, we deal with the case that p is not an intact
piece. The general idea to handle this case is that to
modify the current allocation such that an intact piece
becomes the popular piece. Then, we can handle it
similar to the previous case. We do this modification
by calling Core Match Refiner Protocol, Algorithm
9. Core Match Refiner Protocol is a protocol which
receives a neat allocation of pieces to agents, with a
specific popular piece p. This protocol returns a new

neat allocation and a flag variable with the following
properties:

• In the new allocation piece p does not have any
owner agent.

• If the flag is false, the new allocation has assigned
a piece to each called agent.

• If the flag is true, the new allocation has assigned a
piece to each called agent except one of them, who
is the sad fan of one of the intact pieces.

We call Core Match Refiner Protocol for all the
pieces with their main trims, the first i− 1 agents with
their current allocation, and the popular piece p. The
call returns a refined neat allocation and a flag (In the
case the flag is true, it returns the new popular piece
q with agent a as its happy fan and agent b as its sad
fan.) In the new allocation, piece p does not have any
owner agent, so we can easily allocate it to ai. If the flag
is false, we have already increased the size of our neat
allocation. If the flag is true, the situation is similar to
the previous case such that there exists a popular intact
piece q. Similar to the first case, we can run Allocation
Extender Protocol (Line 14 of the Algorithm 4).

In the following lemma, we prove the correctness of
Separated Chore Core Protocol.

Lemma 3.2. If Allocation Extender Protocol, Core
Match Refiner Protocol, and Best Piece Equalizer Pro-
tocol work, Separated Chore Core Protocol, Algorithm
4, gives an envy-free partial allocation to the called
agents such that Separated Chore Core Protocol Prop-
erties hold.

3.3 Allocation Extender Protocol In this subsec-
tion, we describe Allocation Extender Protocol, Algo-
rithm 5. This protocol receives a neat allocation of the
pieces to the agents such that all the called agents has
a piece except agent b who is the sad fan of the popular
piece p. The goal of this protocol is to find a neat allo-
cation which allocates a piece to each called agent and
does not change the main trim of p.

In this protocol, first we ask agents a and b to trim
each piece equal to p. For each piece q, we change
its main trim to the rightmost trim made by a and
b. Then, we deallocate all the allocated pieces but we
remember the allocation as the original mapping and
the main trim of the pieces as the original mapping
trims. Then we run SubCore Protocol, Algorithm 6.
SubCore Protocol is a protocol which receives a set of
agents and pieces with an original mapping such that
the main trim of each piece is not on the right side of
its original mapping trim. It returns a neat allocation

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2572

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 4: Separated Chore Core Pro-
tocol

Data: A chore with n pieces 〈p1, p2, . . . , pn〉 with their main
trims 〈t1, t2, . . . , tn〉 consecutively and a set of agents
A = {a1, a2, . . . , an}

1 Remember the initial main trims of the pieces during this
call;

2 for i = 1 to n do
3 Agent ai chooses piece p ∈ {p1, . . . , pn} which is the

most preferred piece for her among all pieces;
4 if p is not allocated to agents a1, a2, . . . , ai−1 then
5 Allocate p to agent ai;

6 else
7 Suppose that ai chooses a piece which has been

allocated to aj ;
8 if the main trim of p is not changed then
9 Run Allocation Extender Protocol for all the

pieces with their main trims, the first i agents
with their current allocation, the popular piece
p, and its fan agents ai and aj . The call
returns a neat allocation of pieces to agents
(one piece each agent) without changing the
main trim of p;

10 else
11 Run Core Match Refiner Protocol for all the

pieces with their main trims, the first i− 1
agents with their current allocation, and the
popular piece p. The call returns a refined neat
allocation and a flag (In the case the flag is
true, it returns the new popular piece q with
agent a as its happy fan and agent b as its sad
fan);

12 Allocate p to ai;
13 if flag = true then
14 Run Allocation Extender Protocol for all

the pieces with their main trims, the first i
agents with their current allocation, the
popular piece q, and its fan agents a and b.
The call returns a neat allocation of pieces
to agents (one piece each agent) without
changing the main trim of q;

15 Run Best Piece Equalizer Protocol on all n pieces with
their main trims, all the first i agents, and the current
allocation. The call gives a neat allocation of pieces to
the called agents without any bad subset of agents;

16 return envy-free partial allocation (with at least one intact
piece) and the unallocated chore;

of pieces to agents (one piece each agent) such that the
following properties hold:

Definition 10. (SubCore Protocol Properties)

• It does not change the main trim of unallocated
pieces.

• It does not change the main trim of any allocated
piece to a left side position.

• It does not change the main trim of a piece to a
right side position of its original mapping trim.

We describe this protocol in more details in Sub-
section 3.4. We emphasize that we do not change the
original mapping during each call of SubCore Protocol.
We call SubCore Protocol for all the first i agents ex-
cept a and b with all the pieces except piece p. This

Algorithm 5: Allocation Extender Pro-
tocol

Data: A chore with m pieces 〈p1, p2, . . . , pm〉 with their
main trims 〈t1, t2, . . . , tm〉 consecutively, a set of
agents A = {a1, a2, . . . , an} (n ≤ m) with a neat
allocation of pieces to agents, one specific popular
piece p ∈ {p1, p2, . . . , pm}, and its two specific happy
fan agent a ∈ A as well as sad fan agent b ∈ A

1 Remember the initial main trims of the pieces during this
call;

2 for each piece q ∈ {p1, . . . , pm} do
3 Ask agents a and b to trim q equal to p;
4 Set the main trim of piece q as the rightmost trim

among the trims that agents a and b made on q;

5 Deallocate the allocated pieces but remember the allocation
as the original mapping;

6 Run the SubCore Protocol on all m pieces except p with
their main trims and all agents except a and b with their
original mapping. The call gives a neat allocation of pieces
to the called agents;

7 After the allocation, at least one piece q among pieces
{p1, . . . , pm} except p is not allocated;

8 if the main trim of q is made by agent a then
9 Allocate q to a, and p to b;

10 else
11 Allocate q to b, and p to a;

12 return neat allocation of pieces to the agents (one piece
each agent), without changing the main trim of p, and the
unallocated chore;

call gives us a neat allocation of the called pieces to the
called agents. After this call, we allocate a piece to a
and another piece to b from the unallocated pieces in
the following manner. We should have at least two un-
allocated pieces such that one of them is p. We take one
of the other unallocated pieces q. First, we allocate q
to the agent among a and b who made the main trim
on it, and then, we allocate p to the other agent. Now,
we have allocated a piece to each agent. In the follow-
ing lemma, we prove that Allocation Extender Protocol
works correctly.

Lemma 3.3. If SubCore Protocol works, Allocation Ex-
tender Protocol returns a neat allocation of pieces to
agents (one piece each agent) such that p is an intact
piece in this protocol.

Proof. In the beginning of the Algorithm, agents a and
b make trims on each piece equal to p. They can make
this trim because p is their most preferred piece. Then,
by calling SubCore Protocol, we have a neat allocation
of pieces to all agents except a and b. Then, as we
mentioned, we allocate an unallocated piece to each
agent a and b. Without loss of generality, assume
that agent a receives p and agent b receives q. Since
SubCore Protocol returns a neat allocation to the called
agents, They do not envy each other. They also do
not envy to a, b or any unallocated piece, because after
running SubCore Protocol, we have not changed the
main trim of pieces. agents a and b do not envy the

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2573

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

other agents, because according to SubCore Protocol
Properties, SubCore Protocol does not change the main
trim of allocated pieces to a left side position, and it
does not change the main trim of unallocated pieces.
Agents a and b do not envy to an unallocated piece,
because SubCore Protocol does not change the main
trim of unallocated pieces. It is also easy to check that
they do not envy each other.

3.4 SubCore Protocol In this Subsection, we de-
scribe Algorithm 6 in more details. As we mentioned
before, this protocol gets a subset of agents and a sub-
set of pieces with their main trims as well as the orig-
inal mapping of agents to pieces. As we mentioned, in
the original mapping, we have an allocation of pieces
to agents (one piece each agent, and some of the pieces
may be unallocated) such that in each call of the pro-
tocol, for each allocated piece in the original mapping,
its original mapping trim is on the right side of its main
trim. The protocol returns a neat allocation of pieces
to the agents such that SubCore Protocol Properties,
definition 10, hold.

In this protocol, similar to the idea that we used
in Algorithm 4, we find a neat allocation iteratively. In
Algorithm 6, we implement this loop in lines 2-26. We
add the agents one by one, and in the end of the i-th
step of the loop, we have a neat allocation of pieces
to the first i agents. Similar to Algorithm 4 in the i-th
step, we ask agent ai to choose her most preferred piece.
Assume that p is her choice, and it is not allocated to
other agents. In this case, we can easily allocate p to ai.
Otherwise, we should handle the case in a much more
complicated manner.

When agent ai chooses a piece which is allocated to
another agent, we have i agents that the first preference
of each of them is among i − 1 pieces. We call this set
of allocated pieces P . We have |P | = i − 1 allocated
pieces, and we call these i − 1 pieces contested pieces.
The intuition to resolve this issue is to find a way to
allocate one of the pieces outside of P to one of the
first i agents. However, none of the first i agents may
prefer these pieces. Hence, for using this idea, we need
to change the main trim of some contested pieces and
reallocate them to agents. To this end, we ask each
of the first i agents to make a trim on each of the
contested pieces to equalize it with the cost value of her
most preferred piece outside of P . For an agent, if the
cost value of a contested piece from its leftmost side to
its original mapping trim was less than the cost value
of her most preferred piece outside of P , She makes
a trim on the original mapping trim of the contested
piece. We define a representative agent for each piece
in P (we have not assigned them yet.) If the trim of

agent aj ∈ {a1, a2, . . . , ai} on contested piece q was the
rightmost trim, and q was the original mapping of aj ,
we set aj as the representative of q. Otherwise, the
agent with the rightmost trim and lowest index is its
representative. We define set W as the set of agents
who are the representative of at least one piece in P . In
Lemma 3.4, we prove that W is the set of agents who
are guaranteed to have a neat allocation. Therefore, our
idea is to enlarge |W | up to |P | and make sure we have a
neat allocation of P to agents in W . In each step of the
loop in lines 15-24 of Algorithm 6, we increase the size
of W by adding exactly one agent to it. In each step of
this loop, we update the main trim of each piece in P by
agents inW ′ = {a1, . . . , ai}\W as follows: for each piece
p ∈ P , we find the rightmost trim among the trims that
the agents in W ′ have made on p, and update the main
trim of p to this trim. Then, we find another mapping
of pieces to agents in W ′ (one piece each agent), and
we call it modified original mapping. We will use this
mapping as the original mapping in our recursive call
of SubCore Protocol. We find the modified original
mapping as follows: we know that each agent in W is a
representative of at least one piece in P . For each agent
aj ∈W , if paj

∈ P and aj was the representative of paj
,

we assign paj to aj in the modified original mapping.
Otherwise, we assign an arbitrary piece, from the set of
pieces that aj is their representative, to her. In both
cases, the modified original mapping trim is the trim of
aj on the piece. The modified original mapping trim of a
piece is its main trim in the modified original mapping.
Moreover, the modified original mapping trim of each
unallocated piece of P in the modified original mapping
is the trim of its representative agent on it. In Lemma
3.4, we prove that this is an envy-free mapping of pieces
to agents.

After finding the modified original mapping of W to
P , we call SubCore Protocol on all pieces in P with their
main trims, the agents in W , and the modified original
mapping of W recursively. This call allocates a piece of
P to each agent in W in a neat manner. If |W | = |P |,
we break the loop, and among the first i agents, we have
exactly one agent that we have not allocated any piece
to her. Let a be this specific agent. We allocate the
most preferred piece out of P for a to her. In Lemma
3.4, we prove that this allocation is feasible. Now, as the
other case, assume that |W | 6= |P |. In this situation,
we should further continue enlarging W . We take an
arbitrary piece q from unallocated pieces of P . Let
agent a ∈ {a1, . . . , ai} \ W be the agent who has the
rightmost trim on q (In Lemma 3.4, we prove that this
trim is the main trim of q.) If more than one such agent
exists, a is the agent with the lowest index. We allocate
q to a and add a to W . Note that in the beginning

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2574

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 6: SubCore Protocol
Data: A chore with m pieces 〈p1, p2, . . . , pm〉 with their

main trims 〈t1, t2, . . . , tm〉 consecutively and a set of
agents A = {a1, a2, . . . , an} with an original mapping
of agents to pieces {pa1

, pa2
, . . . , pan} consecutively

1 Define a set P of pieces which is an empty set initially;
2 for i = 1 to n do
3 Agent ai chooses piece p which is the most preferred

piece for her among the pieces;
4 if p has not been allocated to agents a1, a2, . . . , ai−1

then
5 Allocate p to agent ai tentatively and add p to set

P ;

6 else
7 Define a representative agent for each piece in P

(not assigned yet);
8 for j = 1 to i do
9 Find the cost value of each piece outside of P

for aj . We define cj as the minimum cost value
among these values;

10 for each piece q ∈ P do
11 aj makes a trim on q in a way that

equalize it to cj . If the cost value of the
piece from its leftmost side to its original
mapping trim was not more than cj , aj

makes a trim on the original mapping trim
of the piece;

12 if aj makes the rightmost trim on q then
13 Set aj as the representative of q if she

makes the first rightmost trim on it,
or q = paj

holds;

14 Define set W which initially contains the
representative agents of the pieces in P ;

15 while |W | ≤ |P | do
16 Ignore the previous trims of agents in W and

deallocate the allocated pieces;

17 Define set W ′ = {a1, . . . , ai} \W ;
18 Update the main trim of pieces in P by agents

in W ′ (check Subsection 3.4 for more details);
19 Find the modified original mapping of W to P

(check Subsection 3.4 for more details);
20 Run SubCore Protocol on all pieces in P with

their main trims, the agents in W , and the
modified original mapping of W as the original
mapping. The call gives an allocation of pieces
to agents in W ;

21 if |W | = |P | then
22 Break;

23 Take an arbitrary piece q from unallocated

pieces of P such that a ∈ W ′ is the agent with
the lowest index among the agents who have
the rightmost trim on q;

24 Allocate q to a and add a to W ;

25 Let a be the only agent among a1, . . . , ai who is
not in W ;

26 Find the cost value of each piece out of P for a
from its leftmost side to its main trim, and allocate
the piece with the minimum cost value to a;

27 return an allocation of pieces to A (one piece each agent)
with their updated main trims;

of this loop we ignore the previous trims of agents
in W and deallocate the allocated pieces, because we
will find another allocation by calling SubCore Protocol
recursively.

In the following lemma, we prove that our SubCore
Protocol guarantees a neat allocation, and all the Sub-
Core Protocol Properties hold.

Lemma 3.4. Suppose that we have set A of n agents
and m pieces where n ≤ m. Each of the pieces has
an original mapping trim as well as a main trim such
that the main trim of each piece is not on the right side
of its original mapping trim. Also, assume that there
is a neat allocation for the agents and the pieces with
their original mapping (using their original mapping
trims). Then, calling the SubCore Protocol for these
agents and pieces returns a neat allocation of pieces to
agents such that all the SubCore Protocol Properties that
we mentioned in Definition 10 hold.

3.5 Best Piece Equalizer Protocol In this Sub-
section, we describe Best Piece Equalizer Protocol. As-
sume that we have a neat allocation of pieces to some
agents. The goal of Best Piece Equalizer Protocol is that
to update the neat allocation and the main trims of the
allocated pieces such that all the Best Piece Equalizer
Protocol Properties, Definition 6, hold. This protocol
is based on a loop in Lines 1-12. We call it as the main
loop of the protocol. In each step of the main loop we
find a bad subset of agents, and by changing the cur-
rent allocation, we make it a non-bad subset. This loop
ends when we do not have anymore bad subset. As-
sume that S is a bad subset of agents in a step of the
main loop, and P is the set of pieces that we have al-
located to S. While S is a bad set, we ask each agent
a ∈ S to makes a trim on each piece p ∈ P to equalize
it with her most preferred piece out of P (If the cost
value of p from its leftmost side to its rightmost side
was less than the cost value of her most preferred piece
out of P , she makes a trim on the rightmost side of p.)
We call the leftmost trim on p which is on the right
side of its main trim as the equalizer trim of p, and we
call the current allocation of pieces to agents as the old
allocation. We run Separated Chore Core Protocol on
all the agents in S and all the pieces in P with their
equalizer trims as their main trims. The call returns
an envy-free partial allocation of pieces to agents such
that all Separated Chore Core Protocol Properties that
we mentioned in Definition 4 hold. We call the returned
allocation the new allocation. In the new allocation, the
main trim of a piece may change to the left side of its ini-
tial main trim. This makes our protocol non-monotone.
We guarantee the monotonicity of the protocol by run-
ning Monotonicity Saver Protocol. Monotonicity Saver
Protocol is a protocol receiving n agents as well as n
pieces, a neat allocation of pieces to agents (one piece
each agent) as the old allocation, and a neat allocation
of pieces to agents (one piece each agent) as the new
allocation. This protocol returns another neat alloca-
tion such that the main trim of each piece in the result
allocation is not on the left side of the main trim of the

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2575

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 7: Best Piece Equalizer Pro-
tocol

Data: A chore with m pieces 〈p1, p2, . . . , pm〉 with their
main trims 〈t1, t2, . . . , tm〉 consecutively and a set of
n agents A = {a1, a2, . . . , an} (n ≤ m) with an
allocation of the pieces {pa1

, pa2
, . . . , pan} to the

agents {a1, a2, . . . , an} consecutively
1 while there exists a bad subset S ⊆ A of the agents do
2 Define set P as the set of pieces that we have allocated

to S;
3 while S is a bad set do
4 for each agent a ∈ S do
5 for each piece p ∈ P do
6 Ask agent a to make a trim on p to

equalize it with her most preferred piece
out of P (If the cost value of p from its
leftmost side to its rightmost side was less
than the cost value of her most preferred
piece out of P , she makes a trim on the
rightmost side of p.);

7 Define an equalizer trim for each piece in P (We
have not set them yet);

8 for each piece p ∈ P do
9 Set the leftmost trim on p which is on the right

side of its main trim as the equalizer trim of p;

10 Set the current allocation of pieces to agents as the
old allocation;

11 Run Separated Chore Core Protocol on all the
agents in S and all the pieces in P with their
equalizer trims as their main trims. The call gives
an envy-free partial allocation of the pieces to
agents, which we call it the new allocation, and
updates the main trims (At least the main trim of
one of the pieces is not changed);

12 Run Monotonicity Saver Protocol for the agents in
S, the pieces in P , and the old as well as new
allocations of pieces to S. The call gives an
envy-free partial allocation of the called pieces to
the called agents, and it updates the main trims to
keep the protocol monotone.

13 return a neat allocation (without any bad subset of agents)
of pieces to A (one piece each agent) with their updated
main trims;

secondary allocation. We run Monotonicity Saver Pro-
tocol for the agents in S, the pieces in P , and the old
as well as the new allocation. We update our current
allocation with the returned allocation by Monotonicity
Saver Protocol.

In the following lemma, we prove the correctness
of Best Piece Equalizer Protocol if Separated Chore
Core Protocol and Monotonicity Saver Protocol work
correctly.

Lemma 3.5. If Separated Chore Core Protocol and
Monotonicity Saver Protocol work correctly, Best Piece
Equalizer Protocol returns a neat allocation (one piece
each agent), and all the Best Piece Equalizer Protocol
Properties, that we mentioned in Definition 6, hold.

Proof. First of all, we prove that in each iteration of
the main loop we make subset S of the agents a non-
bad subset. When we ask each agent to make a trim on
each piece p in P to equalize it with her most preferred

piece out of P , at least the trim of the owner of p is on
the right side of its main trim, because S is a bad subset
of agents, and according to the definition, the cost value
of each piece for its owner in P should be less than her
most preferred piece out of P . Thus, we can guarantee
that the two following properties:

• Property 1: The equalizer trim of each piece
exists.

• Property 2: Each agent in S has a trim on at
least one of the pieces which is not on the left side
of the main trim of that piece.

Then, by running Separated Chore Core Protocol,
according to its properties in Definition 4, we receive
an allocation such that at least one of the called pieces
is intact, and the main trim of any other piece is not
changed to a position on the right side. Before running
Separated Chore Core Protocol, we have an allocation,
and we call it the old allocation. After running Sepa-
rated Chore Core Protocol we have another allocation,
and we call it the new allocation. Now, we prove that
the allocation that we have after running Montonicity
Saver Protocol is neat, but before that let S1 be the
subset of S such that the main trim of their pieces have
not changed by the Monotonicity Saver Protocol, and
S2 = S \ S1.

• proof of envy-freeness in S: Since the returned
allocation by Monotonicity Saver Protocol is envy-
free partial, the agents in S do not envy each other.

• proof of envy-freeness of agents in S to agents out of
S and unallocated pieces: As we mentioned, Sep-
arated Chore Core Protocol returns an allocation
such that none of the main trims has changed to
a position on the right side. Thus, according to
Property 2, we can infer that in the allocation re-
turned by Separated Chore Core Protocol for each
agent a the cost value of at least one of the pieces
in P is not more than the cost value of her most
preferred piece out of P . Based on this and envy-
freeness of the returned allocation by Separated
Chore Core Protocol, we can infer that after run-
ning Separated Chore Core Protocol and before
running Monotonicity Saver Protocol, the agents
in S do not prefer any piece out of P to their al-
located pieces. Since after running Monotonicity
Saver Protocol the allocated pieces to S1 (and their
main trims) have not changed, the agents in S1 do
not envy to agents out of S and unallocated pieces.
Moreover, in the Monotonicity Saver Protocol, we
have changed the allocated pieces to S2 to their
allocated pieces in the old allocation. In the old

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2576

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

allocation, they did not prefer the pieces out of P
to their own piece. Therefore, they do not prefer
these pieces again.

• proof of envy-freeness of agents out of S to agents
in S: the main trim of allocated pieces to agents
in S1 have not changed to a left side position, and
the main trim of pieces allocated to agents in S2

have not changed. Therefore, since before running
Separated Chore Core Protocol the agents out of
S did not envy the agents in S, after running
Monotonicity Saver Protocol, we keep this envy-
freeness property.

By running Monotonicity Saver Protocol, we make
sure that after each iteration of the main loop, the main
trim of any piece has not changed to a left side position.
Therefore, we can infer that our protocol is monotone.

Unfortunately, the main loop of our protocol may
iterate infinite times, but the good property of our
protocol is that in each iteration, it changes the main
trim of some pieces (at least one piece) to a position
on the right side, and it does not change the main trim
of any piece to a left side position. In the main loop
we change the main trim of at least one of the pieces
to a position on the right side. The reason is that all
the equalizer trims are on the right side of the main
trims, and by running Separated Chore Core Protocol
at least one of the called pieces remains intact. Since
each piece has a rightmost side, a limit, and our protocol
is monotone, and it changes the main trim of at least one
piece in each iteration, we can infer that we converge to
a neat allocation solution if the protocol does not finish
in finite iterations.

3.6 Monotonicity Saver Protocol In this subsec-
tion, we describe Monotonicity Saver Protocol, Algo-
rithm 8. As we mentioned in Subsection 3.5, this pro-
tocol receives a set of n pieces, a set of n agents, and
two different allocation of pieces to agents with different
main trims. We call these allocations the new and the
allocations. Our goal is to change the new allocation
such that the main trim of each piece does not be on
the left side of its main trim in the old allocation.

Let P be the set of pieces whose main trim in the
new allocation is on the left side of its main trim in the
old allocation, and let S be the set of agents who own
the pieces in P . First, we deallocate the pieces that we
have allocated to the agents of S in the new allocation.
Then, for each agent ai ∈ S, we change the main trim of
pai to its main trim in the old allocation, and we allocate
it to ai. In Lemma 3.6, we prove that this allocation is
feasible and the protocol works correctly.

Algorithm 8: Monotonicity Saver Proto-
col

Data: A chore with n pieces 〈p1, p2, . . . , pn〉, a set of n
agents A = {a1, a2, . . . , an}, an old allocation of the
pieces {pa1 , pa2 , . . . , pan} to the agents
{a1, a2, . . . , an} consecutively, a new allocation of
pieces to agents, and the main trims of the allocations

1 Let P be the set of pieces whose the main trim in the new
allocation is on the left side its main trim in the old
allocation;

2 Let S be the set of agents who owns the pieces in P ;
3 Deallocate the pieces that we have allocated to S in the new

allocation;
4 for each agent ai ∈ S do
5 Change the main trim of pai

to its main trim in the old

allocation;
6 Allocate pai

to ai;

7 return the updated new allocation which is an envy-free
partial allocation of pieces to A (one piece each agent);

Algorithm 9: Core Match Refiner Proto-
col

Data: A chore with m pieces 〈p1, p2, . . . , pm〉, a set of n
agents A = {a1, a2, . . . , an} (n ≤ m) with a neat
allocation of pieces to agents (without any bad subset
of agents), and a specific popular piece
p ∈ {p1, p2, . . . , pm}

1 Build the Core Match Refiner Graph G;
2 Define a directed path P which is initially P = 〈vp〉 where

vp is the vertex of piece p;
3 while the piece of the last vertex of P is not an unallocated

or an intact piece do
4 Find a vertex vr out of P such that there exists an edge

from vq one of the vertices of P to it. Let vr and vq be
the vertices of pieces r and q consecutively;

5 Remove all the vertices after vq from the path;
6 Add vr to the end of the path;

7 Let P = 〈v1, v2, . . . , vk〉 be the final path;
8 Define a flag which is false if the piece of vertex vk be an

unallocated piece, and true otherwise;
9 if flag = true then

10 Let agents a and b be the owners of the pieces of
vertices vk−1 and vk consecutively;

11 Let piece q be the piece of vertex vk. Define q as a
popular piece with agents a and b as its fans;

12 Deallocate the piece of vertex vk from agent b;

13 for i from k − 1 to 1 do
14 Deallocate the piece of vertex vi from its owner agent c;
15 Allocate the piece of vertex vi+1 to agent c;

16 return the refined neat allocation and the flag (In the case
the flag is true, return the popular piece q, its happy fan a,
and sad fan b) ;

Lemma 3.6. Monotonicity Saver Protocol returns an
envy-free partial allocation of pieces to agents (one piece
each agent) such that the main trim of each piece in the
returned allocation is not on the left side of its main
trim in the old allocation.

3.7 Core Match Refiner Protocol In Core Match
Refiner Protocol, Algorithm 9, we build a special graph
that we call it the Core Match Refiner Graph. We build
Core Match Refiner Graph G as follows: For each piece
we have a vertex in G. We connect the vertex of piece p
to the vertex of piece q with a directed edge if and only

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2577

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

if Ca(p) = Ca(q) where agent a is the owner of p.
In the following lemma, we prove that Core Match

Refiner Protocol works correctly.

Lemma 3.7. Core Match Refiner Protocol works cor-
rectly.

3.8 Final Remarks In the previous subsections, for
each protocol P we prove that if each of the protocols
that P calls it works correctly, P works correctly as well.
In Figure 1, we have a graph of these protocols. Protocol
P1 has an edge to Protocol P2, if P1 calls P2. If the
graph did not have a loop, we could infer that the whole
procedure works correctly. However, we have two loops
in the graph. The first loop happens in the SubCore
Protocol such that it calls itself recursively. Anytime
this protocol calls itself, the call happens on a smaller
subset of agents, and we know that when the number
of agents is one, it does not call itself anymore. The
second loop happens between Separated Chore Core
Protocol and Best Piece Equalizer Protocol. Similarly,
each time Best Piece Equalizer Protocol calls Separated
Chore Core Protocol, the call happens on a smaller
number of agents. Moreover, Separated Chore Core
Protocol does not call Best Piece Equalizer Protocol on
a larger number of agents. We also know that when the
number of agents is one, Separated Chore Core Protocol
does not call Best Piece Equalizer Protocol anymore.
Therefore, based on a simple induction we can infer that
none of these loops makes any issue in the correctness
of the whole procedure.

Figure 1: The Graph of the protocols in the Core. If
Protocol P1 has an edge to Protocol P2, it means that
P1 calls P2.

Running Existential Core Protocol returns an envy-
free partial allocation. As we mentioned in Subsection
3.5, we may need infinite number of queries in each
call of Best Piece Equalizer Protocol. This makes

Existential Core Protocol unbounded, but since Best
Piece Equalizer Protocol is a monotone protocol with
an upper-bound, as we discussed in Subsection 3.5, it
converges to a solution.

Now, in the following lemma using Existential Core
Protocol, we guarantee that Core Protocol, Algorithm
2, returns an envy-free partial allocation.

Lemma 3.8. Core Protocol, Algorithm 2, is a discrete
and bounded algorithm that returns an envy-free partial
allocation of pieces to agents (one piece each agent) such
that at least one of the pieces is completely allocated.

Proof. The algorithm is clearly discrete and bounded.
Now, we show that there exists an ordering of agents and
pieces which guarantees an envy-free partial allocation.
It suffices to show that the returned allocation of
Existential Core Protocol can be made by one of the
orderings of agents and pieces in Core Protocol. To
this end, we analyze the properties of the returned
allocation by Existential Core Protocol. Existential
Core Protocol guarantees that we have allocated a
complete piece to at least one of the agents. Without
loss of generality, assume that agent a is this agent,
and piece p is allocated to her. We create two lists
VA and VP of the agents and the pieces consecutively.
They finally will be the ordering of the agents and the
pieces that we are looking for. We add agent a to VA
and piece p to VP . In the end of each iteration of the
main loop of Separated Chore Core Protocol we call the
best piece equalizer protocol. Therefore, in the returned
allocation we should not have any bad subset of agents.
First of all, for each agent b 6= a who has received a
complete piece q, we add b to VA and q to VP . Now,
we iteratively add the other agents and pieces to VA
and VP . Since there exists no bad subset of agents and
none of the agents outside of VA has received a complete
piece, at least one of the agents outside of VA should
prefer one of the pieces in VP as the same as her own
piece. We add this agent to the end of VA and its piece
to the end of VP . We do this iteratively until we do
not have anymore agent outside of VA. Now, we claim
that the ordering of VA and VP guarantees an envy-
free allocation in Core Protocol, Algorithm 2. Since the
returned allocation of Existential Core Protocol is envy-
free, the allocation is envy-free. Now, for each piece, we
should make sure the trim that an agent makes on it in
Core Protocol, Algorithm 2, in the ordering of VA and
VP is equal to its main trim in the returned allocation
by Existential Core Protocol. The completely allocated
pieces in the allocation of Existential Core Protocol are
the first pieces in VP . In Core Protocol, in the ordering
of VA and VP , the agents trim the rightmost side of
these pieces similar to Existential Core Protocol. For

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2578

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

the other pieces, in Core Protocol, the agents trim the
pieces to equalize them to their most preferred piece
among the previously allocated pieces. In the ordering
of VA and VP , in the returned allocation by Existential
Core Protocol, we also know that for the incomplete
pieces, their owners prefer at least one of the previously
allocated pieces as much as their own piece. It implies
that we have the same trims on the returned allocations
of both protocols for the incomplete pieces as well.

Moreover, we should mention that the first agent
in any ordering of agents in Algorithm 2 receives a
complete piece. Thus, we have allocated a complete
piece to at least one agent.

As we mentioned in Introduction, we can use a
similar approach to simplify the Core Protocol of cake
cutting. Algorithm 10 simplifies the Core Protocol
proposed by Aziz and Mackenzie [3]. The idea of this
algorithm is similar to Algorithm 2. We prove that
there exists an ordering of the agents and an ordering
of the pieces such that the following protocol provides
an envy-free allocation. Agents receive their pieces one
by one. The first agent receives the first piece. The ith

agent trims the ith piece in such a way that she receives
the smallest part of it without envying the first i − 1
agents. In the following Theorem we prove Algorithm
10 returns a partial envy-free allocation for the Cake
Cutting problem.

Theorem 3.1. Algorithm 10, is a discrete and bounded
algorithm that returns an envy-free partial allocation of
pieces to agents (one piece each agent) such that at least
one of the pieces is completely allocated.

4 Permutation Protocol

In Permutation Protocol, we are given a large number
of isomorphic snapshots. This protocol modifies these
snapshots such that a set of agents B ⊂ A get a
significant advantage over other agents and returns
B. Recall that each snapshot is a partial envy-free
allocation returned by Core Protocol. Therefore, in
each snapshot at least one agent has a very significant
advantage over another agent. This means that at
least one agent thinks that the cost of the piece which
is allocated to her is significantly smaller than other
agents’. Let a be the agent with a very significant
advantage over another agent b. The main idea in
this protocol is if we exchange allocated pieces such
that another agent gets the piece which was allocated
to b, then agent a gets a significant advantage over
the agent who receives this piece. Exchanging pieces
does not necessarily preserve envy-freeness. In order
to maintain envy-freeness, the protocol modifies some

Algorithm 10: Core Protocol - Cake
Cutting

Data: Agent set A = 〈a1, a2, . . . , an〉, specified cutter
acutter ∈ A, and unallocated cake R

1 Specified cutter acutter divides the cake into n equal pieces
according to her own perspective;

2 Define p1, p2, . . . , pn the pieces that we have after the
division of acutter;

3 for each permutation 〈a′1, a
′
2, . . . , a

′
n〉 of the agents do

4 for each permutation 〈pa′1
, pa′2

, . . . , pa′n
〉 of the pieces

do
5 Allocate pa′1

to a′1 completely;

6 for i from 2 to n do
7 Ask a′i to trim pa′

i
to equalize it with her most

preferred piece among the first i− 1 allocated
pieces (we consider the value of each piece from
its leftmost side to its trim.);

8 Allocate pa′
i
, from its leftmost side to its trim,

to a′i;

9 if none of the agents envies to another agent then
10 return the envy-free partial allocation (at

least one of the pieces has been completely
allocated) and the unallocated cake;

11 Ignore the previous trims and deallocate the
allocated pieces;

snapshots every time it wants to exchange some pieces.
Permutation Protocol modifies some allocated pieces
by detaching small part of them and ensures that the
cost of the detached pieces are very insignificant to
every agent. Therefore, in the case an agent a has
a very significant advantage over some agent b in a
snapshot, if we modify agent b’s piece and give it to
some other agent c, then agent a gets a significant
advantage over c. We declare working set to be the
set of snapshots that protocol is working with them and
use W to denote it. The protocol successively removes
some snapshots from the working set and modifies them
and then exchanges some pieces in the snapshots of the
working set. Also, whenever we exchange some pieces,
we reserve a snapshot, i.e., we remove one snapshot
from our working set and do not modify this snapshot
anymore. The reservation is crucial for our protocol,
since an agent might lose her advantage over others if
we exchange the allocated pieces.

Recall that in Main Protocol every agent is placed
a trim on other agents’ pieces to make it equal to her
piece. Since the snapshots are isomorphic, the order of
trims is the same in all the snapshots. Moreover, we
always modify all the snapshots in the working set in
the same way to preserve isomorphism.

For an agent a we use pa to denote the piece which
is allocated to a in all the snapshots and ta1 , t

a
2 , · · · , tala to

denote the trim lines from right to left on pa where la is
the number of trim lines on pa and we use da1 , d

a
2 , . . . , d

a
la

to indicate the agents with a trim on pa from right

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2579

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 11: Permutation Protocol
Data: List of agents A = {a1, . . . , an} and ISn isomorphic

snapshots
1 Set boolean done = false;
2 Add all the snapshots to the working set W ;
3 while done = false do
4 Create an empty graph G ;
5 for each active piece pa do
6 Add a directed edge from a to the agent with the

next rightmost trim on pa ;

7 for each inactive piece pb do
8 Add a directed edge from b to all other agents ;

9 Let C = b1, b2, . . . be the cycle with at least one active
node ;

10 for each b in C do
11 Let c be the next agent in the cycle ;
12 if b is an active node then
13 Relabel the agents in order of their trims on

pb, such that agent a1 is the first agent who
had this piece, agent a2 detached a first part
and so on. Suppose that the trim of agent ak is
already detached and agent ak is the owner of
this piece and we want to detach from the trim
of next agent which is ak+1. Note that b = ak

and c = ak+1 ;

14 Create a new working set W ′;
15 while |W | ≥ k + 1 do
16 Pick k + 1 snapshots s1, s2, · · · , sk+1 from

W and remove them from W ;
17 Run Cake Subcore Protocol with the

pieces e
s1,ak
k+1 , e

s2,ak
k+1 , · · · , e

sk+1,ak
k+1 and

agents a1, a2, · · · , ak;

18 Let s′ be a snapshot whose piece is

unallocated. Add s′ to W ′;
19 for i = 1 to k + 1 do
20 if si 6= s′ then
21 Let d be the agent that e

si,ak
k+1 is

allocated to her in Cake Subcore
Protocol. According to
observation 1 reallocate the
pieces in si, such that d becomes
the owner of si

ak ;
22 Detach the part which is allocated

to d in Cake Subcore Protocol.

23 if detached parts cost significant for at
least one agent then

24 Let X be the union of detached parts ;
25 return Discrepancy Protocol(X,R) ;

26 W = W ′;

27 for each b in C do
28 if b is an active node then
29 Detach the next part in pb in all the working

set’s snapshots.

30 else
31 Reattach the detached pieces of pb until we

reach the trim line of agent c ;

32 Exchange the pieces of agents in C, such that each agent
receives the next agent’s pieces. ;

33 while there exists an active piece pa such that all its
trims are detached do

34 if pa had less than n− 1 trims then
35 Let B be the set of agents without a trim on

this piece, and make done = true;
36 return B ;

37 else
38 Deactivate pa ;

39 Reserve a snapshot and remove it from W ;

to left. Moreover, we can partition pa based on the
trim lines. We use eai to denote the part of pa which is
between two consecutive trims and the left trim is tai .
Recall that, Main Protocol ensures that for every eai , the
mask of this part is the same across all the snapshots,
i.e., the agents who think the cost of this part is very
significant are the same in all the snapshots.

Trim lines on the pieces are the guidelines for mod-
ifying the allocation. Consider an arbitrary piece pa. If
this piece has no trim on it, this means that all other
agents have a significant advantage over this agent, so
we are done. Otherwise, consider the rightmost trim of
this piece which is ta1 , if we cut pa from this trim, then
agent who has this trim is willing to exchange his piece
for pa. This is the basic idea behind Permutation Pro-
tocol. It successively detaches some part of allocated
pieces to make it desirable for other agents and then
exchanges the allocated pieces.

At each iteration, Permutation Protocol creates an
empty graph G with n nodes. It adds a directed edge
from node a to b if the next trim line on the agent
a’s piece is for b. We add directed edges from a to all
other nodes in case that all the trim lines on the agent
a’s piece are already detached. Recall that an agent
places a trim on other agent’s piece if the piece she has
is not significantly smaller than this piece. Therefore, if
a piece has less than n − 1 trims and we detach all of
them, the set of agents who did not have a trim on this
piece get a significant advantage over all other agents
since every other agent has this piece in some reserved
snapshot, and the protocol can return this set of agents.
Therefore, we can assume that every piece that its trim
lines are detached had n − 1 trim lines. We call these
pieces inactive and the others active.

Definition 11. We call a piece inactive if it has n−1
trims and all its trim lines are detached. We call every
other piece an active piece. We call a node in the
graph inactive if its corresponding piece is inactive and
otherwise active.

Considering an inactive piece, all the agents had
this piece at some point. We can easily make this piece
desirable for every other agent by reattaching some of
the detached parts. Therefore, we can add directed
edges from inactive pieces to all other nodes. Note that
the Core Protocol gives a significant advantage to the
cutter over some other agent, so at least one piece has
less than n− 1 trim lines. Similar to the approach used
in [3] it can be shown that the graph always contains a
cycle with at least one active node.

Let C be a cycle in graph G with at least one
active node. We want to detach the next parts of
corresponding pieces of active nodes. By detaching

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2580

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

some part of a piece and giving it to another agent, some
other agents might envy. Specifically, if ea1 , · · · , eak are
already detached from pa and we detach eak+1 and give
this piece to dak+1, agents a and da1 , . . . d

a
k might envy

dak+1 since the cost of this piece is less than what they
have. However, the amount that each of these agents
envy the agent who receives this piece, is at most the
cost of the eak+1. To ensure that no envy arises during
the exchanging the pieces, we must also detach part of
other agents’ pieces such that the cost of the detached
piece for each of them be as large as eak+1. Moreover, in
order to prevent any enviousness between these agents,
the cost of the part that we detach from each of them
should be as large as the others’. The following lemma
is our main tool to achieve this goal.

Lemma 4.1. (Cake Subcore Protocol) Given k+
1 pieces p1, p2, · · · , pk+1 and k agents a1, a2, · · · , ak,
there exists a bounded protocol which finds an allocation
with the following properties.

• Each agent’s allocation is a part of one piece.

• One piece is unallocated.

• No agent prefers the unallocated piece or an other
agent’s allocation over her own allocation.

• At least one piece is completely allocated to the
agents.

Suppose that we want to detach a part of piece p.
We relabel the agents in order that they had a trim line
on this piece, so that agent a1 was the first agent who
had this piece, agent a2 detached a first part and so on.
Assume that trim line of agent ak is already detached
and agent ak is the owner of this piece and we want to
detach the next part of this piece which is eak

k+1 and give
it to agent dak

k+1 which is ak+1 since we have relabeled
the agents. Let A′ be the set of agents who had this
piece which is A′ = {a1, · · · , ak}. If we detach eak

k+1 and
give p to agent ak+1, agents in A′ may envy this agent.
Therefore, for every agent in A′ detach some part of her
allocated pieces to preserve envy-freeness. We pick k+1
snapshots from our working set. Let s1, s2, · · · , sk+1

be these snapshots. We call Cake Subcore Protocol
(Lemma 4.1) with the pieces es1,ak

k+1 , e
s2,ak

k+1 , . . . , e
sk+1,ak

k+1

and agents A′. It gives an allocation such that every
agent thinks her allocated piece costs more than other
agents’ allocations and the unallocated piece. If we can
detach these allocated parts from its owner, then every
agent thinks that the cost of the part that we detach
from her is as large as the others’. Let s be a snapshot
whose part is unallocated in the allocation returned by
Cake Subcore Protocol. Detaching the allocated parts,

makes exchanging s agreeable for all the agents, since
each agent thinks that the part detached from herself
costs more than es,ak

k+1. The only problem is that current
owner of piece p in all snapshots is agent ak. The
following observation shows that we can reattach some
parts and change the allocation while preserving envy-
freeness such that each agent becomes the owner of the
piece that she wants.

Observation 1. Given snapshot s and piece p in this
snapshot, let a be the agent whose trim is detached
from p. We can reattach some of the detach pieces and
change the allocation of the pieces such that a becomes
the owner of p, and no envy arises.

Suppose that we want to detach the next part of
piece p. Assume that agent a1 was the original owner of
her piece, and trim of agents a2, a3, . . . , ak are detached,
and we want to detach the trim line of the agent
ak+1. We take k + 1 snapshots from the working set
s1, s2, . . . , sk+1, and call Cake SubCore Protocol with
the pieces esi,ak

k+1 for every si, and agents a1, a2, · · · , ak.
Let s be a snapshot whose part is not allocated to any
agent in this call, and also assume that snapshot piece
esi,ak

k+1 is allocated to agent aj , by the observation 1, we
edit the snapshot si such that aj becomes the new owner
of piece p, and then detach that is allocated to her in
the Cake SubCore Protocol from her piece. This makes
the exchanging of s agreeable for all the agents, and we
add w to our new working set.

While we are detaching some parts, an agent might
think that the cost of the detached parts is very signif-
icant. Recall that mask of every eak

k+1 is the same, so
by partially detaching some of the eak

k+1 parts, at least
one agent thinks that the cost of the detached part is
very insignificant. Thus, we find a high discrepancy in
agents’ valuation of detached parts in comparison to R.
We give this discrepant part to Discrepancy Protocol to
allocate the whole chore.

After making all the exchanges agreeable for the
agents, we detach the next part of every piece that we
want to exchange, and then we exchange the pieces.
The protocol successively does the same until it finds
a piece that has less than n − 1 trims and all its trims
are detached. Therefore, it finds a set of agents with
a significant bonus over others and returns this set of
agents.

5 Discrepancy Protocol

Discrepancy Protocol is responsible for dominating a
set of agents to others whenever we find an unallocated
piece such that there is a high discrepancy in the agents’
valuation of this piece.
Assume that we have detached a piece that is very

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2581

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 12: Discrepancy Protocol
Data: List of agents A = {a1, . . . , an}, a discrepant piece e

and residual chore R
1 Let B be the set of agents who thinks p costs very

significant. B = {∀ai : Cai
(e) ≥ Cai

(R)× 2n} ;

2 Let B be the other agents. C = A \ B ;

3 Let PC be the output of Near Exact(B,e,2|C|+1,1/(2|C|+2)) ;

4 Let PB be the output of Near Exact(C,R,2|B|+1,1/(2|B|+2))
;

5 Call Oblige Protocol(C,PC) ;
6 Call Oblige Protocol(B,PB) ;
7 Let RB be the unallocated parts of PB ;
8 Run Main Protocol(B,RB) ;
9 Let RC be the unallocated parts of PC ;

10 Run Main Protocol(C,RC) ;
11 return B ;
12 (Since the whole chore is already allocated, every agent

dominates the others.)

significant for a set of agents B and very insignificant
for the others. Since the modifications in Permutation
Protocol were very insignificant for all the agents, for
each agent ai in B we have:

Cai(e) ≥ Cai(R)× 2n+1

and for every other agent in C = A \B we have:

Cai
(R) ≥ Cai

(e)× 2n+1

Hence, e costs at least 2n+1 times more than R
for agents in B. We call Near Exact Protocol and
ask agents in B to divide the e into 2|C|+1 pieces
with ε = 1/(2|C|+2), therefore each piece costs at least
Cai

(e)/(2|C|+2) ≥ 1/2n+1 where ai is an agent in B. By
calling Oblige Protocol for these pieces and agents C,
we get a partial envy-free allocation of e such that each
agent in C gets at least one intact piece. Therefore, each
agent ai in B thinks that every other agent C has got a

piece that costs at least
Cai

(e)

2n+1
≥ Cai

(R). Hence, even

if an agent in B gets all the R, she will not envy any
agent in C. However, agents in C are not happy with
this assignment, since we are given a part of the chore to
them, without giving anything to agents in B. Similarly
R costs at least 2n+1 times more than e for agents in
C. Again we do the same thing and run Near Exact
Protocol to divide R and partially assign it to agents
in B. Finally, we recursively allocate the remaining
pieces of R between agents in B and remaining pieces
of e between agents in C. Due to what we said, this
assignment would preserve envy-freeness and allocate
the whole chore.

6 Near-Exact Protocol

In this section we provide a protocol which partitions
a chore R into m pieces that are almost equal for
every agent. Pikhurko [17] first provided an alternative

Algorithm 13: Oblige Protocol
Data: List of agents A = {a1, . . . , an} and a partition of the

chore into 2n+1 pieces p1, . . . , p2n+1 .
1 for i = 1ton do
2 Ask agent ai to set aside her 2i−1 largest pieces. ;

3 for i = nto1 do
4 Ask agent ai to return part of her reserved pieces to the

remaining pieces to create a 2i−1 + 1-way tie for her
smallest pieces ;

5 for i = 1ton do
6 Ask agent ai to choose her smallest piece in the

remaining pieces. Each agent have to take a piece she
augmented if one is available;

7 (Break ties in lexicographic order.)

8 return partial envy-free allocation and remaining of the
chore ;

envy-free cake cutting protocol using a partitioning of
a cake into m pieces that are almost equally valuable
for every agent. Here we prove that a similar approach
works for negative valuations and provide the full proof
for completeness. In particular we prove the following
lemma.

Lemma 6.1. Given a chore R, an integer m, and a
real number ε > 0, there exists a bounded protocol that
partitions R into pieces P1, . . . , Pm, such that for every
agent a, and 1 ≤ i ≤ m

|Ca(Pi)− Ca(R)/m| ≤ εCa(R),

and moreover, for agent an, Can(Pi) = Can(R)/m.

7 The Oblige Protocol

Oblige Protocol is called by Discrepancy Protocol
to get a partial envy-free allocation such that every
agent receives at least one complete piece. Discrepancy
Protocol uses this property to make a set of agents
dominant to the others.

Oblige Protocol gets a set of n agents and a par-
titioning of the chore into 2n+1 pieces and returns a
partial envy-free allocation such that for every agent at
least one piece is completely assigned to her. It asks
agents a1 to an respectively, asking agent ai to set aside
her 2i−1 most costly pieces. Then, it asks agents anto
a1 respectively, asking agent ai to return some part of
her set aside pieces to create a 2i−1 + 1-way tie for her
smallest pieces. Finally, it asks agents a1 to an respec-
tively, to choose their smallest piece.

Lemma 7.1. Oblige Protocol returns a partial envy-free
allocation such that each agent receives at least one
complete piece.

Proof. The protocol first asks each agent to reserve
some of her largest pieces. Then, at least 2n+1 − (20 +

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2582

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

21 + · · ·+ 2n−1) ≥ 2n pieces remain. In lines 3 - 4 each
agent is asked to create a tie between her smallest pieces
using her reservation. When agent ai is asked to create
a tie between her smallest pieces, there will be at least
2i−1+1 intact pieces, thus her (2i−1+1)th smallest piece
has a value less than or equal to the value of one of the
remaining intact pieces which are not greater than the
values of her reserved pieces. Therefore, for each of her

1st, 2nd,..., 2i−1th

smallest pieces, she can return back
some part of one of her reserved pieces to equalize them
with the value of (2i−1 +1)th smallest piece. Next, each
agent ai is asked to take one of her smallest pieces. Since
after agent ai equalized her smallest pieces we have at
most 2i−1 allocated or augmented pieces, at least one of
the smallest pieces is available and she can take it.

References

[1] Haris Aziz. Computational social choice: Some
current and new directions. In IJCAI, pages 4054–
4057, 2016.

[2] Haris Aziz and Simon Mackenzie. A discrete and
bounded envy-free cake cutting protocol for four
agents. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages
454–464. ACM, 2016.

[3] Haris Aziz and Simon Mackenzie. A discrete and
bounded envy-free cake cutting protocol for any
number of agents. In Foundations of Computer Sci-
ence (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 416–427. IEEE, 2016.

[4] Julius B Barbanel and Alan D Taylor. Preference
relations and measures in the context of fair di-
vision. Proceedings of the American Mathematical
Society, 123(7):2061–2070, 1995.

[5] Steven Brams, Alan Taylor, and William Zwicker.
A moving-knife solution to the four-person envy-
free cake-division problem. Proceedings of the
American Mathematical Society, 125(2):547–554,
1997.

[6] Steven J Brams and Alan D Taylor. An envy-free
cake division protocol. The American Mathemati-
cal Monthly, 102(1):9–18, 1995.

[7] Steven J Brams and Alan D Taylor. Fair Division:
From cake-cutting to dispute resolution. Cambridge
University Press, 1996.

[8] Costas Busch, Mukkai S Krishnamoorthy, and
Malik Magdon-Ismail. Hardness results for cake
cutting. Bulletin of the EATCS, 86:85–106, 2005.

[9] Jeff Edmonds and Kirk Pruhs. Cake cutting
really is not a piece of cake. In Proceedings
of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pages 271–278. Society for
Industrial and Applied Mathematics, 2006.

[10] Martin Gardner. Aha! Aha! insight, volume 1.
Scientific American, 1978.

[11] S Garfunkel. For all practical purposes social
choice. COMAP, 1988.

[12] Egor Ianovski. Cake cutting mechanisms. arXiv
preprint arXiv:1203.0100, 2012.

[13] David Kurokawa, John K Lai, and Ariel D Procac-
cia. How to cut a cake before the party ends. In
AAAI, 2013.

[14] Claudia Lindner and Jörg Rothe. Cake-cutting:
Fair division of divisible goods. In Economics and
Computation, pages 395–491. Springer, 2016.

[15] Elisha Peterson and Francis Edward Su. Four-
person envy-free chore division. Mathematics Mag-
azine, 75(2):117–122, 2002.

[16] Elisha Peterson and Francis Edward Su. N-person
envy-free chore division. 2009.

[17] Oleg Pikhurko. On envy-free cake division. The
American Mathematical Monthly, 107(8):736–738,
2000.

[18] Ariel D Procaccia. Cake cutting: not just child’s
play. Communications of the ACM, 56(7):78–87,
2013.

[19] Ariel D Procaccia. Cake cutting algorithms. In
Handbook of Computational Social Choice, chapter
13. Citeseer, 2015.

[20] Jack Robertson and William Webb. Cake-cutting
algorithms: Be fair if you can. 1998.

[21] Amin Saberi and Ying Wang. Cutting a cake for
five people. AAIM, 9:292–300, 2009.

[22] Erel Segal-Halevi, Avinatan Hassidim, and
Yonatan Aumann. Waste makes haste: Bounded
time protocols for envy-free cake cutting with free
disposal. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent
Systems, pages 901–908. International Foundation
for Autonomous Agents and Multiagent Systems,
2015.

[23] Hugo Steinhaus. The problem of fair division.
Econometrica, 16:101–104, 1948.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2583

D
ow

nl
oa

de
d

02
/1

2/
18

 to
 1

28
.8

.1
20

.3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Prelimiaries
	Results and Techniques

	Main Protocol
	Core Protocol
	Existential Core Protocol
	Separated Chore Core Protocol
	Allocation Extender Protocol
	SubCore Protocol
	Best Piece Equalizer Protocol
	Monotonicity Saver Protocol
	Core Match Refiner Protocol
	Final Remarks

	Permutation Protocol
	Discrepancy Protocol
	Near-Exact Protocol
	The Oblige Protocol

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 19
 20

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 9.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 9.0000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 0
 1

 1

 HistoryList_V1
 qi2base

