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Quantum tomography protocols with positivity
are compressed sensing protocols
Amir Kalev1, Robert L Kosut2 and Ivan H Deutsch1

Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool
used for this purpose, uses a well-designed measurement record to reconstruct quantum states and processes. It is, however,
notoriously inefficient. Recently, the classical signal reconstruction technique known as ‘compressed sensing’ has been ported to
quantum information science to overcome this challenge: accurate tomography can be achieved with substantially fewer
measurement settings, thereby greatly enhancing the efficiency of quantum tomography. Here we show that compressed sensing
tomography of quantum systems is essentially guaranteed by a special property of quantum mechanics itself—that the
mathematical objects that describe the system in quantum mechanics are matrices with non-negative eigenvalues. This result has
an impact on the way quantum tomography is understood and implemented. In particular, it implies that the information obtained
about a quantum system through compressed sensing methods exhibits a new sense of ‘informational completeness.’ This has
important consequences on the efficiency of the data taking for quantum tomography, and enables us to construct informationally
complete measurements that are robust to noise and modelling errors. Moreover, our result shows that one can expand the
numerical tool-box used in quantum tomography and employ highly efficient algorithms developed to handle large dimensional
matrices on a large dimensional Hilbert space. Although we mainly present our results in the context of quantum tomography, they
apply to the general case of positive semidefinite matrix recovery.
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INTRODUCTION
Determining an unknown signal from a set of measurements is a
fundamental problem in science and engineering. However, as
the number of free parameters defining the signal increases, its
tomographic determination may become a daunting task.
Fortunately, in many contexts there is prior information about
the signal that may be useful for tomography. Compressed
sensing1–9 is a signal recovery technique developed for this aim.
It utilises specific types of prior information about the structure
of the signal to substantially compress the amount of information
needed to reconstruct it with high accuracy. In particular, it
harnesses the prior information that the signal has a concise
representation, e.g., that it is a sparse vector with a few nonzero
elements or a low-rank matrix with a few nonzero singular values.
The compressed sensing protocol then defines special classes of
measurements, henceforth referred to as ‘compressed sensing
measurements,’ that enable the unique identification of the signal
from within the restricted set of sparse vectors or low-rank
matrices using substantially fewer measurement settings.
Moreover, it provides algorithms for efficient reconstruction by
defining a specific class of convex optimisation heuristics whose
solution determine the unknown signal from the measurement
outcomes with very high accuracy (see Methods). Importantly,
solving any other optimisation programmes outside this class will
not necessarily result in a compressed sensing protocol.
In the context of quantum information science, the ‘signals’ we

seek to reconstruct are, for example, quantum states and
processes, and the protocol for reconstruction is quantum
tomography. Because the number of free parameters in quantum
states and processes scale poorly (growing as some power of the

total Hilbert space dimension, which in turn grows exponentially
with the number of subsystems), there has been a concerted
effort to develop techniques that minimise the resources
necessary for tomography. To this end, the methodology of
compressed sensing has been applied to the problem of quantum
tomography.10–21

In the pioneering work of refs 11–13 it was proved that
quantum measurements can be easily designed to be within
the special class of measurements required for compressed
sensing. Then, using the specifically chosen convex optimisation,
low-rank density matrices (close to pure quantum states) or
low-rank process matrices (close to unitary evolutions) can be
accurately reconstructed with a substantially reduced number of
measurement settings.
The work we report here identifies a critical link between

quantum tomography and compressed sensing. We discuss in
particular the case of quantum-state tomography, where the aim
is to recover the density matrix, a positive semidefinite matrix,
typically normalised with unit trace. We show that the positivity
property alone imposes a powerful constraint that places strong
restrictions on the physical states that are consistent with the data.
As illustrated in Figure 1, this restriction is stronger than the one
present in generic compressed sensing of signals that are not
necessarily positive semidefinite matrices. This, in turn, has far
reaching consequences. First and foremost, it implies that as long
as quantum measurements are within the special class associated
with compressed sensing, then any optimisation heuristic that
contains the positivity constraint is effectively a compressed
sensing protocol. Second, tools provided by the compressed
sensing methodology now enable the construction of special
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types of informationally complete measurements that are robust
to noise and to small model imperfections, with rigorous bounds.
Finally, our results fundamentally unify many different quantum
tomography protocols that were previously thought to be distinct,
such as maximum-likelihood solvers, under the compressed
sensing umbrella. We emphasise that constraining the normal-
isation (trace) to a fixed value, as one does for density matrices,
has no role in the theorems we discuss below. Thus our results
extend beyond the context of quantum-state tomography,
applying, e.g., to process tomography when the latter is described
by a completely positive map, and more generally to the
reconstruction of low-rank positive semidefinite matrices.

RESULTS
Informational completeness
In quantum theory, a measurement is represented by a positive
operator-valued measure, POVM, a set of positive semidefinite
d× d matrices that form a resolution of the identity,
E ¼ fEμ9EμX0;

P
μEμ ¼ 1g. The elements of a POVM represent

the possible outcomes (events) of the measurement, and
probability of measuring an outcome μ is given by the usual
Born rule, pμ= Tr(Eμ ρ), where ρ is the state of the system, a
positive semidefinite matrix, ρ⩾ 0, normalised such that Trρ= 1. In
the context of quantum-state tomography, informationally
complete measurements have a central role. Let S be the set of
all quantum states (density matrices). A measurement is said to be
informationally complete if22

8ρa; ρbAS; ρa≠ρb; ∃EμAE s:t:TrðEμρaÞ≠TrðEμρbÞ: ð1Þ
In other words, no two distinct states ρa and ρb yield the same
measurement outcome probabilities. Thus, a (noise-free) record of
an informationally complete measurement uniquely determines
the state of the system. In general, for a d-dimensional Hilbert
space, an informationally complete measurement consists of at
least d2 outcomes (POVM elements).
Although equation (1) gives a general definition of an

informationally complete measurement, if one has prior

information about the state of the system, then we can make
this definition more specific.23,24 In particular, suppose the state is
known a priori to be of a special class, P, e.g., the class of density
matrices of at most rank r. One defines a measurement to be
P restricted informationally complete (restricted-IC) if it can only
uniquely identify a quantum-state from within the subset P, but
cannot necessarily uniquely identify it from within the set of all
quantum states. Such P restricted-IC measurements can be
composed of fewer outcomes than the d2 outcomes required
for a general informationally complete measurement. For
example, Heinosaari et al.23 showed that when P is the set of
density matrices of at most rank r, then rank-r restricted-IC
measurements can be constructed with OðrdÞ outcomes, rather
than Oðd2Þ outcomes required for a general informationally
complete measurement. One can formalise this definition in the
context of quantum-state tomography. A measurement is said to
be P restricted-IC, if23

8ρa; ρbAP; ρa≠ρb; ∃EμAE s:t:TrðEμρaÞ≠TrðEμρbÞ: ð2Þ
In some situations, a measurement can satisfy a stricter definition
of informational completeness than the P restricted-IC of
equation (2). A measurement is said to be P strictly-IC, if24

8ρaAP; 8ρbAS; ρa≠ρb; ∃EμAE s:t:TrðEμρaÞ≠TrðEμρbÞ: ð3Þ
There is a subtle yet important difference in the definitions of P
restricted-IC and P strictly-IC. Whereas the measurement record
of the former identifies a unique state within the set P, the
measurement record of a the latter identifies a unique state within
the set of all quantum states. These notions of informationally
completeness are key to understanding compressed sensing and
its application in quantum tomography, as we discuss below.

The relation between informational completeness and compressed
sensing
At its heart, the compressed sensing methodology employs prior
information to reduce the number of measurements required to
reconstruct an unknown signal. Here we consider the compressed
sensing recovery of a d× d Hermitian matrix, M. Let the
measurement record be specified as a vector-valued linear map,
yi ¼ A M½ �i ¼ Tr AiMð Þ, where A is known as the ‘sensing map.’ In
general, when the set {Ai} forms a basis for d× d matrices with at
least d2 elements,25 then the measurement record is information-
ally complete in the sense of equation (1), and in the absence of
measurement noise, the signal can be recovered uniquely.
If, however, we know a priori that rank(M) ⩽ r, with r ≪ d, then

we can substantially reduce the number of measurement samples
required to uniquely reconstruct the unknown signal matrix. This
is codified in a theorem by Recht et al.8 and Candès et al.9 that we
restate as follows:

Theorem (compressed sensing). Let the unknown signal M0 be a
Hermitian matrix with rank(M0) ⩽ r, and let y ¼ A M0½ � be the
measurement record obtained by a sensing map, A, that
corresponds to compressing sensing measurements for rank r.
Then M0 is the unique Hermitian matrix within the set of low-rank
Hermitian matrices (up to rank r) that is consistent with the
measurement record.
Importantly, in compressed sensing, when r ≪ d, there are

generally an infinite number of Hermitian matrices with rank
larger than r that are consistent with the measurement record.
Thus, the measurement record associated with compressed
sensing cannot uniquely specify M0 among all d× d Hermitian
matrices, and therefore it is not informationally complete in the
sense of equation (1). If, however, the sensing map A corresponds
to compressed sensing measurements (e.g., it satisfies the
restricted isometry property,4 see Methods), then according to
the above theorem, the measurement record uniquely specifies

Figure 1. Schematic illustration of Theorem 1. (a) A generic
compressed sensing scenario. The noiseless measurement record
uniquely specifies the low-rank signal matrix M0 (represented by a
red dot) within the set of Hermitian matrices with rank ⩽ r (the
yellow non-convex set). However, there are many other Hermitian
matrices with rank larger than r that are consistent with the
measurement record (shown as the blue dots). (b) A generic
scenario of compressed sensing of quantum states. If the noiseless
measurement record comes from a density matrix, i.e., a positive
matrix ρ0⩾ 0 whose rank ⩽ r, then, according to Theorem 1, it
specifies ρ0 uniquely among the set of all positive matrices (shown
as the red convex set). All other matrices that are consistent with the
measurement record necessarily have negative eigenvalues and
their rank is strictly larger than r.
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M0 within the restricted set of low-rank Hermitian matrices (rank
(M)⩽ r≪d). Therefore compressed sensing measurements
correspond to rank-r restricted-IC, in the sense of equation (2).
This relation between compressed sensing measurements and

rank-r restricted-IC implies that any successful search must be
restricted to the low-rank set of Hermitian matrices. To achieve
this, one solves the convex optimisation problem,8,9,21

M̂ ¼ argmin
M

JMJ� s:t:y ¼ A½M�; ð4Þ

where JMJ� ¼ Tr
ffiffiffiffiffiffiffiffiffiffi
MyM

p
, is the nuclear (or trace) norm, which

serves as the convex proxy for rank minimisation. Under the
conditions above, the optimal solution is M̂ ¼ M0, i.e., exact
recovery. The use of the nuclear norm is essential here. If one uses
only the compressed number of samples, then solving any other
optimisation that is not related to the above rank-minimisation
heuristic by some regularisation will not result in a successful
recovery. For example, the solution of the convex programmes
argminMTrðMÞs:t:y ¼ A½M�, and argminMJy -A½M�J2 with m ≪ d2

samples {yi} will generally yield a solution that is very different
from M0. Such estimators generally require m~ d2 samples to
recover M0. The analogous result holds for compressed sensing of
sparse vectors. There ones require minimisation of the ℓ1 norm of
the vector, a convex heuristic for vector-sparsity.
In what follows, we specialise the compressed sensing paradigm

to the case of positive matrix recovery, and particular to quantum-
state tomography. There, the aim is to recover the state of the
system, ρ, which has the key property of positivity, ρ⩾ 0.

The role of positivity in compressed sensing quantum tomography
Our central result is summarised in the following theorem:
Theorem 1. Let P0 be a positive semidefinite matrix with rank
(P0)⩽ r, and let y ¼ A P0½ � be the measurement record obtained by
a sensing map A that corresponds to compressing measurements
for a rank-r Hermitian matrix. Then P0 is the unique matrix within
the set of positive semidefinite matrices of any rank that is
consistent with the measurement record.
This is an analogous theorem to the one presented by

Bruckstein et al.26 for the case of positive sparse vector solutions
for an underdetermined set of linear equations. Its proof as well as
the details concerning the requirements on the sensing map are
given in the Supplementary Information Section A. It also extends
a result by Candès et al.27 and Demanet and Hand28 from rank-1
matrices to matrices with rank ⩽ r for all permissible r.
Theorem 1 differs qualitatively from the standard compressed

sensing theorem in a few key aspects. As discussed above, the
general theory of compressed sensing guarantees that if the
signal is a low-rank matrix with rank ⩽ r, and if the sensing map
corresponds to compressed sensing measurements, then the
measurement record uniquely specifies the unknown signal
matrix, but only within the subset of matrices with rank ⩽ r.
Theorem 1, on the other hand, states that if the matrix to be
estimated is constrained to be a positive matrix (e.g., a density
matrix), then the measurement record uniquely specifies the
matrix from within the entire set of positive Hermitian matrices.
Therefore, without the positivity constraint, compressed sensing
measurements correspond to rank-r restricted-IC measurements of
equation (2), whereas under positivity, the same measurements
correspond to rank-r strictly-IC measurements of equation (3). This
central result of Theorem 1 is illustrated in Figure 1.
The implication of Theorem 1 for quantum-state tomography is

as follows. Suppose that the state of the system ρ0, a positive
semidefinite matrix, has rank ⩽ r. Assume that we have measured
the system with a sensing map that satisfies the appropriate
compressed sensing property, and obtained the (noiseless)
measurement record A½ρ0� ¼ p. Then, according to Theorem 1,
ρ0 is the only density matrix within the set of positive Hermitian

matrices of any rank that yields the measurement probabilities p.
Geometrically, as observed in refs 27,28, Theorem 1 states that the
rank-deficient subset of the positive matrices cone is ‘pointed.’
Therefore, under the promise that rank(ρ0)⩽ r and A corresponds
to compressed sensing measurements, the space of matrices ρ
that satisfy A½ρ� ¼ p and the cone of positive matrices intersect in
a single point ρ= ρ0.
Theorem 1 implies that the solution set contains only one

matrix, the density matrix ρ0. It follows that we can use any
optimisation method to search for it, and we are guaranteed to
find it. Thus, we have the following result: Given a quantum
measurement record p ¼ A½ρ0�, such that rank(ρ0)⩽ r, and where
A corresponds to compressed sensing measurements, then the
solution to

ρ̂ ¼ arg min
ρ
CðρÞ s:t: A½ρ� ¼ p and ρX0; ð5Þ

or to

ρ̂ ¼ arg min
ρ
JA½ρ� - pJ s:t: ρX0; ð6Þ

where CðρÞ is a any convex function of ρ, and JUJ is any norm
function, is unique: ρ̂ ¼ ρ0. By confining the feasible set of matrices
to positive matrices, we ensure that the measurement record
uniquely identifies ρ0 from the set of all density matrices, and thus
any convex function of ρ or the measurement error may serve as a
cost function. For example, this result applies to maximum-(log)
likelihood estimation29 where CðρÞ ¼ - log ðQμTrðEμρÞpμÞ. We thus
conclude that when the feasible set of density matrices is
constrained to be physical (i.e., have positive eigenvalues), any
quantum tomography protocol whose sensing map corresponds to
compressed sensing measurements will exhibit the compressed
sensing effect. We do not include a trace constraint in the convex
programmes above. In the noiseless case considered here it is
redundant. Because the data came from a trace-preserving
quantum measurements, the unique solution must be a normalised
quantum-state. As discussed in the Supplementary Information, the
constraints ρ⩾ 0 and Trρ=1, taken together, immediately imply
that ρ0 is the only density matrix consistent with the noiseless data.
When we consider the important case of noisy measurements, the
consequence trace constraint is nontrivial, as we discuss in the next
section.

Robustness to measurement noise and model imperfection
So far, we have discussed the ideal case of a noiseless
measurement record, where in the context of quantum tomo-
graphy, p denoted a probability vector. The compressed sensing
methodology, however, assures a robust reconstruction of the
signal in the presence of measurement noise. Our analysis inherits
this crucial feature. In a realistic scenario, we allow for a noisy
measurement record, f ¼ A½ρ0� þ e, where we assume that the
noise contribution can be bounded by some norm JeJ⩽ε. In the
context of quantum tomography we consider f to denote a vector
of the observed frequencies of measurement outcomes.
Theorem 1 ensures robust recovery of the positive density

matrix if the noise level is small by solving any convex
optimisation problem. Under the assumptions of Theorem 1, any
convex minimisation problem that searches for a solution within
the cone of positive matrices must yield a solution ρ̂ such that
Jρ̂ - ρ0J⩽gðεÞ, where g(ε)→ 0 as ε→ 0. From a geometrical point of
view, when the noisy data arises from a rank-deficient state, as we
gain data, there are fewer states that could have given rise to that
data because the convex set of physical states is highly
constrained near the point. In the idealised limit of noiseless
data, there is only one state compatible with the data. Therefore,
qualitatively, we expect a compressed sensing effect no matter
how we search for the solution whenever the data arises from
low-rank positive matrices. Quantitatively, of course, different
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heuristics may perform differently, yielding different estimates.
Choosing the best optimisation depends, in part, on the specific
noise model. For example, in Supplementary Information Section
B we derive a specific bound on the Frobenius (Hilbert–Schmidt)

norm Jρ̂ - ρ0JF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ̂ - ρ0Þ2

q
, where ρ̂ is the solution of a non-

negative least-squares program

ρ̂ ¼ arg min
ρ
JA½ρ� - fJ2 s:t: ρX0: ð7Þ

Whereas the normalisation constraint, Trρ= 1 was unecessary in
the noiseless case, in the case of a noisy measurement record, the
convex optimisation is not guaranteed to obtain a normalised
state. One can include the trace constraint in the optimisation, but
it is generally unnecessary in the noisy case as well. In fact,
sometimes one can actually improve the robustness to noise by
choosing Trρ≠1, as we discuss below. In general, the output of the
optimisation should then be renormalized to give the final
estimate.
We see this explicitly in ref. 11, where Gross et al. obtained a

compressed sensing version of quantum-state tomography by
solving the minimisation problem,

min
ρ
:Trρ s:t:Jf -A½ρ�J2⩽ε; ρX0: ð8Þ

This is equivalent to minimising the nuclear norm of ρ under the
same constraints, i.e., when the feasible set is ρ⩾ 0, then
JρJ� ¼ Trρ. As noted above, minimising the trace of the matrix
in the absence of the positivity constraint is not equivalent to
minimising the nuclear norm, and therefore, would not
achieve compressed sensing. Although both equation (7) and
equation (8) are compressed sensing programmes, in general they
return different estimations. However, in Supplementary
Information Section C we show that the nonegative least-squares
program,

min
ρ
:JA½ρ� - fJ2 s:t:Trρ ¼ t; ρX0 ð9Þ

is exactly equivalent to the nuclear-norm minimisation of equation
(8) for a particular choice of t. This fact was observed empirically in
a recent experiment by Smith et al.,17 in which quantum-state
tomography via continuous measurement was achieved at a
equivalent rate by both least-squares and trace minimisation, with
the positivity constraint included. The difference between the final
estimate was attributed to a difference in the robustness of the
two estimators to noise. As equations (8) and (9) are formally
equivalent, the noisy measurement can be equivalently accom-
modated by solving (9) with a choice of t that depends on the
noise bound ε. As always, we renormalize to obtain the final
density matrix.
In addition to noise in the measurements, there can be

imperfections in the model. When the sensing map satisfies
the restricted isometry property, the compressed sensing
methodology is not restricted to exact rank-deficient signal
matrices. It also ensures the robust recovery of the dominant
rank-r part of the density matrix. Our analysis shares this important
and nontrivial property. Lemma 2 given in Supplementary
Information Section B is the root of this feature.
We have shown that Theorem 1 implies that for a positive matrix

recovery, compressed sensing measurements correspond to a
stronger notion of informationally completeness—a rank-r strictly-
IC. This implies that for quantum tomography we can construct
robust measurements that are also rank-r strictly IC. The robustness
to measurement noise and model imperfection is guaranteed by
the compressed sensing theory. For example, in the context of a
many-qubit system, Liu12 showed that Oðrdpolyðlog dÞÞ expecta-
tion values of Pauli products, w ¼ �n

i¼1σαi , where σα∈ {I, σx, σy, σz},
satisfy the restricted isometry property with overwhelming prob-
ability. Therefore, this set of expectation values is, with high
probability, a robust rank-r strictly-IC measurement record. Similar
results hold for sparse quantum process matrix reconstruction, e.g.,
it is shown in ref. 13 that if the sensing map is constructed from
random input states, and random observables, then the restricted
isometry holds with high probability.

Figure 2. Comparison of different estimators with and without the positivity constraint. We simulate a three-qubit system in which we
produce a pure state, 9ψ0〉, and perform random projective measurements in the Pauli basis (all simulations are averaged over 10 Haar-random
states). (a) Estimation without the positivity constraint. We consider here the ideal case of a noiseless measurement record and plot the Frobenius

distance between state 9ψ0〉 and the solution of an estimator, ρ̂,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ̂ - 9ψ0〉〈ψ09Þ2

q
. The estimations are obtained by solving three different

convex optimisations: (i) Nuclear-norm minimisation: equation (4), (ii) Least-squares minimisation: ρ̂ ¼ arg minMJp -A½M�J2, and (iii) Trace
minimisation: ρ̂ ¼ arg minMTrðMÞs:t:p ¼ A½M�. The figure clearly shows that only nuclear-norm minimisation achieves compressed sensing, i.e.,
exact recovery of the density matrix with a small number of measurement bases (here m=10). Least-squares and trace minimisation require a full
informationally complete measurement record with 27 Pauli bases to achieve exact recovery. (b) Estimation with the positivity constraint. We plot
here the infidelity between 9ψ0〉 and the solution of different estimators, 1 -〈ψ09ρ̂9ψ0〉. The estimations are obtained by solving three
different convex optimisations where the feasible set is constrained to the cone of positive matrices: (i) Nonnegative trace minimisation
(equivalently nuclear-norm minimisation), equation (8) (ii) Nonnegative least-squares minimisation, equation (7), and (iii) The maximum-(log)
likelihood estimator based on the algorithm described in ref. 30. In the main plot we simulate the case of an ideal noiseless measurement record;
in the inset plot we simulate a statistically noisy measurement record that corresponds to frequency of outcomes for Nrep = 200 repetitions. This
figure exemplifies that when restricted to the set of positive matrices, all estimators are compressed sensing estimators.
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Numerical test: compressed sensing state tomography of n-qubit
system
Gross et al.11,12,14 studied the problem of quantum-state
tomography of an n-qubit system and showed that
m ¼ Oðrdpolyðlog dÞÞ expectation values of random Pauli obser-
vables satisfy an appropriate restricted isometry property with
high probability. If these expectation values are obtained through
measurements in Pauli bases, i.e., local projective measurements
on individual qubits in the eigenbasis of the Pauli observables,
then, in fact, we obtain much more information. In addition to the
average values, we also obtain the frequency of occurrence of
each outcome, Eμ ¼ �n

i¼1Pαi , where μ indexes the series of αi,
α= x, y, z, and Pαi Af9mαi〉〈mαi ;j jkαi〉〈kαi 9g. Thus, we expect that
we can obtain the required information for high-fidelity recon-
struction using substantially fewer measurements based on
individual outcomes in random Pauli bases rather than expecta-
tion values, and further reduce the resources needed for
quantum-state tomography of a collection of qubits.
To exemplify this and the implication of Theorem 1, we perform

numerical experiments on an n-qubit system (see Methods for
details). In Figure 2, we simulate measurements on a three-qubit
system, d=8, and compare different numerical programmes to
estimate the state. In Figure 2a we solve three estimators: equation
(4) (nuclear-norm minimisation), minMJp -A½M�J2 (least-squares),
and minMTrðMÞs:t:p ¼ A½M� (trace minimisation). Note that none of
these estimators constrain the feasible set to the cone of positive
matrices. The least-squares and trace minimisation are not convex
heuristics for rank minimisation, and thus, as expected, they do not
achieve compressed sensing. These programmes require a full
informationally complete measurement record in order to recon-
struct the quantum-state. On the other hand, the nuclear-norm
heuristic does exhibit the compressed sensing effect, and recovers
the density matrix with far fewer measurement outcomes. In
Figure 2b we use the same data as in Figure 2a, but here we use
estimators that restrict the feasible set to positive semidefinite
matrices, e.g., the non-negative least-squares estimator, equation
(7). The plots clearly show the implication of Theorem 1. Once
restricted to the positive cone, the performance of all of the
estimators is qualitatively the same and they all exhibit the
compressed sensing effect. When the number of Pauli bases satisfy
the appropriate restricted isometry property, the various estimators
find the exact state in the idealised situation where the
measurement record has no noise, and they find a good estimate
that is close to the true state of the system in the presence of noise
owing to finite sampling statistics of 200 repetitions.
In Figure 3, we treat a large dimensional Hilbert space: a ten

qubit system, d= 210 = 1,024. We simulate 30 random Pauli bases
of a Haar-random pure state with Nrep = 100d repetitions for each
observable. We estimate the state by solving equation (7) with a
convex optimisation programme that can efficiently handle such
large dimensional data sets (Riofrío, C. Personal communication).
The programme implements a standard algorithm that uses
gradient methods together with projection onto the positive cone.
In the plot we see the compressed sensing effect due to the
positivity constraint—all the information is captured in about 28
random Pauli bases, given sufficient statistics.

DISCUSSION
We have established a rigorous connection between the positivity
property of quantum states and the compressed sensing method for
quantum tomography. Thanks to the positivity constraint associated
with physical states, the record of such measurements allows for a
unique identification of a low-rank quantum-state within the set of
all physical quantum states, of any rank. Thus, the measurements
used for compressed sensing are informationally complete in a strict
sense (strictly-IC). This aspect is fundamentally different than what

happens if positivity is not included. In the absence of the positivity
constraint, the compressed sensing measurements are information-
ally complete in a restricted sense since they only uniquely identify a
signal matrix from within the set of low-rank matrices (restricted-IC).
This strict relation has theoretical and practical implications. Most

importantly, it implies that if one employs an optimisation
programme that searches for a physical (positive) quantum-state,
any quantum tomography procedure whose sensing map corre-
sponds to compressed sensing measurements will exhibit the
compressed sensing effect. This unifies apparently distinct numerical
procedures such as maximum-likelihood and nuclear-norm
minimisation under the umbrella of compressed sensing. From a
practical perspective, when the positivity constraint is included, one
can achieve compressed sensing estimation with any efficient
convex optimisation, such as ADMM algorithms developed to
handle large dimensional matrices. (A description of the ADMM
algorithms and their application can be found at http://stanford.edu/
boyd/admm.html.)
As the compressed sensing measurements that satisfy the

restricted isometry property are robust to measurement noise and
model imperfection, this allows us to construct strictly-IC
measurements that are robust against such noise. That is, if there
is measurement noise and/or we strictly violate the assumption
that rank(ρ)⩽ r (but only require that the density matrix is close to
a density matrix with rank⩽ r), then we are guaranteed that the
estimation will be close to the unknown matrix.
Finally, though we have presented our results in the context of

quantum-state tomography they are general and apply to the
case of positive sparse vectors and positive rank-deficient
matrices, the latter exemplified by quantum-process tomography.

METHODS
Compressed sensing measurements in matrix reconstruction
A sensing map for matrix reconstruction, A, is defined as a vector-valued
linear map on a d× d Hermitian matrix, yi ¼ A M½ �i . This yields ‘compressed
sensing measurements for rank-r’ if it guarantees a robust recovery of
matrices with rank⩽ r by solving a nuclear-norm minimisation programme,
e.g., the compressed sensing heuristic,

M̂ ¼ argmin
M

JMJ�s:t:JA½M� - fJ2⩽ε; ð10Þ

where f is the noisy measurement record, f=y+e. When the matrix is

Figure 3. Ten-qubit state tomography. We simulate the data based
on random Pauli-projective measurements (see text). The quantum
tomography employs non-negative least-squares, according to
equation (7). This algorithm can efficiently handle large dimensional
matrices. We show the infidelity as a function of the number of
measurement settings averaged over 10 Haar-random pure states
(error bars shown). The simulation clearly exhibits the compressed
sensing effect.
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promised to have rank r, the number of sufficient samples is of order OðrdÞ,
with possible logarithmic corrections, and the distance between the
reconstruction M̂ and M0 is OðεÞ, where JeJ2⩽ε. In this sense, the
reconstruction is ‘robust,’ and compressed sensing when r ≪ d. An analogous
definition holds in the case of sensing maps for sparse vector reconstruction.
A sufficient condition that a sensing map yields compressed sensing

measurements for matrix reconstruction is if it satisfies the ‘restricted
isometry property.’ The map satisfies the restricted isometry property for
rank-r if there is some constant 0⩽ δro1 such that,

ð1 - δrÞJMJ2F⩽JA½M�J22⩽ð1þ δrÞJMJ2F ; ð11Þ
holds for all Hermitian matrices M with rank⩽ r, where JMJF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMyMÞ

q
.

The smallest constant δr for which this property holds is called the
restricted isometry constant.
With small isometry constant δr, the sensing map A acts almost like an

isometry when applied to rank ⩽ r matrices, and thus allows us to
effectively invert the measurement data to determine the matrix.
Depending on the context, there are various results in the compressed
sensing literature that apply for different values of the isometry constant.
For example, Candés et al.,9 show that the compressed sensing theory is
applied when δ4r <

ffiffiffi
2

p
- 1 (see Supplementary Information Section B).

Our results are general and apply whenever the sensing map
corresponds to compressed sensing measurements that assures robust
recovery through the solution of equation (10). Although the restricted
isometry property is sufficient, our results are applicable in other cases,
such as those described in ref. 21 where a robust recovery is guaranteed by
O rdð Þ generic rank-one projections, or by Oðrdlog ðdÞÞ projectors onto
random elements of an approximate four design.

Numerical experiments
In our numerical experiments, we simulate independent measurements of
random Pauli bases on a Haar-random pure state of dimension d= 2n,
ρ0 ¼ ψ0j i ψ0h j. The measurement record, given by the frequency of
outcomes, f, is generated by sampling Nrep times from the probability
distribution p= Tr(Eρ0). Here E is the vector of POVM elements, each
corresponding to a tensor product of projectors onto the eigenbasis of
Pauli observables, Eμ ¼ �n

i¼1Pαi , where μ indexes the series of αi, α= x, y, z,
and Pαi Af9mαi〉〈mαi ;j jkαi〉〈kαi 9g. The measurement record is then used
in various estimators. (Software for disciplined convex programming can
found at http://cvxr.com/.) We measure the performance by the average

infidelity over 10 random pure states, 1 -〈ψ09ρ̂9ψ0〉 .
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