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Infants learn about the sounds of their language and adults process the sounds

they hear, even though sound categories often overlap in their acoustics. This dis-

sertation is about how contextual information (e.g. who spoke the sound and what

the neighboring sounds were) can help in phonetic learning and speech perception.

The role of contextual information in these tasks is well-studied, but almost exclu-

sively using simplified, controlled lab speech data. In this dissertation, we study

naturalistic speech of the type that listeners primarily hear.

The dissertation centers around two main theories about how context could

be used: top-down information accounts, which argue that listeners use context to

predict which sound will be produced, and normalization accounts, which argue that

listeners compensate for the fact that the same sound is produced differently in dif-

ferent contexts by factoring out this systematic context-dependent variability from

the acoustics. These ideas have been somewhat conflated in past research, and have

rarely been tested on naturalistic speech. We start by implementing top-down and



normalization accounts separately and evaluating their relative efficacy on sponta-

neous speech, using the test case of Japanese vowel length. We find that top-down

information strategies are effective even on spontaneous speech. Surprisingly, we

find that normalization is ineffective on spontaneous speech, in contrast to what has

been found on lab speech. We, then, provide analyses showing that when there are

systematic regularities in which contexts different sounds occur in - which are com-

mon in naturalistic speech, but generally controlled for in lab speech - normalization

can actually increase category overlap rather than decrease it. Finally, we present

a new proposal for how infants might learn which dimensions of their language are

contrastive that takes advantage of these systematic regularities in which contexts

different sounds occur in. We propose that infants might learn that a particular

dimension of their language is contrastive, by tracking the acoustic distribution of

speech sounds across contexts, and learning that a dimension is contrastive when

the shape changes substantially across contexts. We show that this learning account

makes critical predictions that hold true in naturalistic speech, and is one of the first

accounts that can qualitatively explain why infants learn what they do.

The results in this dissertation teach us about how listeners might use context

to overcome variability in their input. More generally, they reveal that results

from lab speech do not necessarily generalize to spontaneous speech, and that using

realistic data matters. Turning to spontaneous speech not only gives us a more

realistic view of language learning and processing, but can actually help us decide

between different theories that all have support from lab speech and, therefore, can

complement work on lab data well.
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Chapter 1: Introduction

Listeners are exposed to highly variable, continuous speech and map it to

discrete sound categories. To do so, they first learn as infants what the relevant

sounds of their language are, and, subsequently, map incoming signal to learned

categories. This is generally a robust process - infants learn about the sounds of

their language as early as six months (Kuhl et al., 1992) and, for the most part,

listeners process what they are hearing in an effortless manner. However, despite

how seemingly easily listeners solve these tasks, they are computationally difficult

problems. In fact, after decades of research in this area, researchers have not yet

established a robust one-to-one mapping between signal and category that works to

anywhere near the degree of success of human listeners.

The reason these tasks are so computationally difficult is because there is a

large amount of variability in the speech signal, which can lead to acoustic overlap

between different sound categories (Bion et al., 2013). One sound category can be

acoustically realized in infinitely many ways, and two different sound categories can,

in theory, have identical acoustic realizations. This makes establishing a one-to-one

mapping between speech and category difficult. The basic problem is that absolute

acoustic or other perceptual cues are insufficient to separate categories as well as

1



humans do.

This dissertation is about how contextual information (e.g. information about

who spoke the sound, what the neighboring sounds were, where in an utterance the

sound occurred, and so forth) can help in phonetic learning and speech perception.

Researchers have long argued that listeners may be relying on context to help map

from signal to categories. The role of context is widely-studied in cognitive science,

and fundamental to many cognitive theories, with most researchers largely agreeing

that it is crucial in speech perception and acquisition (e.g. Ainsworth, 1974; Auck-

land et al., 2007; Bar, 2003,0; Bar and Ullman, 1996; Biederman et al., 1982; Boyce

et al., 1989; Cole et al., 2010; Davenport and Potter, 2004; Dillon et al., 2013; Feld-

man et al., 2013a,0; Fujisaki et al., 1975; Ganong, 1980; Green and Courtis, 1966;

Kleinschmidt and Jaeger, 2015; Mann and Repp, 1980; McMurray and Jongman,

2011; Moreton and Amano, 1999; Nearey, 1978; Palmer, 1975; Port and Dalby, 1982;

Post et al., 1998; Rose and Bressan, 2002; Todorović, 2010; Torralba, 2003; Warren,

1970). However, despite how much has been written about the role of context in

these problems, the work has focused primarily on synthesized speech or controlled

lab speech. In this dissertation, we study how context can be helpful in learning and

perception on naturalistic, spontaneous speech of the type that listeners primarily

encounter on a day-to-day basis.

This dissertation will center around two main, non-mutually exclusive ways

that listeners could rely on context. Researchers have identified these theories based

on two ways that context affects a speaker’s production. The first is that context

affects which sounds are likely to occur – e.g. /æ/ is much more likely than /E/

2



to occur in the context th t (‘that’ is a word, ‘thet’ is not), so listeners could be

biased to perceive acoustics in that frame as /æ/ rather than /E/. That is, top-

down information could guide expectations about what category was likely to be

heard. This information can supplement the acoustics, and we will refer to these as

‘top-down information’ accounts.

The second is that context affects how sounds are produced. For example,

speech rate will significantly and systematically alter the acoustics of the signal.

This leads to variability in how a particular sound is produced, and can lead to

overlap between different sound categories (e.g. a /p/ uttered in fast speech could

overlap with a /b/ uttered in slow speech). Listeners could, thus, factor out system-

atic variability stemming from contextual factors like speech rate from their input.

Removing variability may lead to less overlap between categories, and make the

mapping from acoustics to categories clearer. In other words, context could be used

to pre-process the acoustics that are used for categorization decisions. These types

of accounts have generally been termed ‘normalization’ accounts. The top-down

information and normalization account examples provided above make use of two

different contextual factors (i.e. neighboring sounds vs. speech rate), but many con-

textual factors can affect both stages of production (i.e. which category is produced

and how it is produced).

These two ways of using context have both been studied extensively, as will

be discussed in more detail in Chapter 2. There is a large body of experimental and

computational work supporting the notions (i) that context does affect both which

sound is produced and how it is produced, (ii) that listeners can make use of these
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strategies, and (iii) that listeners do make use of these strategies to help overcome

the overlapping categories problem. Both ways of using context are relatively well-

accepted in the speech perception literature.

However, there are two main limitations with previous work that warrant

further study. First, these two ways of using context - although different - have

been somewhat conflated in previous work. In particular, experiments that have

been used to argue for one or the other generally show that an acoustic signal is

perceived as one category in a particular context, but when the same signal is placed

in a different context, it is perceived differently. This type of finding has been used,

in different literatures, to argue for both top-down information and normalization

accounts, but depending on the specifics, merely shows that context is used, but

not how. Therefore, it is not entirely clear whether listeners are using both of these

strategies, and if not, which one they are using. Addressing this limitation requires

separating these two accounts and testing them individually.

Second, these ideas have mostly been studied on synthetic or carefully con-

trolled lab speech, which differs in important ways from the naturalistic and sponta-

neous speech that listeners actually learn from and process. It is not clear whether

promising results from controlled lab speech generalize to more variable sponta-

neous speech; indeed, where tested, they have often not (e.g. Antetomaso et al.,

2017). In addition, most of the debate so far has centered on whether listeners do

or do not make use of these strategies, and has assumed that if listeners did use

these strategies, doing so would help them process naturalistic speech. However,

this assumption has not yet been supported, as there is actually little to no evi-
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dence so far that these strategies are effective on naturalistic speech. Addressing

this limitation requires applying these two strategies to naturalistic speech of the

type that listeners are mostly exposed to, and testing whether they are effective in

separating overlapping categories.

In this dissertation, we study how context can be effectively used in learning

and processing, taking these two issues into account. In Chapter 3, we implement

top-down information and normalization accounts separately and evaluate their rel-

ative contribution in the process of going from speech signal to categories - and we

do so on spontaneous speech. We focus on speech perception, specifically on the test

case of Japanese vowel length, a test case with particularly overlapping categories

that current computational models fail to learn. We find that top-down information

is helpful in separating sound categories, remaining robust even on spontaneously

produced speech. However, contrary to expectations, we find that normalization

is not helpful. In Chapter 4, we study why exactly the discrepancy between our

results and previous findings occurs. We find that the discrepancy results from the

difference between controlled lab speech and spontaneous speech, by showing that

the exact same normalization process we use works if we apply it to controlled lab

speech that is more similar to the speech used in previous work. Simulations and

a mathematical analysis reveal that one property of spontaneous speech that seems

to play a particularly important role is the fact that categories do not occur uni-

formly across contexts in spontaneous speech, as they do in controlled lab speech.

Imbalances in where categories occur - precisely the type of signal that is helpful in

top-down information accounts - can hurt normalization.
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While Chapters 3 and 4 focus on how well sounds can be categorized when the

category labels are known, in Chapter 5, we turn more directly to the question of

learning. We propose a new account for how infants could learn which dimensions

of their language are contrastive, which takes advantage of the signal that helps

top-down information accounts. The idea is that imbalances in the relative propor-

tion of different categories across contexts can cause the distribution shape to vary

by context. Our proposal is that infants could learn that a particular dimension

(like duration) is contrastive if there are large changes in distribution shape across

contexts. I show that this account makes critical predictions that hold true in natu-

ralistic speech, and that the signal needed for this account to be successful is present

in all of the naturalistic speech corpora we test.

Past research on these cognitive theories has tended to focus on whether lis-

teners do or do not use these strategies, making the key underlying assumption

that using them would actually solve the overlapping categories problem present

in speech. Our results validate this assumption for top-down information accounts,

and even propose a new account for how contextual information could be helpful in a

top-down fashion. However, our results show that in our case study, this assumption

is wrong for normalization. Regardless of whether listeners use it, a normalization

strategy would be ineffective for learning and processing from naturalistic speech, at

least in its current proposed form. It is possible that our theory about how listeners

normalize could be repaired, as we will discuss, and this warrants further study.

However, these results highlight the importance of studying speech perception and

phonetic learning using spontaneous speech, in addition to carefully controlled lab
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speech, as results from one do not necessarily generalize to the other.

In what follows, we introduce the specifics of the test case we consider, as well

as work that has been done in support of top-down information and normalization

accounts. We then describe our simulations and analyses revealing that top-down

information is helpful for overcoming overlapping categories on spontaneous speech,

even in cases where normalization is not.
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Chapter 2: Background

2.1 Phonetic Learning

2.1.1 General Phonetic Learning

Adults’ speech perception depends on the languages they have learned (e.g.

Goto, 1971; Liberman et al., 1957; Lisker and Abramson, 1970). In particular, adults

have an easier time differentiating two sounds that are contrastive in their language

(i.e. can change the meaning of a word) than two sounds that are not contrastive

in their language. For example, American English adults can hear the difference

between [r] and [l], which are contrastive in their language, but Japanese adults

have a harder time differentiating these two sounds, which are non-contrastive in

their language.

Young infants, on the other hand, can discriminate most of the phonetic con-

trasts that experimenters have tested them on, regardless of their language back-

ground (e.g. Lasky et al., 1975; Trehub, 1976; Werker and Tees, 1984; Werker et al.,

1981), though there are some exceptions (see e.g. Aslin, 1980; Eilers and Minifie,

1975; Eimas, 1975; Polka et al., 2001). However, experiments have shown that this

begins to change within the first year of life, when infants’ phonetic perception seems

8



to become more attuned to the language(s) they hear. Just like adults, they seem to

stop differentiating sounds that are not contrastive in their language. For example,

in a classic study, Werker and Tees (1984) tested English and Salish infants on their

ability to distinguish /k/ vs /q/, two sounds that are not contrastive in English,

but are contrastive in Salish. They showed that English infants were initially able

to discriminate these sounds, but lost the ability to do so between the ages of 6-12

months. Salish infants, meanwhile, were able to discriminate the sounds at every

age they were tested at. In another classic study, Kuhl et al. (1992) showed that

vowel perception seems to become affected by linguistic experience by 6 months of

age. They tested infants learning Swedish and American English on their ability

to discriminate different variants of /i/ (a sound in English, but not Swedish) and

/y/ (a sound in Swedish, but not English). They showed that by 6 months of age,

infants were worse at discriminating two within-category sounds if they came from

their own native language. This same pattern of findings has been found for many

different contrasts (e.g. Best and McRoberts, 2003; Best et al., 1995; Polka and

Werker, 1994; Tsushima et al., 1994).

Taken together, there is a body of literature suggesting that infants learn some-

thing about the phonetic contrasts of their language by the first year of age - though

some phonetic learning extends into the second year (e.g. Mugitani et al., 2009), and

some extends even later (McMurray et al., 2018). These classic findings have tra-

ditionally been taken as evidence that infants have learn the phonetic categories of

their language, though recent work calls this interpretation into question (Schatz

et al., 2019). What can be agreed on is that infants seem to have learned something
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about which acoustic dimensions are contrastive in their language. Whether at this

point or later, they will eventually learn the phonetic categories of their language,

and, as adults, they will be able to categorize the incoming speech they hear into

these learned sound categories.

How do infants learn about the sounds of their language? Researchers have

long thought that infants learn which dimensions of their language are contrastive

by tracking the acoustic distributions of the speech sounds of their language. In

particular, Maye et al. (2002) proposed that infants learn which dimensions of their

language are contrastive based on the overall shape of the distribution. They pro-

posed that an infant who observes a bimodal distribution along an acoustic dimen-

sion will learn that that dimension is contrastive (i.e. has multiple categories along

it), whereas an infant who observes a unimodal distribution along an acoustic distri-

bution will learn that that dimension is not contrastive in their language. This idea,

known as distributional learning, has received experimental and computational sup-

port - though most of the support has come from studying simplified speech data.

Experimentally, Maye et al. (2002) familiarized 6-8 month olds with a sounds from

a /ta/-/da/ continuum that either formed a bimodal distribution or a unimodal dis-

tribution. At test, only infants who had heard the bimodal distribution learned the

contrast (measured by their ability to discriminate the endpoints of the continuum).

Computationally, distributional learning accounts have been shown to successfully

learn English and Japanese phonetic categories (Vallabha et al., 2007), when the

data used come from controlled lab speech which differs in important ways form

naturalistic speech.
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Although this story has received a lot of support, the support comes primarily

from studying simplified speech, and this account is insufficient for learning from

naturalistic speech. In particular, contrastive dimensions often have unimodal dis-

tributions in naturalistic speech (see Figure 2.1), and distributional learning fails to

learn the correct categories (Bion et al., 2013). In naturalistic speech, there is sub-

stantially more variability and overlap between categories, and some categories have

been overrepresented in simplified speech relative to their base rate of occurrence in

naturalistic speech, which makes it easier to learn them.

The field has put forth a number of proposals for how learning might happen

in spite of variability and overlap, and they generally involve using contextual in-

formation in a top-down fashion (e.g. Feldman et al., 2013b; Thiessen, 2007) or for

normalization (e.g. Dillon et al., 2013). However, support for these various theories

has also come primarily from simplified, controlled lab speech data: there is sup-

port that these accounts can reduce overlap on simplified speech, but it is unclear

whether they can also reduce overlap on naturalistic speech. Here, we will test top-

down information and normalization theories on their efficacy on the test case of

Japanese vowel length, a particular phonetic learning problem that we now turn to.

2.1.2 The Test Case of Japanese Vowel Length

This dissertation uses the Japanese vowel length contrast as a test case to

compare the relative efficacy of top-down information and normalization strategies.

In Japanese, there are two sound categories along the duration dimension - referred
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to as ‘short’ vowels and ‘long’ vowels (Han, 1962). Which category is used can

change the meaning of a word. For example, /biru/ with a short vowel means

‘building,’ while /bi:ru/ with a long vowel means ‘beer’. Results from perception

and production studies reveal that Japanese speakers differentiate short and long

vowels: they produce short and long vowels differently and can identify which vowel

length category a particular vowel belongs to (Chen et al., 2016; Hisagi et al., 2010;

Mugitani et al., 2009; Werker et al., 2007). Based primarily on studies of controlled

laboratory speech, vowel length is thought to be signaled primarily by the vowel

duration cue, and to a lesser extent, formant values (e.g. Arai et al., 1999; Fujisaki

et al., 1975; Kinoshita et al., 2002; Lehnert-LeHouillier, 2010). At this point, we

wish to highlight an important terminological distinction between vowel length and

vowel duration - and the corresponding two meanings that short/long can have in

this context. Vowel length refers to the category status of a vowel - i.e. whether it

is the vowel category that will result in /biru/ (‘building’) or /bi:ru/ (‘beer’). Vowel

duration refers to the acoustic property of a vowel - i.e. how long it took the speaker

to articulate the vowel - and is thought to be a cue to vowel length. Therefore, a

vowel can be referred to as short (or long) if it belongs to the short (or long) category,

but it can also be referred to short (or long) depending on its physical duration. In

this dissertation, I will use ‘phonologically short/long,’ ‘phonemically short/long,’

or simply ‘short/long’ to refer to category status, and ‘acoustically short/long’ to

refer to physical vowel duration.

This distinction is critical because a vowel’s duration and length do not al-

ways line up. Recent work has shown that although short vowels and long vowels
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are different categories, the range of durations they can have overlap substantially

(Bion et al., 2013). While long vowels are, on average, acoustically longer than short

vowels, a particular production of a phonologically short vowel can be acoustically

longer than a particular production of a phonologically long vowel. In fact, because

only 9% of Japanese vowels are phonologically long, the combined distribution of

all vowels is unimodal along the duration dimension (Figure 2.1). Therefore, while

vowel duration is thought to be a cue to vowel length, it is insufficient to com-

pletely separate short and long vowels, and researchers are not yet sure how exactly

Japanese listeners process or learn vowel length.

Note that vowel length is not the only way that Japanese listeners need to

categorize incoming vowels. There are 10 total vowel categories in Japanese, a short

and long version of five different vowel qualities (/a/, /e/, /i/, /o/, /u/) (Han,

1962), so Japanese listeners need to determine both the vowel length and the vowel

quality of incoming vowels. However, the acquisition and processing of vowel quality

and vowel length seem to be relatively independent processes. It is thought that

Japanese infants learn the vowel length contrast at around 10 months of age, about

6 months after they have been argued to learn the vowel qualities (Sato et al., 2010)

(but see Mugitani et al. (2009), which argues that infants have not learned about

the vowel length contrast as a phonological property until 18 months of age). In

this dissertation, I assume the problem of learning and processing vowel quality

has been solved and simply consider how Japanese listeners may learn and process

vowel length. This is the problem to which we apply the top-down information and

normalization strategies to try to explain how adults categorize incoming vowels and
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Figure 2.1: Distribution of R-JMICC dataset vowels (by log-duration): all are uni-
modal distributions. Values displayed are logs of the vowel durations in seconds.
As a result, log-durations will be negative whenever the vowel is less than a second
long.

how infants learn that vowel length is contrastive.

This problem is just one instance of the commonly observed overlapping cat-

egories problem, where the physical cues are insufficient on their own to explain

human perception - and contextual information is thought to be used (e.g. Allen

et al., 2003; Hillenbrand et al., 1995, 2001; Narayan, 2013; Narayan et al., 2017; New-

man et al., 2001; Swingley, 2019; Swingley and Alarcon, 2018). The Japanese vowel

length contrast is an ideal test case to use because there exists a hand-annotated

dataset consisting of both child- and adult-directed Japanese spontaneous speech

(Mazuka et al., 2006) that allows us to easily implement both hypotheses about the

use of context and test their efficacy in improving categorization. In the following

sections, I will discuss the various models we will apply to the problem of Japanese

vowel length in Chapter 3.
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2.2 Categorization - Using Unnormalized Acoustic Cues

Japanese listeners must first determine how many sounds there are along the

duration dimension during acquisition and, once they have learned the language

and its categories, they must decide which of the vowels they hear are short or

long through a categorization process. We will start by testing the usefulness of

top-down information and normalization strategies by implementing them compu-

tationally and seeing how well they perform in categorizing Japanese vowels as short

or long. We will compare their performance against a baseline model that catego-

rizes exclusively based on unaltered, unnormalized acoustic cues. Because we test

categorization models, these results are directly applicable to adult speech percep-

tion, where the task is precisely to categorize vowels. That is, the better a strategy

helps categorize vowels as short or long, the more helpful that strategy is in adult

speech categorization. However, the results in Chapter 3 are also highly relevant to

acquisition (as will be discussed in Chatper 5), where the task is to discover that

there are two categories along the duration dimension. Studying how well partic-

ular strategies help categorize vowels reveals how well each strategy separates the

vowels. This, in turn, shows us to what extent each strategy we study provides

signal that infants could learn from. If a strategy does not separate vowels well, it

would be hard for an infant to use it to learn, whereas one that does separate vowels

is much more promising (although this does not necessarily mean that infants rely

on it during learning). In what follows, we lay out what this base categorization

model looks like, before turning to a discussion of how context could be used in the
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process.

A categorization model can take many forms, but in this dissertation, we

model categorization using logistic regression, following previous work (McMurray

and Jongman, 2011). Our logistic regression models will take as input a set of cues

and map them to vowel category (either short or long). The baseline categorization

model - argued to be insufficient in Bion et al. (2013) as described in the previous

section - will take as input a vowel’s acoustic cues - duration and formant values -

and will categorize the vowel as short or long depending on those cues. It will do

so by weighting each of the cues (in terms of how much they contribute to whether

the vowel should be short or long), summing the weighted acoustic cues, and then

transforming this value into a probability that represents the probability that this

vowel is short versus long. That is, if we consider the acoustic cues, d, f1, f2, f3,

logistic regression takes the following form:

P (long|d, f1, f2, f3) =
1

1 + eβ0+βdd+βf1f1+βf2f2+βf3f3
(2.1)

where the β terms are weights on the cues - duration, d, and formants, f1-f3. The

probability that the vowel is short is 1−P (long|d, f1, f2, f3). The model categorizes

the sound as belonging to the category (short or long) that has the higher probability.

Learning this function involves learning an intercept (β0), as well as a weight

for each cue (βd...βf3). The model is trained on data that consist of the unnormalized

acoustic cues of a vowel, labelled with the category that vowel belongs to, and

weights are learned so as to optimally separate the short vowels from the long
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vowels. Once we learn this function, we can take any new vowel and calculate the

probability that that vowel is long (or short). However, the only information that

this model has access to is the acoustics of the vowel. As discussed previously, this

model has been shown to be insufficient to categorize vowels well, because there is a

large amount of overlap in acoustic cues between short and long vowels. We will test

the efficacy of top-down information and normalization accounts by implementing

them and seeing whether they result in improved categorization relative to this

baseline model.

2.3 How Context Could Be Used

The fact that only using acoustics results in bad performance has led re-

searchers to hypothesize that listeners make use of context when learning and pro-

cessing sounds, with context being broadly defined to include neighboring sounds,

but also position in a word/utterance, speaker, speech rate, part of speech of the

word the sound was produced in, as well as other aspects of the sound itself (e.g.

vowel quality).

There are two ways that listeners could make use of context. To illustrate

the two ways that context could be used to improve categorization, it is useful to

consider the production process and the role that context plays in it, as well as how

the baseline categorization model presented in the previous section fails to take this

into account.

When a speaker produces a vowel, they first decide which category to produce
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(short or long vowel) depending on what word they are producing, and then utter

a particular acoustic value for that vowel based on the vowel category they are

producing. Both of these components of the production process are affected by the

context of the vowel, but this is ignored in the base categorization model. In the

following two sections, we introduce the two ways context affects a speaker’s sound

production and, consequently, the two ways that context could in theory be used to

improve categorization.

2.3.1 Top-down information accounts

First, the context of a sound directly relates to which vowel category is more

or less likely to be produced. To provide an example from English, a speaker is much

more likely to produce an /æ/ vowel (as in ‘mat’) than an /E/ vowel (as in ‘met’)

in the context th t (the word ‘that’ exists, but ‘thet’ does not), but the opposite

holds when the context is g t instead (the word ‘get’ exists, but ‘gat’ does not). In

Japanese, a speaker is relatively more likely to a produce a long vowel if they are

saying an /o/ vowel than if they are saying an /a/ vowel, as can be seen in Figure

2.1. A listener could benefit from taking this type of prior knowledge into account,

and indeed listeners are argued to make use of this type of information, as we discuss

below. In particular, if they are making a categorization decision between the /æ/-

/E/, they could take advantage of the fact that a vowel in the context th t is much

more likely to be /æ/, while a vowel in the context g t is much more likely to be

/E/. This type of strategy could in principle be used without access to any acoustic
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Figure 2.2: A toy example demonstrating how using contextual information as top-
down information can be helpful. Although short vowels and long vowels are equally
common overall, short vowels are much more common phrase-finally, and the op-
posite holds phrase-medially. Our baseline categorization model will not be able
to take this into account and will miscategorize some vowels as long in phrase-final
position and miscategorize some vowels as short in phrase-medial position.

information whatsoever. As a result, this type of strategy is often referred to a ‘top

down information’ account, as it makes use of listeners’ prior knowledge of which

sounds are likely to occur in which contexts, in addition to the sounds’ bottom-up

acoustic cues.

The categorization model presented in the previous section does not, in its

current form, take this type of information into account: it only takes into account

whether one of the vowel categories is more likely to occur overall, not whether

vowel categories are more likely to occur in particular contexts. To illustrate why

this is problematic, consider the toy case shown in Figure 2.2, in which there are two
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categories (short and long), and only two contexts (let’s say phrase-medial vowels

and phrase-final vowels). Overall, phonemically short and long vowels occur with

identical frequency; however, the phonemically short category is much more likely

to occur in phrase-final position and the phonemically long category is much more

likely to occur in phrase-medial position. The base categorization model will simply

place the category boundary halfway between the short and long vowel means in (c),

when really this category boundary should be at a shorter duration for vowels that

occur phrase-medially and at a longer duration for vowels that occur phrase-finally.

This means that the base categorization model will overclassify phrase-medial short

vowels (i.e. short vowels in contexts where long vowels are much more likely to occur)

as long and will overclassify phrase-final long vowels as short. However, taking into

account context as a top-down influence can help correct this problem. In particular,

if the model or listener takes into account expectations about which vowel is more

likely to occur in the context heard, then they will, all else being equal, be biased

towards categorizing vowels as short in contexts where short vowels are more likely

to occur, and biased towards categorizing vowels as long in contexts where long

vowels are more likely to occur.

The base categorization model can be augmented to take this into account,

in order to reflect what listeners are thought to do. In the logistic regression, this

could be accomplished by adding the contexts as independent predictors. For ex-

ample, in our Japanese example, if we added the vowel quality, q, of the vowel as

an independent predictor, this could encode the fact that vowels that are /o/ are

relatively more likely to be long than /a/ vowels:
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P (long|d, f1, f2, f3, q) =
1

1 + eβ0+β1d+β2f1+β3f2+β4f3+β5q
(2.2)

Essentially, this means that in addition to the acoustic cues affecting the rel-

ative probabilities of the vowel being short or long, the quality of vowel can also

affect the categorization decision. Additional terms could be added depending on

what other contextual factors are thought to predict category membership.

The effect is that instead of having one categorization boundary overall, the

boundary between categorizing a vowel as short and categorizing it as long will

shift depending on the context, and how likely short vs. long vowels are to occur

in that context. Essentially, if phonemically long vowels are relatively more likely

to occur in a particular context than short vowels, then the boundary between

short and long vowels will shift towards vowels of shorter durations, such that more

vowels are classified as long, and the opposite holds in contexts where phonemically

short vowels are relatively more likely. Crucially, unlike our next model, this model

assumes that once the vowel category type (short/long) is chosen, the acoustics do

not depend on the context at all. That is, this model assumes that the acoustics of

a sound will be the same regardless of the context it was produced in.

2.3.2 Normalization accounts

In the previous section, we saw that context can affect which category a speaker

is likely to produce, and that listeners could use this type of contextual information

in a top-down fashion to help categorize vowels. The next and final component
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Figure 2.3: A toy example demonstrating how using contextual information to nor-
malize acoustics can be helpful. Phrase-final vowels are systematically acoustically
lengthened, which introduces overlap in the overall distribution of short vowels and
long vowels. However, a listener who knows that phrase-final vowels are system-
atically acoustically lengthened could normalize for this acoustic lengthening, and
reduce the overall overlap between short vowels and long vowels in their input.

of the speaker’s production process is to actually produce an acoustic value for

the vowel category they have chosen. This portion of the production process is

also affected by context, as context systematically and predictably affects how a

particular sound category is acoustically realized. As an example, vowels uttered in

fast speech are, all else being equal, acoustically shorter than vowels uttered in slow

speech. Similarly, vowels uttered phrase-finally are, all else being equal, acoustically

longer than vowels uttered phrase-medially.

This can introduce variability and overlap between short vowels and long vow-

els into the overall distribution - and is problematic for a categorization model

22



simply relying on absolute acoustic cues. Consider the toy case in Figure 2.3. Here

again, there are two vowel categories (short vowels and long vowels) and there are

two contexts (let’s say phrase-medial and phrase-final). In phrase-medial position,

short vowels are produced with an average acoustic duration of 150ms and long

vowels are produced with an average acoustic duration of 300ms. In phrase-final

position, vowels are systematically acoustically lengthened by 100ms. This scenario

is problematic for the base categorization model because the overall distribution

will reveal a lot of overlap between sound categories. In particular, long vowels in

phrase-medial position will overlap with short vowels in phrase-final position. The

baseline categorization model presented previously learns a categorization boundary

between short vowels and long vowels, which is the same for all vowels, regardless

of context. This will cause the model to overclassify vowels occurring in lengthen-

ing contexts as phonemically long, and overclassify vowels occurring in acoustically

short contexts as phonemically short.

However, the shifts in acoustic cue values are systematic and predictable once

the context is known, so using contextual information can help overcome these

problems - and listeners have been argued to do so in listening situations. There are

various ways this problem could be overcome, and corresponding ways the baseline

logistic regression model could be augmented. One is that listeners might build a

separate mapping between acoustics and category membership for each context they

encounter, such that lengthening contexts will have a boundary between short/long

vowels at a higher duration, and vice versa for shortening contexts. This idea is

referred to as adaptation, and we will return to it in later discussion, but do not
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directly study it in this dissertation. Instead, we focus on a second idea, referred to

as normalization.

The idea behind normalization is that instead of creating a different acoustic

boundary between short/long vowels for every context encountered, all acoustics

are mapped to the same context-independent acoustic space and then one boundary

is estimated in this context-independent space. This is done by estimating how

much any particular context lengthens or shortens the vowels, and then undoing

all lengthening or shortening processes. Returning to our example, normalization

would work by estimating that the vowels in phrase-final context are on average

100ms longer than vowels in phrase-medial context, and then essentially shifting

the distributions to compensate for this lengthening. Another way to think about

it is that each vowel is represented relative to the mean duration of vowels that

occurred in the same context. Acoustic cues that have been mapped to this context-

independent space are referred to as normalized cues.

In the top-down information accounts, the logistic regression in Equation (2.1)

was augmented by adding additional predictors based on the context of the sound in

question (e.g. the vowel quality, q). In normalization accounts, the logistic regres-

sion in Equation (2.1) is changed by performing a preprocessing step (which will be

described in detail below), and inputting normalized cues into the logistic regres-

sion, instead of unnormalized cues as before. That is, instead of adding predictors,

the existing predictors in Equation (2.1) (dunnorm, funnorm1 , funnorm2 , funnorm3 ) are

replaced with normalized predictors (dnorm, fnorm1 , fnorm2 , fnorm3 ). This means that

while information about the context a sound occurs in is a direct input to the logistic
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regression categorization model in top-down information accounts, it is not in nor-

malization accounts. Rather, in normalization accounts, the contextual information

is used to obtain normalized acoustic cues, which are ultimately the only input to

the categorization model.

The normalized cues of a sound are obtained by predicting its expected cue

values based on the context it occurs in, and then comparing these expected cue

values against its actual cue values.

cuenorm = cueunnorm − cueexpected (2.3)

The expected cues can be calculated from a sound’s contextual information

using various methods, and we make use of two such methods. First, we follow

past work, and train a linear regression to predict a sound’s acoustic cues from the

context the sound occurs in (Cole et al., 2010; McMurray and Jongman, 2011). The

second method involves training a neural network to predict a sound’s acoustic cues

from the context the sound occurs in. The benefit of this method is that it allows

for more powerful normalization functions that cannot be implemented with a linear

regression. Once the pre-processing step is complete and we have normalized all of

the acoustic cues relative to context, we can then replace the unnormalized cues

with normalized cues in the logistic regression categorization model.

P (long|dnorm, fnorm1 , fnorm2 , fnorm3 ) =
1

1 + eβ0+β1d
norm+β2fnorm

1 +β3fnorm
2 +β4fnorm

3
(2.4)
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This will again have the effect of shifting where the boundary between short

and long vowels falls. In particular, considering the example in Figure 2.3, the

vowels in phrase-final position are perfectly shifted from those in phrase-medial

position. Ignoring context will cause there to be a huge degree of variability and

overlap between short and long vowel acoustics in the overall distributions. However,

normalizing out this variability by shifting the two contexts so that they line up will

help. In particular, vowels that are acoustically quite long will be readily classified as

short because listeners could account for the fact that these vowels were lengthened

and undo this effect. That is, a long acoustic duration presented in phrase-medial

context may be perceived as long; however, when placed in phrase-final context,

that same vowel with the same acoustics may now be perceived as phonemically

short because it may be relatively short relative to other vowels that occur in that

same lengthening context.

2.3.3 Adaptation accounts

Another idea that has been proposed is that of adaptation (Dahan et al.,

2008; Kleinschmidt and Jaeger, 2015). Under ‘adaptation’ accounts, listeners build

a separate model for each context they encounter, so they have a different mapping

between acoustic space to categories for each context a sound occurs in. For example,

a listener using an adaptation strategy would build a separate model for utterance-

medial /o/ vowels, utterance-final /a/ vowels, etc. In doing so, adaptation allows

listeners to take into account systematic acoustic variability that stems from the
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context a sound occurs in, because they eliminate variability that results from the

context a sound occurs in. That is, these models would encode the fact that a

shorter absolute duration is required to classify a vowel as long in utterance-medial

position than in utterance-final position, without transforming the vowels’ acoustic

cues as is done in normalization. At the same time, adaptation can also encode

top-down information. Building a separate model for each encountered context

necessarily encodes relative frequency of occurrence of different sound categories

across different contexts, and this could bias perception. Therefore, adaptation

can take advantage both of factoring out systematic variability and using top-down

information. Because we wish to disentangle the relative contribution of these two

ideas, we do not study the efficacy of adaptation strategies here, but we return to

the idea of adaptation in the General Discussion in Chapter 6.

Crucially, we have seen that there are two different, non-mutually exclusive ways

that context could affect sound production, and the two ways that listeners could

make use of this contextual information are different - as top-down information

or via normalization. Top-down information strategies involve taking advantage of

how likely each category is to occur a priori and normalization takes advantage of

how different contexts are known to affect acoustic realizations. They both involve

making use of context, but do so at different stages of the process - one acting

as a pre-processing step to categorization, and the other directly helping in the

categorization. Nonetheless, they both produce similar changes in categorization,

which has led researchers to sometimes conflate them in the literature. In what
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follows, for each of the two strategies, we first review the evidence that has been

used to argue in favor of listeners making use of these strategies, and then we review

evidence that both ways of using context could potentially be helpful in Japanese.

2.4 Top-Down Information

2.4.1 Evidence for Top-Down Information Accounts

Experimental and computational work suggests that people can and do make

use of higher-level linguistic information in a top-down fashion - at least on synthe-

sized or carefully controlled laboratory speech. Researchers have long argued that

adults make use of higher-level structure to bias perception of bottom-up acoustics.

In various experiments, researchers have presented participants with stimuli that

have portions of removed or degraded acoustic information, and showed that par-

ticipants make use of contextual information to compensate. For example, Warren

(1970) had participants listen to a recording of a sentence with a single phone (and

its transitional cues) completely removed and replaced with a cough of the same

duration. The listeners all reported hearing the sound, even though its acoustics

were completely removed, and were unable to identify the position of the cough.

The fact that participants perceived the phone despite it not being there shows that

people are making use of linguistic context in speech perception.

Additional research has argued that top-down information is used even in

cases where the full acoustic information is available. In a classic study, Ganong

(1980) investigated how lexical information affected speech perception. He played
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participants acoustic continuua that ranged between a non-word and a word (e.g.

from dask to task, or from dash to tash), and had participants categorize the stop

as voiced (in these cases /d/) or voiceless (in these cases /t/). He found that the

adult participants were biased towards choosing the categorization that resulted in

a word. He argued that this showed that listeners were not simply relying on the

acoustic cue of the target sound (in this case, voice onset time), but were also using

context in a top-down fashion to constrain the categorization decision they made.

In another study, Brown and Hildum (1956) played participants recordings

of CCVC syllables, where the initial consonant cluster either violated phonotactic

constraints of English (e.g. /tl/) or did not violate phonotactic constraints of English

(e.g. /gl/). The researchers asked participants to identify what they had heard and

found that participants made more identification errors when the stimuli violated

phonotactic constraints than when they did not. The researchers argued that the

participants were making use of top-down phonotactic information when processing

the acoustics they heard. A similar finding was replicated by Massaro and Cohen

(1983).

Particularly relevant to our test case, there is experimental evidence from

Moreton and Amano (1999) that Japanese speakers may make use of higher-level

contextual information to make decisions about vowel length. Japanese words can be

divided into four “strata,” depending on their historical origin. Moreton and Amano

(1999) take advantage of two key differences between two of these strata - namely

between Foreign words, which were recently borrowed into Japanese usually from

European languages, and Sino-Japanese words, which were borrowed from Chinese
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languages. First, long /a/ is found in Foreign words, but not Sino-Japanese words.

Second, Sino-Japanese and Foreign sections of the Japanese lexicon have different

frequency distributions over consonants. For example, /p/ occurs in Foreign words,

but very rarely in Sino-Japanese words, while /hy/ occurs in Sino-Japanese words,

but very rarely in Foreign words. Taken together, an /a/ vowel that occurs with

/hy/ is almost certainly phonemically short (the presence of /hy/ suggests it occurs

within a Sino-Japanese word, which do not tend to have long vowels), while an

/a/ vowel that occurs with /p/ could also be long. In a series of experiments,

the researchers found that Japanese speakers made use of these regularities when

identifying vowels. The Japanese participants were less likely to identify an /a/

vowel as long if it occurred next to consonants that were more common in the Sino-

Japanese strata (in which long /a/ does not occur), but more likely to identify an

/a/ vowel as long if it occurred next to consonants that were more common in the

Foreign strata. These findings suggest that participants are making use of top-down

information.

The idea of using top-down linguistic information has been well-studied in

the adult speech perception literature, and recent studies with children have also

found evidence that infants are processing higher-level information (Bergelson and

Swingley, 2012). Feldman et al. (2013b) showed that both adults and infants used

lexical context while acquiring sound categories. In particular, they showed that

both adults and infants were more likely to assign acoustically similar vowels (/O/

vs. /A/) to different sound categories when they were not exposed to minimal pairs

between them (i.e. when they did not occur in the same phonetic contexts) than

30



when they were exposed to minimal pairs (i.e. when the vowels occurred in identical

phonetic contexts). Feldman et al. (2013a) showed that a computational model that

made use of information about the word frames that sounds occurred in resulted in

an improvement in phonetic category learning over models that did not incorporate

lexical information.

Overall, the idea that higher-level information is influencing speech percep-

tion and language acquisition has been replicated many times over, and is mostly

accepted in the field (e.g. Feldman et al., 2013b; Ganong, 1980; Marslen-Wilson

and Warren, 1994; McQueen et al., 1999; Miller et al., 1951; Rubin et al., 1976;

Swingley, 2009; Swingley and Aslin, 2007; Thiessen, 2007). Most of the support for

this idea, however, comes from work on simplified speech data. Furthermore, the

model from Feldman et al. (2013a) was recently applied to the problem of Japanese

vowel length we study here, and was found to be ineffective on spontaneous speech

(Antetomaso et al., 2017). Therefore, there is some recent doubt that this strategy

could be helpful on spontaneous speech. However, phonemically short vowels and

phonemically long vowels have been shown to differ in the contexts that they are

likely to occur in in Japanese, so there is potentially signal that would be helpful

to a listener relying on such a strategy. We discuss this evidence in the following

section.
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2.4.2 Evidence that there is top-down information in Japanese

With the exception of Moreton and Amano (1999) and Antetomaso et al.

(2017), there has not been much work on studying the role of top-down informa-

tion in the acquisition and processing of Japanese vowel length. However, there is

independent evidence that there are systematic differences between short and long

vowels in the types of contexts/environments they occur in. That is, there are pat-

terns that listeners could make use of to better process and learn the vowel length

contrast.

First, different vowel qualities have different relative probabilities of short and

long vowels, as seen in Figure 2.1, mainly due to the frequency of specific lexical

items they occur in. In particular, as discussed previously, long vowels comprise

a greater proportion of /o/ vowels than /a/ vowels. Therefore, the quality of the

target vowel could bias listeners towards perceiving a vowel of a particular length.

Short and long vowels also differ in the types of sounds they co-occur with.

As reviewed in the previous section, various strata of the Japanese lexicon differ in

how commonly they make use of long vowels, and they also differ in the types of

consonants they include. These facts result in distributional differences in the types

of consonants that short and long vowels co-occur with, and participants could make

use of these patterns to bias perception - and they do, as reviewed in the previous

section (Moreton and Amano, 1999). Similarly, in some dialects of Japanese, long

vowels do not occur before nasals, due to phonotactic constraints. Vowels also tend

to be phonologically short when adjacent to long consonants. Therefore, the adjacent
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sounds of a vowel could potentially provide useful, disambiguating information about

the length status of a target vowel (Isei-Jaakkola, 2004).

Finally, prosodic position could also be helpful, as phonemically long vowels

are less likely to occur phrase-finally. As a result, listeners could exploit the prosodic

position of the vowel to help determine the length of a vowel: they could be biased

towards classifying a phrase-final vowel as short.

Overall, there are various patterns due to phonological, historical, or lexical

reasons that result in differences in how likely short versus long vowels are to occur

in particular contexts. Listeners could exploit this information in a top-down fashion

to categorize and learn the vowel length contrast. We test how effective this strategy

could be by applying it to the Japanese vowel length contrast, and we propose a

learning account that takes advantages of these systematic regularities in Chapter

5.

2.5 Normalization

The second strategy we consider is normalization. We first review literature

that has argued in favor of listeners making use of normalization. We then review

evidence suggesting that systematic differences in how vowels are produced across

contexts introduce variability and overlap into the overall distribution of Japanese

vowels.
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2.5.1 Evidence for Normalization

A body of experimental work has argued that listeners can and do normalize

when making categorization decisions - at least on the carefully controlled labora-

tory speech or synthetic speech that is typically studied (but see Johnson (1997),

Johnson (2006), Pierrehumbert (2002), which argue against normalization). The

work in support of normalization mostly relies on findings showing that listeners’

perception of a particular sound can change by modifying the context it appears in.

As we saw, modifying the context can also change listeners’ perception if they are

relying on a top-down information strategy. Therefore, this evidence is insufficient

to argue uniquely for normalization as a useful strategy when the contextual factor

being normalized out could also prove helpful in a top-down information account

(e.g. neighboring sounds, prosodic position). However, for contextual factors that

do not influence which category is more likely to be produced (e.g. speech rate

and speaker), there is extensive evidence that that listeners factor out systematic

variability from the acoustics of lab speech, though these studies do not necessarily

pinpoint normalization as the involved mechanism (as opposed to adaptation, for

example).

Nearey (1978) studied synthetic speech and showed that listeners were able

to factor out systematic variability resulting from speaker differences. In his study,

phonetically trained listeners identified a range of synthetic test vowels that varied

in their first and second formants, that were presented either following a vowel

synthesized with formants that corresponded to typical male speech (i.e. relatively
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low formants) or following a vowel synthesized with formants that corresponded to

typical child speech (i.e. relatively high formants). As the context changed from

‘male speech’ to ‘child speech’, listeners shifted all of their category boundaries

upward in F1 and F2. This is strong evidence that listeners factor out systematic

variability stemming from speaker, and this type of result has been repeatedly found

(e.g Strand and Johnson, 1996).

Mann and Repp (1980) studied synthetic speech and argued that listeners also

take into account coarticulatory influences. They played participants a fricative

from the /S/ to /s/ continuum, followed by either the rounded vowel /u/ or the

unrounded vowel /a/, and asked participants to identify the fricative. They found

that participants were more likely to identify the fricative as /s/ when it was followed

by /u/ than when it was followed by /a/. Fujisaki and Kunisaki (1978) found

a similar effect with Japanese speakers. Both studies interpreted this finding as

evidence for participants taking into out systematic variability.

Various studies have also shown that listeners take into account the influence

of speech rate. These findings are particularly relevant to the Japanese vowel length

case, because they offer evidence that participants using durational cues also take

into account systematic variability due to context. Using synthesized speech, Fu-

jisaki et al. (1975) studied Japanese listeners’ perception of the contrast between

short and long consonants as a function of contextual speech rate. They played

participants synthesized syllables ranging from /ise/ to /isse/ and found that the

absolute duration at which participants’ percept changed from a short consonant to

a long consonant was affected by the speech rate of the utterance.
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In the realm of English vowels, which exhibit durational differences that cor-

relate with quality differences (e.g. the difference between /i/ and /I/), Ainsworth

(1974) studied synthesized speech and found that the speech rate of a precursor

phrase affected whether listeners reported hearing a short vowel or a long vowel

as the target. Specifically, when a vowel was preceded by three vowels of a given

duration, participants were more likely to identify the test vowel as a longer vowel

(e.g. /i/) if preceded by acoustically short vowels, and more likely to identify the

test vowel as a short vowel (e.g. /I/) if preceded by acoustically long vowels. This

was especially true for test values with ambiguous formant values and intermediate

durations.

Verbrugge et al. (1976) studied controlled laboratory speech and asked par-

ticipants to identify the vowel of a rapidly articulated test /pVp/ syllable in the

context it was originally uttered, in isolation, or in a different precursor phrase that

was produced by the same speaker. They found that participants correctly identified

the vowel in its original context, but when the syllable was presented in isolation

or in the misleading context, participants perceived a reduced/shortened version of

the vowel (i.e. /I/ instead of /i/). They argued that participants were using the

context to factor out the effect of speech rate and correctly perceive an acoustically

short long vowel as long. When the context was removed or made misleading, par-

ticipants were unable to take into account speech rate and incorrectly perceived the

acoustically short long vowel as short.

These findings have been extended to voicing distinctions, as well as /b/-/w/

distinctions, and recent work has even suggested that changing the speech rate

36



of neighboring consonants can cause listeners to not hear or insert entire function

words (e.g. Ainsworth, 1973; Dilley and Pitt, 2010; Miller and Liberman, 1979;

Minifie et al., 1977; Summerfield, 1981a). Overall, the general finding that listeners’

perceptions of a sound (or even a word) change as a function of the context it occurs

in has been replicated many times (e.g. Crystal and House, 1990; Miller, 1981; Miller

et al., 1984,9; Newman and Sawusch, 1996; Pickett and Decker, 1960; Sawusch and

Newman, 2000; Wayland et al., 1992,9).

However, as mentioned above, recent work has also suggested that some of the

experimental findings that have been taken as evidence for factoring out system-

atic variability may actually be support for participants making use of top-down

information. In a classic study, Port and Dalby (1982) argued that listeners use

durations of neighboring sounds, in addition to utterance speech rate, to calibrate

(or normalize) the durational cues of the target sound. They ran several experi-

ments studying English listeners’ voicing judgments in synthesized minimal pairs

like rapid versus rabid. They showed that the duration of a vowel neighboring a

stop could affect listener’s perception of whether that stop was voiced or voiceless

(Port and Dalby, 1982), and similar findings have been reported in other research as

well (e.g. Boucher, 2002; Summerfield, 1981b). These findings have classically been

interpreted as evidence that listeners factor out the effect of speech rate, and use

the relative duration of the stop’s closure duration to the neighboring vowel to do

so. However, Toscano and McMurray (2012) argued that these same findings were

consistent with the alternative idea that listeners are using neighboring vowel dura-

tion as a direct cue to the voicing of the target stop (parallel to closure duration or
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VOT), rather than normalizing for it. Although this reinterpretation has been dis-

cussed with reference to a particular set of studies (Boucher, 2002; Port and Dalby,

1982; Summerfield, 1981b), it raises the interesting possibility that many other of

the studies arguing for normalization could also be used as evidence for a top-down

information account, rather than for normalization. In particular, this holds true

for all studies where the contextual factor that is normalized out could also prove

helpful in a top-down information account - for example, neighboring sounds.

Experimental findings in support of normalization have been supplemented by

recent computational work, which has generally found that models that normalize

for systematic variability achieve better sound category identification results, and

better match human performance than models that do not.

McMurray and Jongman (2011) showed that a model that normalized for

multiple contextual factors better matched human behavior than a model that did

not. They took lab recordings of the 8 English fricatives /f, v, T, D, s, z, S, Z/

produced in the initial position of a CVC syllable, where the vowel was one of six

vowels, and the final consonant was always /p/. They had measurements of 24

cues from these tokens (Jongman et al., 2000). They presented a subset of these

recordings to listeners and asked them to identify the syllable-initial fricative. They

then used a method from Nearey (1990) and Cole et al. (2010), that we also make

use of in Chapters 3-4, to compare whether normalized or unnormalized cues led

to more human-like identification in their model. They used logistic regression as

their categorization model. The model was trained to identify the fricative, from a

set of either normalized or unnormalized acoustic input cues. In the unnormalized
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version, the input to this categorization model was simply the absolute acoustic

information. In the normalized version, they used linear regression to factor out

the influence of speaker and neighboring vowel on these acoustic cues, and used

the normalized cues as input into the categorization model. They found that the

version that used normalized cues yielded a better match to human categorization

than the version that used unnormalized cues, which they use as support that people

are normalizing. Many other researchers have found a better match with human

performance when using acoustic representations that take into account predictable

variability (e.g. Apfelbaum and McMurray, 2015; Cole et al., 2010; Richter et al.,

2017); however, these models have, for the most part, only been applied to controlled

and well-enunciated lab speech.

While most of the work on taking into account systematic variability has

been done in the context of adult speech perception, there has been some work

looking at how factoring out systematic variability interacts with the acquisition

problem, again through normalization. Dillon et al. (2013) considered the problem

of learning the phonological system of Inuktitut, using elicited speech. Inuktitut

has three vowels (/i/, /u/, /a/), but these vowels are lowered when followed by

uvular consonants. The researchers found that a computational model that learned

from the unnormalized vowel formants failed to learn the correct sound categories

of Inuktitut (learning six categories instead), but when they subtracted out the

influence of the neighboring uvular and used these normalized vowel formants as

input to the model, it was able to learn the correct three categories of Inuktitut,

just as infants do, suggesting that normalization is a possible strategy that infants
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could be using in learning the sounds of their language.

Because most cognitive research has focused on carefully controlled laboratory

research or synthesized speech, and because many of the empirical studies support-

ing normalization could also be in support of top-down information accounts, it is

hard to draw strong conclusions about the efficacy of normalization in naturalistic

listening environments. Chapter 3 further tests its efficacy in naturalistic listening

situations.

2.5.2 Evidence that factoring out systematic variability might be use-

ful in Japanese

In this section, we present evidence that there are factors other than phono-

logical length that influence the duration of Japanese vowels that could cause the

overlap between short and long vowels. This is variability that normalization could,

in principle, help reduce.

First, there is evidence that the quality of a vowel systematically affects du-

ration. Hirata (2004) had Japanese participants produce disyllabic non-words in a

carrier phrase and found that the vowel /e/ tended to be acoustically longer than

/o/ and /u/. In addition, Bion et al. (2013) analyzed a corpus of spontaneously

produced infant-directed speech and found that low vowels were acoustically longer

than high vowels.

Japanese vowels are also acoustically shorter in fast speech than slow speech,

all else being equal. Hirata (2004) had participants produce Japanese sentences
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(including non-words) at three different speech rates - slow, normal, and fast speech -

and found that as the speech rate quickened, the vowels became acoustically shorter.

There is evidence that the prosodic position of a sound influences the duration

of a vowel, as well. There are various prosodic phrase types in Japanese - utterances

are made up of intonational phrases (IPs), which are, in turn, made up of accen-

tual phrases (APs) - and a vowel’s position relative to these phrasal units affects

its duration. Bion et al. (2013) found that in spontaneous infant-directed speech,

vowels are acoustically longer when followed by an intonational phrase boundary,

but acoustically shorter when followed by a word boundary that is not an intona-

tional phrase boundary. Martin et al. (2016) calculated the average mora duration

in various prosodic positions in spontaneously produced adult- and infant-directed

speech. They found that the average mora duration increases, moving from more

phrase-medial to more phrase-final positions (from phrase-medial, to AP-final, to

IP-final, to utterance-final position), which suggests that segments are acoustically

lengthened phrase-finally.

Some work has also shown that neighboring sounds can influence the dura-

tion of a vowel. For example, several studies have found that vowels tend to be

acoustically longer before a geminate than a singleton consonant (Fukui, 1978; Han,

1994; Kawahara, 2006). Other work has suggested that accented vowels tend to be

acoustically longer than unaccented vowels (Hirata, 2004).

Finally, although these factors have not been studied in Japanese, work in

other languages suggests sounds may be acoustically lengthened at the beginning of

a phrase, in addition to phrase-finally (Keating et al., 2004; Rakerd et al., 1987), that
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sounds may be acoustically shorter in function words rather than content words, and

that other features of neighboring consonants, for example voicing, may affect the

duration of the target vowel (House, 1961; Luce and Charles-Luce, 1985; Umeda,

1975; Van Santen, 1992).

In summary, there are many factors that influence the acoustic production

of Japanese vowels other than their phonological length. This suggests that there

is systematic variability that could be factored out, so a normalization strategy

could be effective. We will test how effective this strategy could be in learning and

processing the vowel length contrast.
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Chapter 3: Top-down information vs. Normalization on Spontaneous

Speech

In this chapter, we computationally implement top-down information and nor-

malization strategies, as discussed, and test their effectiveness on separating short

and long vowels. We provide some of the first evidence that, just like on controlled

lab speech, top-down information accounts are helpful at disambiguating short and

long vowels. However, contrary to expectations, we find that normalization, at least

as implemented, is not helpful at separating short and long vowels. This finding

forms the basis for further study of why normalization does not work in Chapter 4,

and how top-down information could be helpful in acquisition in Chapter 5.

3.1 Top-down information is effective for the Japanese vowel length

contrast

We first test how helpful using contextual information as top-down information

can be in the acquisition and processing of the Japanese vowel length contrast, by

testing to what extent it helps separate short and long vowels in spontaneous speech.

To implement this top-down information strategy, we include contextual factors as
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additional independent variables in the logistic regression categorization model, as

described previously. The idea is that the model will learn regularities between

contextual factors and the phonological length of a vowel; that is, it will use these

factors in a top-down fashion to bias categorization decisions. We compare various

logistic regression models that make use of higher-level contextual factors to the

baseline logistic regression that only uses unnormalized duration and formants.

3.1.1 Data

The data we use come from the RIKEN Japanese Mother-Infant Conversa-

tional Corpus (R-JMICC) (Mazuka et al., 2006). It is spontaneously produced

child-directed speech. Mazuka et al. (2006) collected the data by recording the

speech of 22 mothers who visited the lab with their 18- to 24-month old children.

The mothers first played with their child with picture books for about 15 minutes.

They then played with their child with toys for about 15 minutes. Finally, a female

experimenter came into the room and talked to the mother. The mothers’ speech

in the first two parts, where they interacted only with their child, was labelled as

child-directed speech. The mothers’ speech in the third part, where they interacted

with the experimenter, was labelled as adult-directed speech. The corpus consists

of about 14 total hours of speech, and is labelled for both phonetic and prosodic

information.

We extracted information about each of the vowels produced by the mothers,

but excluded singing, coughing, devoiced vowels, diphthongs, and any segments that
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the researchers could not transcribe. We also excluded any vowels that were not

labelled with prosodic information. This left 92003 total vowels, 30035 of which

were in the adult-directed section of the corpus and 61968 of which were in the

child-directed section of the corpus. All of the analyses we report were run on the

child-directed part of the corpus; however, we also ran these analyses on the adult-

directed parts (the results are described in Appendix A) and did not find substantial

differences in model performance.

We extracted both acoustic information and contextual information about each

vowel, as described below. The list of the features we extracted is also compiled in

Table 4.1.

3.1.1.1 Acoustic cues

• Duration: We extracted the duration of each vowel in milliseconds.

• Formants: We extracted the first three formants, and used these as direct

acoustic cues to vowel length. While duration is thought to be the primary

acoustic predictor of vowel length in Japanese, previous work has shown that

spectral information can improve categorization performance (e.g. Arai et al.,

1999; Kinoshita et al., 2002; Lehnert-LeHouillier, 2010), so we included the

formants in these analyses as direct predictors of vowel length. The formants

were automatically extracted using Praat (Boersma, 2001) in previous work

on this corpus (Antetomaso et al., 2017) and we used the formant values at

the midpoint of the vowel.
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R-JMICC Spontaneous
Vowel Quality

Speaker
Previous Sound
Following Sound

Prosodic Position of Word (2 factors)
Prosodic Position of Vowel (12 factors)

Accented
Previous Sound Duration (Speech Rate)
Following Sound Duration (Speech Rate)

Condition (Toys or Books)
Part of Speech

Table 3.1: The full set of contextual factors available for the R-JMICC dataset,
with factors that were included in the normalization upper-bound shown in bold (as
described in the sections on normalization methods). For the R-JMICC corpus, these
are taken from the linear regression normalization method, which outperformed the
neural network normalization method.

3.1.1.2 Contextual Factors

In addition to extracting acoustic information, we also extracted contextual

information about each vowel that have been shown to be relevant for normalization

or top-down information accounts:

• Vowel quality: This was a categorical variable that took one of five values

(/a/, /e/, /i/, /o/, /u/) and was taken from the coding of what the mother

said.

• Speaker: This was a categorical variable, with 22 different possible speaker

values.

• Neighboring sounds: We extracted the identity of the previous sound and

the following sound (both categorical variables), as labelled by the phonetic

transcription. This was marked as ‘#’ if the vowel was preceded by silence.
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Because the vowel length contrast is thought to be learned later than other

types of contrasts (Sato et al., 2010), it is reasonable to assume that infants

can make use of the other contrasts in their language to learn vowel length.

• Prosodic position: We represented prosodic position in three different ways.

First, we extracted a categorical variable that ranged from 1 to 4, which indi-

cated whether the word that the vowel occurred in was not phrase-final at all

(1), was AP-final (at the end of an accentual phrase) (2), was IP-final (at the

end of an intonational phrase) (3), or was utterance-final (4). Second, we ex-

tracted a second categorical variable that ranged from 1 to 4, which indicated

whether the word that the vowel was in was not phrase-initial (1), was AP-

initial (2), was IP-initial (3), or was utterance-initial (4). Third and finally,

we extracted a vector of length 12, which represented the prosodic position of

the vowel itself in a bit more detail. Namely, each element of the 12-long vec-

tor was a binary categorical variable, with three elements of the 12 elements

corresponding to whether the vowel itself was word-initial, word-medial, word-

final, three to whether the vowel itself was AP-initial, AP-medial, AP-final,

three to whether the vowel itself was IP-initial, IP-medial, IP-final, and three

to whether the vowel itself was utterance-initial, utterance-medial, utterance-

final. That is, while the first two categorical variables represented the prosodic

position of the word the vowel was in, and would, thus, have the same value

for every vowel in a given word, the vector represented the prosodic position

of the vowel itself.
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• Accented?: This was a binary variable that took a value of 1 if the vowel

was accented and 0 if it was not.

• Speech rate: We extracted the duration of the immediately preceding and

the immediately following sounds, as proxies for speech rate. If the vowel was

immediately preceded (or followed) by silence, we did not use the duration

of the silence, but instead used the average preceding (and following) sound

duration from all other vowels that were not preceded (or followed) by silence.

• Condition of the vowel: This was a categorical variable with a value of

‘B’ if the vowel occurred when mother and child were playing with books and

‘T’ if it occurred when mother and child were playing with toys. We include

this to account for the possibility that the mothers’ speech was consistently

different (e.g. more or less clear) while playing with books than toys.

• Part of speech: This was a categorical variable taken from the annotation in

the corpus. In our simulations, we either use full part-of-speech information,

or simplified part-of-speech information, which only considers the distinction

between function and content words. We vary this because we want our results

to be applicable to language acquisition. Infants show evidence of distinguish-

ing function vs. content words using acoustic correlates as early as birth (Shi

and Werker, 2001; Shi et al., 1999), so it is relatively likely that they can make

use of this knowledge in learning the contrast. However, it is less clear that

they could make use of full part-of-speech information for this task, as cross-

linguistic evidence suggests that infants have much this knowledge only after
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Japanese infants have learned the vowel length contrast (Höhle et al., 2004;

Mintz, 2006; Shi and Melançon, 2010). That being said, He and Lidz (2017)

show evidence that infants know the distinction between nouns and verbs as

early as 12 months, so while infants might not have complete part-of-speech

information, they may be able to use more than just the distinction between

function and content words for acquiring the vowel length contrast. Testing

function vs. content word distinctions in addition to full part-of-speech allows

us to determine whether our qualitative results hold true regardless of what

infants know.

3.1.2 Methods

To test the efficacy of using contextual information in a top-down fashion, we

compare the results of four models - divided into three types of models. The baseline

model is a logistic regression that learns to predict short/long from only a vowel’s

absolute duration and formant values (Baseline). The next two models are logistic

regressions that learn to predict short/long from contextual factors listed previously

and in Table 4.1, in addition to absolute acoustic cues (Acoustic and Top-Down

Information Models). The first of these makes use of all of the contextual factors

listed in Table 4.1, with part-of-speech simplified to just indicate whether the word

was a function or content word. The second of these makes use of all of the contex-

tual factors, including detailed part-of-speech, exactly as annotated in the corpus.

Finally, we test how much signal just the contextual factors provide, by running a
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logistic regression model that learns to categorize vowels as short/long using only

the contextual factors, without any access to acoustic information (Top-Down In-

formation Model Without Acoustics). As we have seen, the absolute acoustics are

relatively bad predictors of vowel category. Studying the results of this model will

allow us to understand how much of the work context does. That is, it will reveal

how many vowels can be identified just by the context they occur in, without even

turning to acoustic information, or, in other words, how much information is lost

when acoustics are removed.

We split the dataset into a training subset (90% of the data) and a test set

(the remaining 10% of the data), keeping the proportions of short and long vowels

equal in the two sets. The training and test sets consisted of the same tokens for

all of the simulations run in this chapter, though what information about the vowel

was input into the model varied depending on which type of model was being run.

Once the logistic regression equations were estimated from the training set,

we simply applied each equation to the vowels in the unseen test set to make a

prediction about whether that vowel was short or long, as described previously. We

compared the models’ predictions to the true labels, which allowed us to assess how

effective this strategy could be at separating short and long vowels on naturalistic

speech. We report two types of evaluation metrics for each tested model.

First, we report overall categorization accuracy, which is simply the percentage

of all of the vowels in the test set that the model categorized correctly. Relatedly,

we report categorization accuracy on just the short vowels in the test set and cate-

gorization accuracy on just the long vowels in the test set.
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Second, we report the Bayesian Information Criterion (BIC) for each model,

computed over the training set. The BIC is a common metric used to select between

different models (Schwarz, 1978). The benefit of the BIC is that it balances how well

the model works (the likelihood of the model given the data) with how complicated

the model is (how many parameters it uses), so it will prefer simpler models, all else

being equal. The BIC is calculated as follows and lower values are better:

BIC = −2 ∗ ln(L) + k ∗ ln(n) (3.1)

where L is the likelihood of the model given the data, k is the number of parameters,

and n is the number of samples.

We ran each model ten times and averaged performance across these 10 runs.

3.1.3 Results

The results from this analysis on child-directed speech are summarized in

Table 3.2. The corresponding results on adult-directed speech can be found in

Table A.1 in Appendix A. They are not discussed in the main text, but the results

are qualitatively similar.

3.1.3.1 Baseline Model

Our baseline model simply used absolute duration and formant values to pre-

dict the vowel category of a sound. This model reached an overall accuracy of 91.1%.

It correctly categorized 99.1% of short vowels, and 12.2% of long vowels. It had a
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BIC of 28716. Because 90.9% of vowels in the R-JMICC corpus are short, this model

performs comparably to a model that simply categorizes every incoming vowel as

short, and has failed to learn anything meaningful about the distinction between

short and long vowels.

3.1.3.2 Acoustic and Higher-Level Contextual Information Model

The following models used contextual factors as direct predictors to category

membership, in addition to using absolute duration and formant values. When part-

of-speech was simplified to the distinction between function and content words, the

model reached an overall accuracy of 95.2%, correctly classifying 98.8% of short

vowels and 59.0% of long vowels. The BIC was 15193. When we included full part-

of-speech information, the model achieved an overall accuracy of 95.7%, correctly

classifying 98.8% of short vowels and 63.9% of long vowels. The BIC was 13106.

Including additional part-of-speech information led to performance improvements,

but both models substantially outperformed the baseline model.

3.1.3.3 Higher-Level Contextual Information Model Without Acous-

tics

In the final model, we only used contextual factors (including full part-of-

speech information) as direct predictors of category membership. That is, the model

did not have access to any acoustic information and could only make use of informa-

tion about how likely each category is to occur a priori. Even without any acoustic
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information, this model achieved an overall accuracy of 94.5%, correctly classifying

98.6% of short vowels and 54.0% of long vowels. The model BIC was 16301. That is,

although there was a slight dip in performance when we removed acoustic informa-

tion, top-down information models can still perform well even without any acoustic

information, suggesting a large role for context.

3.1.4 Discussion

In these analyses, we investigated the hypothesis that infants and adults learn

and process the Japanese vowel length contrast by combining bottom-up acoustic

cues with top-down expectations about which category is likely to occur in a par-

ticular context. To implement this hypothesis, we included contextual factors listed

in Table 4.1 as direct predictors of category membership in the logistic regression

model (in addition to absolute acoustic cues), and compared its performance against

a model that only makes use of absolute acoustic cues as predictors.

We found that including these additional contextual factors as predictors dras-

tically improved accuracy and lowered BIC scores, suggesting that this method does

quite well at separating short vowels from long vowels. Given the relatively small

set of factors we used - for example, the only word-level information we used was

part-of-speech - it is quite impressive that the model achieved this level of perfor-

mance, and it suggests that this may be a hypothesis worth pursuing as a way that

infants could learn and adults could process the Japanese vowel length contrast.

In fact, although excluding acoustic information did hurt performance, a model
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relying on contextual information alone still performs very well. Even without any

acoustic information, this model can correctly identify nearly all short vowels and

more than half of all long vowels. This illustrates just how much signal there is in

contextual information.

Of course, these are supervised models that have much more information avail-

able to them than infants learning language. But it does reveal that there is signal

in the input that infants could be using, and we return to this in Chapter 5, where

we propose a particular way that infants could make use of this information to learn

phonetic contrasts. Certainly this work shows that top-down information could be

very useful in adult speech perception. In the following section, we test the efficacy

of normalization on this same problem of separating short and long vowels, and

show that it does not perform nearly as well.

3.2 Normalization is ineffective for the Japanese vowel length con-

trast

In this section, we test to what extent normalization can help in the acquisition

and processing of the Japanese vowel contrast. To test whether normalization could

be helpful, we compare models that use normalized acoustic cues to models that use

unnormalized acoustic cues. If normalization is helpful, we would expect normalized

cues to better categorize vowels as short or long than unnormalized cues.
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3.2.1 Data

The data are exactly the same from the first analysis, but the contextual

factors listed in Table 4.1 are normalized out of the acoustics (as described below

in the Methods section), instead of being included as independent predictors in the

logistic regression categorization model. The same training and test sets are used

as in the previous analysis, which allows us to directly compare results.

3.2.2 Methods

In testing the efficacy of normalization on spontaneous speech, we implement

and test two normalization methods. First, we apply methods from previous work

(Cole et al., 2010; McMurray and Jongman, 2011; Nearey, 1990) to the Japanese

vowel length contrast, by using linear regression to normalize out systematic variabil-

ity from vocalic acoustic cues. Second, we implement normalization using a neural

network, which has the advantage over past implementations that it can represent

more powerful, non-linear normalization functions. We then input the unnormalized

or resulting normalized acoustic cues into a logistic regression model to categorize

the vowels as either short or long.

3.2.2.1 Normalization Implementation

We use either unnormalized or normalized acoustic cues as predictors of vowel

length. Using unnormalized cues simply involves representing the absolute acoustic

cues, so this section will focus on how we implement normalization. The basic idea
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underlying both of the implementations we use is to learn a function that predicts

acoustic features (duration and formants) of a vowel from the context that a vowel

occurs in (i.e. vowel quality, speaker, prosodic position). Once we learn this func-

tion, we can make a prediction about a vowel’s duration and formants based on

everything we know about where it occurs. We can then use the residuals, or the

difference between how long we expect the vowel to be given all of the factors and

how long it actually is, to represent a normalized version of this vowel. That is,

we have excluded the influence of contextual factors and have recoded the acoustic

cues in terms of their difference from expected values. Once we learn this equation

from the training set, we recode both the training set and the test set in normal-

ized terms. We use two different methods for representing the function between

contextual factors and acoustic cues. The first - linear regression - is applied from

Cole et al. (2010), McMurray and Jongman (2011), and Nearey (1990), and follows

from previous work. The second uses neural networks to implement the function

from contextual variables to acoustic cues. The benefit of this method is that it

can represent non-linear interactions between the contexts and the acoustic cues,

and therefore, is more powerful than a linear regression. It is important to note

that there are other normalization implementations (e.g. Dillon et al. (2013)) that

may function differently. In this paper, we limit our analyses to two normalization

methods, but we discuss how our results generalize to other ways of normalizing in

Section 6.3.
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Linear Regression as Normalization Following previous work, we first use

linear regression to factor out systematic variability (Cole et al., 2010; McMurray

and Jongman, 2011; Nearey, 1990). Linear regression models represent a relationship

between a continuous dependent variable and a set of independent variables. In this

particular case, we try to estimate an equation that can predict what the acoustic

features (duration and formants) of a vowel should be from its context. Each of the

factors (e.g. vowel quality, speaker, prosodic position from Table 4.1) is weighted

and combined linearly to yield a prediction. That is, given the factors x1, x2, ..., xn,

linear regression models take the form:

acoustic cue = β0 + β1 ∗ x1 + β2 ∗ x2 + ...+ βn ∗ xn (3.2)

Learning this function involves learning an intercept (β0), as well as a weight for

each cue (β1...βn). The data it learns from consist of the information we want to

factor out of the acoustic cues, as well as the known acoustic cue values of the vowel,

and weights are learned so as to minimize the error in predicting the duration of

the vowel. Once we learn this equation from the training set, we recode both the

training set and the test set in normalized terms - by taking the difference between

the predicted acoustic cues and the actual acoustic cues.

Neural Networks as Normalization The linear regression models we use do not

include interactions, even though previous work did. This is because our analyses

use a total of 23 contextual factors, so considering all possible interactions would be
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computationally difficult. To test the possibility that our linear regression without

interactions was insufficient to handle spontaneous speech, we also implemented

normalization using a neural network. We train a neural network on the training

set to predict the duration and formants of a vowel token from its context. Once

we have a trained neural network, we use it to predict expected acoustic cues for

each vowel, subtract them from the vowel’s true acoustic values, and input this into

a logistic regression model.

We use a simple feed-forward neural network. We use five-fold cross validation

on the training data to tune parameters of the neural network. We manipulate

the number of hidden layers, the batch size, the number of nodes in the hidden

layers (either keeping this constant for all of the layers or decreasing the number

of nodes progressively deeper into the network), learning rate, number of epochs,

and regularization factors. We choose the parameters that minimize average mean

squared error on the training set. We then recode both the training set and the test

set in normalized terms - by taking the difference between the predicted acoustic

cues and the actual acoustic cues.

3.2.2.2 Logistic Regressions

To test the efficacy of normalization, we compare seven total logistic regression

models, which can be grouped into three types of models. The first model is the

baseline, which as before uses absolute (unnormalized) duration and formants to

predict category membership (short or long). We compare the baseline against
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three models that make use of normalized acoustic cues obtained by running a

linear regression normalization, as well as three models that make use of normalized

acoustic cues obtained by running neural network normalization. That is, for each

type of normalization (linear regression and neural network), we run three models.

First, we regress out all of the contextual factors listed in Table 4.1 with part-

of-speech in simplified form (i.e. function/content word distinctions). Second, we

regress out all of the contextual factors listed in Table 4.1 including full, detailed

part-of-speech information. In both of these models, the normalization function is

trained completely independently of the subsequent logistic regression. That is, the

normalization function is not trained to maximize categorization performance. For

the third and final model, however, we choose the subset of contextual factors from

Table 4.1 that maximizes categorization performance, which gives us an estimate

of the upper bound on normalization performance. This is useful because it is

possible that we are wrongly including some factors in the first three models and

underestimating the efficacy of normalization. Running this model allows us to see

what the best normalization performance could be. We run these three models with

both linear regression and neural networks, which yields six total models that we

compare against our baseline.

3.2.3 Results

A summary of the results from infant-directed speech is presented in Table

3.3. Corresponding results from adult-directed speech are present in Table A.2 in
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Appendix A.

3.2.3.1 Unnormalized Model

The baseline model is identical to the baseline model from the previous analysis

and uses unnormalized duration and formants as predictors of category membership,

without running any linear regression models. As a reminder, this logistic regression

model reached an overall accuracy of 91.1%. It correctly classified 99.1% of short

vowels and 12.2% of long vowels. Its BIC was 28716.

3.2.3.2 Linear Regression Normalization Models

The following models used linear regression to normalize duration and for-

mants, and used normalized duration as predictors of category membership. When

all of the contextual factors with simplified part-of-speech (function vs. content

word) were regressed out, the model had an overall categorization accuracy of 91.2%,

correctly classifying 99.5% of the short vowels and 8.3% of the long vowels. It had

a BIC of 30774. The set of factors used accounted for 26.8% of the variance in

duration, 23.0% of the variance in F1, 40.2% of the variance in F2, and 8.1% of

the variance in F3. When all of the contextual factors including full part-of-speech

information were regressed out, the model had an overall categorization accuracy of

91.2%, correctly classifying 99.6% of the short vowels and 7.6% of the long vowels.

It had a BIC of 30990. The set of factors used accounted for 27.8% of the variance in

duration, 23.1% of the variance in F1, 40.3% of the variance in F2, and 8.3% of the
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variance in F3. Finally, the upper bound normalization performance included the

following five contextual factors: speaker, whether the vowel itself was word-final,

whether the vowel itself was AP-final, whether the vowel itself was IP-final, and

whether the vowel itself was utterance-final. This model had an overall accuracy

of 91.2%, and correctly classified 99.0% of the short vowels and 13.6% of the long

vowels. It had an overall BIC of 28122. The set of factors that resulted in the best

categorization performance accounted for 11.7% of the variance in duration, 3.6%

of the variance in F1, 3.3% of the variance in F2, and 3.8% of the variance in F3.

3.2.3.3 Neural Network Normalization Models

We then used neural networks to normalize duration and formants. When all

of the contextual factors with simplified part-of-speech (function vs. content word)

were normalized out, the model had an overall categorization accuracy of 91.1%,

correctly classifying 99.8% of short vowels, and 5.1% of long vowels. The BIC was

32356. When all of the contextual factors, including fully detailed part-of-speech

information, were normalized out, the model reached an overall categorization accu-

racy of 91.1%, correctly classifying 99.7% of short vowels, and 5.8% of long vowels.

The BIC was 31738. Finally, the best categorization performance arose from nor-

malizing out the following factors from the acoustics: whether the vowel itself was

word-final, whether the vowel itself was AP-initial, whether the vowel itself was AP-

final, and whether the vowel itself was utterance-final. This model had an overall

accuracy of 91.2%, and correctly classified 99.0% of the short vowels and 13.4% of
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the long vowels. It had an overall BIC of 28188.

3.2.4 Discussion

Previous work has argued that normalization can be helpful in acquisition and

processing (Cole et al., 2010; Dillon et al., 2013; McMurray and Jongman, 2011);

however, our results on Japanese vowel length did not support this hypothesis. We

compared the Japanese vowel length categorization performance of a logistic re-

gression model that used unnormalized acoustic cues to the performance of various

logistic regression models that used normalized acoustic cues. We considered two

different normalization implementations, and three different instantiations of nor-

malized cues for each. The first normalized all available contextual factors, with

simplified part-of-speech information (i.e. whether the word containing a vowel was

a function or content word). The second normalized all available contextual factors,

including detailed part-of-speech information. The third and final normalized out

the subset of contextual factors that led to best categorization performance. Cru-

cially, in the first two models, as in past work, normalization was not optimized to

give the best categorization. The final model considered categorization performance

in choosing how to normalize, giving it the best possible chance to succeed.

The main finding was that, at its best, normalization resulted in only a mod-

est improvement in accuracy and BIC, regardless of which implementation we used.

Although the overall accuracy of all of the models is quite high, just guessing that

all of the vowels were short would result in similar results. Normalization never
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improved accuracy, but improved the BIC from 28716 for the unnormalized version

to 28122 for the best normalized version. While this does constitute improvement,

it is only modest improvement and a listener would need to learn precisely which

factors they should normalize out. Of course, it is possible that results would be

better on a larger corpus with more information about the contextual factors. We

used previous and following sound duration as a proxy for speech rate, while other

measures of speech rate might lead to better performance, and we return to this

possibility in the discussion in Chapter 6. However, given how prevalent normaliza-

tion is in the field, the results are surprisingly bad and call into question the efficacy

of normalization (as implemented), at least in this task.

Although it is difficult to directly compare this degree of improvement to the

improvement shown in past studies merely on the basis of accuracy, past studies that

have implemented and tested normalization reported that normalization resulted in

an increase in performance from 28.63% to 54% and 83.3% to 92.9% respectively

(Cole et al., 2010; McMurray and Jongman, 2011). In comparison, in this work, the

overall accuracy did not change depending on whether cues where unnormalized or

normalized, and the long vowel accuracy increased from 12.2% to 13.6% - a much

weaker increase in performance than has been observed previously.

There are a number of reasons why we may have observed this discrepancy

from previous literature, the main one being that we tested normalization on sponta-

neous speech, while previous work has considered synthesized or carefully controlled

lab speech. In the next chapter, we apply the same analyses from this section to

controlled lab speech and show that normalization then works, consistent with past
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work, which suggests that the difference between spontaneous and controlled lab

speech does indeed explain at least some of the difference in results.

3.3 Summary

This chapter presented work that computationally implemented top-down in-

formation and normalization accounts, and tested their relative efficacy on separat-

ing short vowels and long vowels. The results showed that top-down information

accounts successfully separated short vowels from long vowels even on naturalistic

speech, but that normalization (as implemented here) did not, in contrast to what

has been found on controlled lab speech. The following two chapters will delve into

each of these findings in more detail. Chapter 4 will focus on normalization, and will

ask why we observe this discrepancy between our work and previous work. Through

a series of simulations and mathematical analyses, we will show that normalization

is effective on lab speech, but not effective on naturalistic speech, and we will iden-

tify one property of naturalistic speech that could explain differences. In Chapter

5, we will turn more directly to acquisition and propose an account of how infants

might learn which dimensions of their language are contrastive, taking advantage of

the top-down information signal that was shown to be present in this chapter.
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Chapter 4: The discrepancy in results arises from differences between

controlled lab speech and naturalistic spontaneous speech

Previous results found normalization to be helpful; however, our results from

Chapter 3 were surprising in that they showed that normalization was unhelpful -

even when the process was fully supervised. In this chapter, we explore why we

see this difference in results, and show that it has to do with differences between

controlled speech and naturalistic speech.

4.1 Controlled vs. Naturalistic Speech

The biggest difference between previous work and our own is that most pre-

vious work has explored normalization on controlled and carefully enunciated lab

speech, but our work looked at normalization on spontaneously produced speech.

To bring these results more in line with each other, we apply the same normaliza-

tion analyses we used on the R-JMICC Spontaneous Speech corpus to Japanese lab

speech. What we find is that the same normalization process that was not help-

ful on spontaneous speech is helpful on Japanese lab speech, suggesting that the

discrepancy in results between our work and previous work arises from differences

between spontaneous and controlled lab speech.
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Figure 4.1: Distribution of Werker Read IDS vowels (by log-duration). Values
displayed are logs of the vowel durations in seconds. As a result, log-durations will
be negative whenever the vowel is less than a second long.
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Figure 4.2: Distribution of Werker Spontaneous IDS vowels (by log-duration). Val-
ues displayed are logs of the vowel durations in seconds. As a result, log-durations
will be negative whenever the vowel is less than a second long.

4.1.1 Data

The data we use here is Japanese infant-directed speech from Werker et al.

(2007). The data consist of 10 mothers teaching their 12-month-old infants a set of

16 nonce CVCV words, while looking at picture books together. This interaction

included both a reading task, in which mothers were asked to read sentences contain-

ing the nonce words with pictures of the novel object (Werker Read dataset - Figure

4.1), as well as a spontaneous speech task, in which mothers were asked to describe
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a scene that contained the novel object, using the nonce word as much as possible

(Werker Spontaneous dataset - Figure 4.2). The nonce words were made only using

/i/ and /e/ as critical vowels, so the data do not contain any annotated instances

of /a/, /o/, or /u/, unlike the R-JMICC corpus. The data were collected in the

NTT Communication Science Laboratories in Keihanna, Japan and were labelled

by trained phoneticians.

These data were much more similar to datasets that had previously been used

to study normalization, as the datasets are carefully controlled laboratory speech.

Even the Spontaneous subset of the data was relatively controlled, as the researchers

decided what the nonce words were and, therefore, what sounds each target vowel

was likely to occur next to.

We extracted information about each of the vowels produced by the moth-

ers, excluding any segments that the researchers could not annotate with certainty.

The read speech data consisted of 798 vowels, of which 381 (47.7%) were phonem-

ically short vowels and the remaining 417 (52.3%) were phonemically long vowels.

The spontaneous speech data consisted of 1382 vowels, exactly half of which were

phonemically short and half of which were phonemically long. Similarly as for the R-

JMICC data, the information we extracted was either used as an acoustic predictor

or as a contextual factor to be normalized out.
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Werker Read
Vowel Quality

Speaker
Previous Sound
Following Sound

Prosodic Position
F0

Werker Spontaneous
Vowel Quality

Speaker
Previous Sound
Following Sound

Prosodic Position
F0

Table 4.1: The full set of contextual factors available for the Werker Read and
Werker Spontaneous datasets. Factors that were included in the normalization
upper-bound are shown in bold (as described in the sections on normalization meth-
ods).

4.1.1.1 Acoustic cues

As before, we used the duration of the vowel in milliseconds and the first

three formants, as direct predictors of vowel length. These acoustic cues were either

represented unnormalized as in the corpus, or underwent normalization through

linear regression.

4.1.1.2 Contextual Factors

We also extracted all of the contextual information that the original researchers

had labelled on this dataset. The set of factors available for the Werker data is

largely a subset of what was available for the R-JMICC dataset, with the exception

that fundamental frequency (F0) was available for the Werker data while it was not

extracted for R-JMICC. In addition, the labeling for prosodic position information

was much simpler for the Werker data than for R-JMICC data, as will be described

below. We collected the following pieces of information about each of the extracted

vowels.
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• Vowel quality: This was a categorical variable that took one of two values

(/e/ or /i/) and was taken from the coding of what the mother said.

• Speaker: This was a categorical variable with one of 10 different possible

values.

• Prosodic position: Prosodic position took one of four values: ‘Independent

Word,’, if the vowel occurred in a free-standing word, or ‘Sentence Initial,’

‘Sentence Medial,’ or ‘Sentence Final,’ depending on whether the syllable the

vowel occurred in was first, last, or in the middle of the sentence. This was

controlled in the Werker Read data.

• Neighboring sounds: We extracted the previous and following sound. Un-

like in the R-JMICC data, these were controlled to always be consonants.

• Fundamental frequency: We extracted the F0 at the vowel’s midpoint.

4.1.2 Methods

We use linear regression to implement normalization. We did not use neural

networks because they require large amounts of data, which we do not have for

controlled lab speech, and because they performed worse than linear regression

normalization models in Chapter 3. As before, we divided the data into a training

set and a test set, which consisted of 90% and 10% of the data, respectively. We

trained the linear regression model to learn a function between contextual variables

and acoustic cues, and then took the residuals to obtain normalized cues on both
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the training and test sets. Then, either unnormalized or normalized cues were input

into the logistic regression model to classify each vowel as short or long.

We ran three total logistic regressions for both the Werker Read and Werker

Spontaneous datasets. The baseline used absolute acoustics to categorize vowels as

short or long. The second model normalized the acoustic cues for all contextual

factors available for the Werker data. The third and final model chose the subset

of the available contextual factors that maximized categorization performance, as

determined by cross-validation, again providing us with an upper bound on how

useful normalization could be.

Results are averaged across 10 runs. We again report overall accuracy, accu-

racy on short vowels, accuracy on long vowels, as well as BIC, for which lower values

are better.

4.1.3 Results

The results are summarized in Table 4.2. We first consider the efficacy of

normalization on the Werker Read speech, before considering Werker Spontaneous

Speech.

4.1.3.1 Werker Read Speech Data

Unnormalized Model The unnormalized model achieves 91.4% overall accuracy

on the Werker Read speech. Although this is a similar overall accuracy to the R-

JMICC spontaneous data, this corpus is much more balanced than the R-JMICC
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corpus. In the Werker Read speech, about 47.7% of the used vowels are short,

compared to 90.9% in the R-JMICC corpus, so a strategy of simply categorizing

every vowel as short (or long) will not yield as good results on the Werker Read

Speech as on the R-JMICC corpus. The unnormalized model correctly classifies

89.7% of short vowels and 92.9% of long vowels, achieving a BIC of 246.

Normalized Models When we normalized out all available factors, the model’s

overall accuracy is 86.1%, and it correctly classifies 83.9% of the short vowels and

88.1% of the long vowels. Its BIC is 399. That is, normalizing all available factors

does not improve performance. When we instead choose the best subset of factors,

the model no longer factors out the effect of the following consonant, and shows

a boost in performance. It achieves an overall accuracy of 95.1%, a short vowel

accuracy of 92.3%, a long vowel accuracy of 97.6%, and a BIC of 105.

4.1.3.2 Werker Spontaneous Speech Data

Unnormalized Model The unnormalized model achieves 82.9% overall accuracy

on the Werker Spontaneous speech, and correctly classifies 90% of the short vowels

and 75.7% of the long vowels. It achieves a BIC of 1072. Again, in the Werker

Spontaneous speech, exactly 50% of the used vowels are short, so the unnormalized

model substantially outperforms one that simply guesses that each vowel is short,

unlike on the R-JMICC corpus.

73



D
at

a
M

o
d
el

A
cc

u
ra

cy
S
h
or

t
A

cc
u
ra

cy
L

on
g

A
cc

u
ra

cy
B

IC
U

n
n
or

m
al

iz
ed

91
.4

89
.7

92
.9

24
6

W
er

ke
r

R
ea

d
N

or
m

al
iz

ed
(a

ll
fa

ct
or

s)
86

.1
83

.9
88

.1
39

9
N

or
m

al
iz

ed
(b

es
t

fa
ct

or
s)

95
.1

92
.3

97
.6

10
5

U
n
n
or

m
al

iz
ed

82
.9

90
.0

75
.7

10
72

W
er

ke
r

S
p

on
ta

n
eo

u
s

N
or

m
al

iz
ed

(a
ll

fa
ct

or
s)

78
.5

85
.9

71
.1

12
19

N
or

m
al

iz
ed

(b
es

t
fa

ct
or

s)
90

.0
92

.9
87

.1
86

9
U

n
n
or

m
al

iz
ed

91
.2

99
.1

12
.2

28
71

6
R

-J
M

IC
C

S
p

on
ta

n
eo

u
s

N
or

m
al

iz
ed

(a
ll

fa
ct

or
s)

91
.2

99
.6

7.
6

30
99

0
N

or
m

al
iz

ed
(b

es
t

fa
ct

or
s)

91
.2

99
.0

13
.6

28
12

2

T
ab

le
4.

2:
C

om
p
ar

is
on

of
n
or

m
al

iz
at

io
n

re
su

lt
s

on
R

-J
M

IC
C

sp
on

ta
n
eo

u
s

sp
ee

ch
co

rp
u
s

an
d

W
er

ke
r

co
n
tr

ol
le

d
la

b
or

at
or

y
d
at

a.
T

h
e

W
er

ke
r

sp
ee

ch
co

rp
u
s

h
ad

a
re

ad
co

m
p

on
en

t
an

d
a

sp
on

ta
n
eo

u
s

co
m

p
on

en
t,

b
u
t

ev
en

th
e

sp
on

ta
n
eo

u
s

co
m

p
on

en
t

w
as

re
la

ti
ve

ly
co

n
tr

ol
le

d
b
y

th
e

ex
p

er
im

en
te

rs
,

as
th

e
ex

p
er

im
en

te
rs

p
ro

v
id

ed
n
on

ce
w

or
d
s

fo
r

th
e

p
ar

en
ts

to
te

ac
h

th
ei

r
ch

il
d
re

n
.

74



Normalized Models The model that normalizes out all available contextual fac-

tors listed previously and in Table 4.1 achieves an overall accuracy of 78.5%, correctly

classifying 85.9% of short vowels and 71.1% of long vowels. When we allow subse-

quent categorization results to drive which subset of contextual factors are included

in normalization, the model achieves an overall accuracy of 90.0%, and correctly

classifies 92.9% of short vowels and 87.1% of long vowels. It achieves a BIC of 869.

Similarly to the Werker Read speech, normalizing out all of the factors does not

help, but depending on what factors are normalized out, normalization can help -

and substantially.

4.1.4 Discussion

In this section, we applied the same linear regression analyses that we applied

to the R-JMICC spontaneous speech corpus to the Werker corpus. The idea was to

test whether we would see similar normalization results as were previously reported,

when we used data that more closely resembled that used in previous work. We

found that normalization could help on the read speech, as well as the Werker

spontaneous speech, even though it did not help when all available contextual factors

were factored out.

That is, on the same contrast in the same language, normalization was helpful

on carefully controlled lab speech, even though it was unhelpful on naturalistic,

uncontrolled spontaneous speech (R-JMICC). This suggests that normalization may

be ineffective on naturalistic spontaneous speech.
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Another interesting finding was that the Werker Spontaneous speech patterned

similarly to the Werker Read speech, instead of the R-JMICC Spontaneous speech.

The overall results were worse on the Werker Spontaneous speech than on the Werker

Read speech; however, normalization was helpful on the Werker Spontaneous speech,

but not the R-JMICC Spontaneous speech. One reason for this could be that dura-

tion seems to be used differently by speakers in the R-JMICC data versus the Werker

data. In particular, in comparing Figure 2.1 to Figures 4.1 and 4.2, it seems that

the contrast is being produced differently in the two datasets, such that duration

is a much better cue for vowel length in the Werker data than the R-JMICC data.

There is less overlap between the short and long vowel categories in the Werker

data: there is a duration such that all vowels that are acoustically longer than it

are reliably long vowels. In the R-JMICC data, however, this is not the case: some

short vowels are as acoustically long as the most acoustically lengthened long vowels.

Another possible reason for this is that unlike in the R-JMICC dataset, the con-

tents (and contexts that particular sounds occurred in) were fairly controlled by the

experiments in both the Werker Read and Spontaneous datasets. In the following

sections, we will discuss how this could affect normalization performance.

It is important to emphasize that although both the R-JMICC and Werker

Spontaneous speech datasets are referred to as spontaneous speech, they differed

quite substantially in nature. That is, not all spontaneous speech corpora are com-

parable. In particular, in the Werker Spontaneous speech, mothers were producing

nonce words that were created by researchers, were instructed to teach their infants,

and were given pictures to describe. In the R-JMICC Spontaneous speech, mothers
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were given toys and books, but were given very little instruction, so they were free

to talk about anything. It is important to keep these types of distinctions in mind

when developing and comparing performance across various spontaneously produced

speech datasets.

Overall, the simulations we have presented have disentangled normalization

and top-down information accounts and evaluated their relative efficacy on rela-

tively naturalistic, spontaneously produced speech. Our results from Japanese vowel

length suggest that while top-down information accounts are extremely useful even

on spontaneous speech, results that argue for normalization only hold for controlled

laboratory speech and do not generalize to the type of spontaneous speech that

listeners hear. These results force us to scrutinize the role normalization can play

in learning and processing, as well as the ways in which the primary cue for a

distinction can shift based on the domain of speech.

In the following two sections, we consider what properties of spontaneous

speech cause normalization to be ineffective. We provide simulations, followed by a

theoretical analysis demonstrating that a listener that makes use of normalization

will be impeded if sound categories in their input differ in the types of contexts they

are likely to occur in.
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4.2 Simulation: Imbalance between categories in the contexts they

occur in can hurt normalization

We showed that normalization can help reduce category overlap between Japanese

short and long vowels when applied to controlled lab speech, but not when applied

to spontaneous speech. What are the properties of spontaneous speech that make

normalization ineffective?

In this section, we provide simulations that reveal that one property of sponta-

neous speech that seems to play an important role is the fact that categories do not

occur uniformly across contexts in spontaneous speech, as they do in controlled lab

speech. That is, imbalances in where categories occur - precisely the type of signal

that is helpful in top-down information accounts - can hurt normalization. We pro-

vide an example from the Werker controlled lab speech, in which we take advantage

of one contextual factor - the following sound - that is not balanced between short

vowels and long vowels. In particular, the consonants /g/, /s/, and /z/ (three of

the eight consonants used in the study) each followed either only short vowels or

only long vowels. Even within following consonants that occured both with short

and long vowels, there were large imbalances in which vowels occured with which

consonants. These types of imbalances are uncommon in carefully controlled lab

speech, where researchers ensure that each vowel occurs in each context - but are

extremely common in spontaneous speech, which has phonotactic constraints and

phonological alternations. We previously showed that when the effect of the follow-
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ing consonant was one of the contextual factors normalized out, normalization hurt

on Werker Read speech, but when it was not normalized out, normalization helped.

Here we show that this is because of the large imbalance observed between short

and long vowels, by artificially balancing the dataset and showing that normalizing

out the following consonant becomes helpful once it is balanced.

4.2.0.1 Methods and Data

The data we use come from the Werker dataset, as described previously. We

test the efficacy of normalization (implemented via linear regression) on various

subsets of the Werker Read speech data. We limit normalization to one contextual

factor - the following consonant.

The first dataset is simply the full dataset (Full). As described previously,

some of the consonants in the dataset exclusively follow either short vowels or long

vowels (i.e. (/g/, /s/, and /z/). To create the second dataset, we remove all vowel

tokens that precede one of these consonants and test the efficacy of normalization on

this partially balanced dataset. The remaining consonants (/b/, /d/, /k/, and /p/)

are all much more likely to follow one of the vowel categories than the other. For

example, /k/ is twice as likely to follow short vowels than long vowels, even though

it co-occurs with both. Therefore, to create the third dataset, we randomly remove

enough tokens such that each following consonant is preceded by the same number of

short and long vowels (Fully Balanced). The Fully Balanced dataset most resembles

typical controlled lab speech corpora, as it completely controls for which vowels
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occur with which consonants. For each of these three datasets, we test the efficacy of

normalizing out the effect of the following consonant, by seeing whether normalized

or unnormalized cues result in a better separation between short and long vowels.

To ensure that differences in normalization efficacy between datasets are not due to

changes in overall proportions of short/long vowels, or due to differences in dataset

size, we create two additional control datasets: Partially Balanced Control and Fully

Balanced Control. To create these datasets, we randomly remove the same number

of short vowels and long vowels from the full dataset as are removed in the Partially

Balanced and Fully Balanced datasets, but remove them randomly and uniformly

from all contexts, instead of removing them based on the following consonant. We

run normalization using linear regression on each of these five datasets, and test

whether normalization is helpful on each of them.

4.2.0.2 Results

The results are summarized in Table 4.3. Normalizing for the effect of the

following consonant is ineffective on the Full dataset: unnormalized cues result

in 91.4% overall accuracy, while normalized cues result in 82.7% overall accuracy.

However, normalization was more effective on the Partially Balanced dataset, which

removed all vowel tokens that preceded a consonant that only occurred either with

long vowels or with short vowels. Unnormalized cues result in 90.1% accuracy, while

normalized cues result in 92.6% accuracy. Finally, normalization was even more ef-

fective on the Fully Balanced dataset: unnormalized cues resulted in 90.1% accuracy,
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while normalized cues brought the accuracy up to 93.8% accuracy. That is, each

step of removing imbalances in the data resulted in improvements in normalization

performance. In fact, when we completely balanced the dataset, normalization was

effective. Just reducing the size of the tested dataset or changing the relative pro-

portion of short/long vowels was not enough to explain this effect, as normalization

was still ineffective on the Partially Balanced Control and Fully Balanced Control

datasets.

4.2.0.3 Discussion

In this section, we explored why normalization is unhelpful on spontaneous

speech. One difference between spontaneous speech and lab speech is that sound

categories in spontaneous speech often differ in the contexts they are likely to occur

in, while in lab speech, researchers specifically control where sounds occur to make

sure that the dataset is fully balanced. We took advantage of one contextual fac-

tor within the Werker data for which this was not true, and found that when there

were imbalances in a particular context, normalization hurt, but when we artificially

balanced the context, normalization was helpful. That is, listeners relying on a nor-

malization strategy when their input contains strong imbalances between categories

would be hurt, unless they could somehow learn that they should not normalize for

factors that are imbalanced. In this particular case, that would mean learning to

normalize for the previous consonant, but not the following consonant.

If category imbalances across contexts were the only factor impeding nor-
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malization in our analyses, then we would expect a similar manipulation to make

normalization effective on the R-JMICC data. However, in further analyses (not

described in detail here), we were unable to show that balancing contextual factors

on the spontaneous R-JMICC data made normalization effective. This suggests that

although contextual imbalances of this type constitute one key difference between

lab speech and spontaneous speech, they are not the only reason that normalization

is ineffective on spontaneous speech but not lab speech. Another possibility is that

duration is less of a primary cue to vowel length in spontaneous speech than lab

speech, and this could make normalization ineffective.

That being said, this simulation points to an interesting interaction between

normalization and top-down information accounts, because the imbalances that are

harmful for normalization are precisely the imbalances that are helpful for top-down

information accounts. That is, when there is signal in the input that is helpful for

top-down information accounts, normalization suffers. In the following section, we

delve into this interaction in more detail.

4.3 Mathematical Analysis: Contextual category imbalances can hurt

normalization, but systematic variability does not hurt top-down

information accounts

We have seen that there are two ways that context affects sound production:

it affects how likely a particular sound category is to be produced a priori, and, once

that is decided, it affects what acoustic realization that sound category is likely to
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have. As a result, there are also two main ways that listeners might make use of

contextual information when processing or learning the sounds of their language.

They could either make use of it to normalize the acoustics, or they could make use

of it as top-down information that biases their category perception directly. Thus

far, we have shown that in the case of Japanese vowel length, top-down informa-

tion accounts are robust even on naturalistic speech, but that normalization is not

effective on naturalistic speech.

The previous simulation points to an interesting interaction between normal-

ization and top-down information accounts. In particular, it suggests that signal

in the input that is helpful for top-down information accounts may be harmful for

normalization accounts. In this section, we provide a theoretical analysis about how

listeners relying on each of these two strategies will fare depending on the kinds

of information sources that are present in their input, including what pitfalls they

might encounter. We ultimately show that a listener relying on a normalization

strategy when their input contains imbalances in categories across contexts may

be misled, consistent with our previous simulation, while a listener who relies on

a top-down information strategy when their input contains systematic variability

resulting from context will not be. Overall, the results in this section suggest that

top-down information strategies are much more robust to various types of input

than normalization strategies are.
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4.3.0.1 Contextual category imbalances can impede normalization

In this section, we consider how a listener relying on a normalization strategy

will fare when their input contains imbalances in category membership - of the type

that are helpful in top-down information accounts. In particular, we show that a

listener relying on normalization when their input contains imbalances in category

membership may be misled.

We begin by recapping what inference task we assume the listener is perform-

ing, and how exactly we implement normalization. As discussed in Chapter 2, we

use a logistic regression categorization model, which involves calculating the rela-

tive probability that a particular vowel is long (or short) as follows where d refers

to duration, f1, f2, and f3 refers to formants and all β’s refer to learned weights in

the logistic regression.

P (long|dnorm, fnorm1 , fnorm2 , fnorm3 ) =
1

1 + eβ0+β1d
norm+β2fnorm

1 +β3fnorm
2 +β4fnorm

3
(4.1)

That is, this relies on having normalized duration and formants to categorize

a particular vowel as phonemically short or long. There are a number of ways that

normalization can be implemented. In our upcoming analysis, we focus on one par-

ticular way of normalizing, which is simple, but commonly used - namely, the linear

regression implementation discussed in Chapters 2-3. This particular normalization

strategy essentially works by subtracting from each vowel’s acoustic cue the mean

acoustic cue of all vowels that occur in the same context. All sounds that are longer
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than expected based on their context will have positive normalized acoustic cues

and all sounds that are shorter than expected will have negative normalized acous-

tic cues, regardless of what their absolute acoustic cues were. Again, this is only

one way that normalization can be implemented, but the analysis of this simple

case gives us insight into why normalization might not work and likely generalizes

to many other normalization methods as will be discussed in Chapter 6. We turn

to the analysis now.

In order for normalization to be helpful, we would expect normalization to push

the means of the short and long vowel categories apart. To study when normalization

is or is not helpful, we derive an equation that quantifies how the distance between

category means changes as a result of normalization (as implemented by linear

regression). The mean of short vowels before normalization, µunnorm
l=short , is the average

of the mean duration of short vowels in each context short vowels occur in, weighted

by how many of all the short vowels occur in that context. In the following equation,

Nl=short,c=j is the number of short (l = short) vowels in context j (c = j), Nl=short

is the total number of short vowels, and µl=short,c=j is the mean duration of short

(l = short) vowels in context j (c = j).

µunnorm
l=short =

∑
j

Nl=short,c=j

nl=short

µunnorm
l=short,c=j (4.2)

An analogous equation holds for the mean of long vowels before normalization,

µunnorm
l=long . We can then compute a closed form value for the means of the short and

long vowel categories after normalization with linear regression - µnorm
l=short and µnorm

l=long,
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respectively. Each vowel token is normalized by taking the difference between that

vowel’s acoustic cue and the average acoustic cue of vowels that occur in that vowel’s

context. Once we obtain closed form values for the mean acoustics of short and long

vowels pre- and post-normalization, we can derive the following equation, which

shows how the difference between short and long vowel means changes as a result

of normalization. This allows us to describe under what conditions category means

will move closer together or farther apart as a result of normalization. Of course,

the success of categorization depends not just on the difference in means, but how

large this difference is compared to the variance. But in the simplest case we are

considering, where normalization applies an additive mean shift without changing

the variance, it is clear that normalization will hurt performance when the means

become closer together. See Appendix B for a full derivation of this equation.

(
µnorml=long − µnorml=short

)
−
(
µunnorml=long − µunnorml=short

)
=∑

j

[
Nl=short,c=j

Nl=short

− Nl=long,c=j

Nl=long

] [
Nl=long,c=j

Nc=j

µunnorm
l=long,c=j +

Nl=short,c=j

Nc=j

µunnorm
l=short,c=j

]
(4.3)

In this equation, Nl,c is the number of vowels of length l in context c and µl,c is

the mean of vowels of length l in context c. The first term in the sum,
Nl=short,c=j

Nl=short
−

Nl=long,c=j

Nl=long
, corresponds to the difference between the fraction of all short vowels that

occur in the jth context and the fraction of all long vowels that occur in the jth

context. The second term in the sum,
Nl=long,c=j

Nc=j
µunnorm
l=long,c=j +

Nl=short,c=j

Nc=j
µunnorm
l=short,c=j, is

a weighted average between the mean of the long vowels in this context weighted

by the proportion of vowels in this context that are long and the mean of the short
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vowels in this context weighted by the proportion of vowels in this context that are

short. The product of these two terms is summed over all contexts. When the value

of
(
µnorml=long − µnorml=short

)
−
(
µunnorml=long − µunnorml=short

)
from Equation 4.3 is greater than zero,

this means that normalization has pushed the categories apart and when this value

is less than zero, this means that normalization has pushed the categories closer

together. This equation reveals that if there are imbalances in the contexts in which

different categories are likely to occur in, then a listener relying on normalization

alone may be misled. To illustrate why, consider a context that is dominated by

long vowels (i.e. there are more long vowels than short vowels in this context). For

such a contextual factor, we would typically expect the first bracketed term (of two)

in Equation 4.3 to be negative. This is because it is likely that the proportion of

all long vowels that are in this context,
Nl=long,c=j

Nl=long
is greater than the proportion of

all short vowels that are in this context,
Nl=short,c=j

Nl=short
(although this need not be the

case if, for example, there are many more long vowels than short vowels overall:

Nl=long > Nl=short). In this long-dominated context, the second bracketed term (of

two) would be relatively large for the following reason. Most of the vowels in this

context are long (by virtue of it being a long-dominated context), so
Nl=long,c=j

Nc=j
will

be relative large and
Nl=short,c=j

Nc=j
will be relatively small. The second bracketed term

(of two) then consists of putting a higher weight on the long vowel mean than on

the short vowel mean, which will push this value more towards the long vowel mean

(and thus higher). Taking the product, the value within the sum will be a relatively

large negative number for long-dominated contexts. Conversely, in a context that is

dominated by short vowels (i.e. there are more short vowels than long vowels in this
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context), we would typically expect the first term to be positive, and the second term

to be relatively small, due to a heavier weighting on the short vowel mean than on

the long vowel mean (which will push the value towards shorter durations). Taking

the product, the value within the sum will be a relatively small positive number for

short-dominated contexts. Overall, then, we would expect the sum over all contexts

to be negative, since, as we saw, the negative summands should be relatively large,

and the positive summands should be relatively small. At a high level, this means

that imbalances in sound categories across contexts (i.e. large differences in the

relative proportion of short and long vowels within particular contexts) can lead

to normalization bringing the category means closer together, rather than farther

apart.

Another way to think about this is that vowels are normalized relative to

the context they occur in, by subtracting the mean of all of the vowels in that

vowel’s context from that vowel’s own acoustic values. An imbalance between short

and long vowels in a particular context will cause the mean of that context to be

artificially decreased or increased, respectively. All else being equal, in a context

that consists of a majority of long vowels, the mean duration will be artificially

lengthened, so the normalized cues will be artificially low. A parallel effect will

cause the normalized cues for short-dominated contexts to be artificially higher than

expected. That is, vowels in contexts that are majority long will be shifted towards

shorter durations, and vowels in contexts that are majority short will be shifted

towards longer durations, which will push the short and long vowel distributions

together. Essentially, the problem is that imbalances in where categories occur
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Figure 4.3: A toy example demonstrating how imbalances in the relative propor-
tions of different categories across contexts can hurt normalization. In particular,
imbalances can make it hard to estimate the normalization function, because they
artificially shift the mean acoustic cue value in a context, which can hurt normaliza-
tion methods that rely on shifting acoustics based on mean acoustic values across
different contexts.

make it hard to estimate a proper normalization function.

Consider again the toy example in Figure 2.2, repeated in Figure 4.3. In this

toy example, there are short vowels and long vowels and only two contexts. Note

that the acoustics of the short and long vowels do not change across contexts –

the average short vowel and long vowel durations are not shifted. However, there

is a large imbalance between phonemically short and phonemically long vowels in

particular contexts, such that there are many more long vowels than short vowels

in phrase-medial position, and many more short vowels that long vowels in phrase-

final position. This will cause the mean duration in phrase-medial context to be
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much higher than the mean duration in phrase-final context. A listener relying

on normalization would try to normalize and would actually increase the amount

of within-category variability present in the speech stream and push the categories

together. Overall, differences between sound categories, in terms of the contexts they

are likely to occur in, can impede a listener who relies on normalization strategies.

To be clear, this analysis only reveals that normalization will be problematic for

factors that can also be useful for top-down information accounts - e.g. neighboring

sounds, prosodic position, but not for speech rate or speaker, which only affect how

a sound is produced and not which sound is likely to be produced. That being said,

normalization will be ineffective whenever it is difficult to estimate a normalization

function, and there is reason to believe that this might be the case for factors like

speech rate too. In particular, it has been shown that factors like speech rate seem

to acoustically lengthen long vowels more than short vowels. In its current form,

then, normalization will be incorrect for factors like speech rate, because it only

estimates one normalization function for both short vowels and long vowels, instead

of using a different function for each category. We return to this point and what it

tells us about the efficacy of normalization in the General Discussion in Chapter 6.

4.3.0.2 Systematic variability does not impede top-down information

accounts

While a listener relying on normalization when there is signal in the input for

top-down information accounts will be misled, the opposite does not hold. A listener
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relying on a top-down information strategy when there is systematic variability to

be normalized in their input will not be misled relative to a listener who simply

relies on the acoustics. The model making use of contextual information has access

to all the information that the baseline absolute acoustics model does (and more),

so it will necessarily perform at least as well. It can always learn to put no weight on

contextual factors, and implement exactly the baseline model. Therefore, no matter

what the acoustics are like, using top-down information will never mislead a learner

more than a listener only relying on acoustic information. More strongly, a listener

only relying on contextual information without any access to acoustics cannot be

misled by systematic variability in the signal, precisely because it makes no use of

acoustic information. Therefore, a listener who makes use of top-down information

as a contextual bias in learning and perception will avoid pitfalls that a listener

making use of normalization may encounter (as long as they trained on the right

distributions).

4.3.0.3 Discussion

In this section, we provided a mathematical analysis showing that listeners

who make use of a normalization strategy may suffer when there are imbalances in

category membership of the type that are useful for top-down information accounts.

However, the opposite is not true - listeners that make use of top-down information

accounts will not be hurt by systematic variability in the signal.

Category imbalances are extremely common in natural language, due to phono-
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tactic constraints, phonological alternations, historical reasons, and more. Our

mathematical analysis shows that listeners who rely on normalization strategies

may suffer when their input contains these types of category imbalances. Therefore,

for factors that affect which sound category is likely to be produced, normalization

is not an effective way to deal with context in processing and especially sound cat-

egory learning for learners who cannot yet separate categories. Instead, a listener

would be much better off making use of top-down information, which is immune to

systematic variability in acoustics. Overall, in order to make a claim that listeners

do use normalization in order to learn and process sounds, it will become impor-

tant to explain how listeners can overcome the problems presented by contextual

imbalances in category membership.

4.4 Summary

In this chapter, we delved in to the surprising finding that normalizing for

systematic acoustic variability did not help separate short and long vowels. We

showed that the discrepancy in results between our work and previous work arises

because we study naturalistic speech, while past work has studied controlled lab

speech. We ran the same analyses that we ran on Japanese naturalistic data on

Japanese controlled lab data, and showed that while normalization can help on con-

trolled lab data, it does not on naturalistic data. We then identified one difference

between naturalistic data and controlled lab data that could cause different perfor-

mance depending on the data type. In particular, we showed through simulations
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and a mathematical analysis that imbalances in the relative proportion of short and

long vowels across contexts can hurt normalization. These sorts of imbalances tend

to be meticulously controlled in lab data, but are extremely common in naturalis-

tic data due to phonotactics, phonological alternations, word properties, and other

systematic regularities.

In the next chapter, we turn more directly to the question of how infants learn

which dimensions of their language are contrastive, and propose a new learning

account that takes advantage of these category imbalances, and provide evidence

that supports it.
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Chapter 5: A Learning Story: Naturalistic Data Support Distribu-

tional Learning Across Contexts

In this chapter, I turn more directly to the question of learning. In the previous

chapter, we showed that an infant whose input contains imbalances would be better

off using top-down information strategies than trying to normalize out systematic

variability. With that in mind, we propose a new account for how infants learn

which dimensions are contrastive - that takes advantage of the imbalances that have

been shown to be very common in speech data. We provide initial support for this

learning account, continuing to use vowel length as our test case.

As has been extensively discussed, what infants learn about vowel length differs

by the language they are exposed to. For example, French infants learn that vowel

length is not contrastive in their language (Jakobson and Lotz, 1949), Japanese

infants, of course, learn that it is (Han, 1962), and Dutch infants learn that some

vowel qualities in their language contrast by duration, but others do not (Booij,

1999).

Researchers have long thought that infants learn that a dimension is con-

trastive by tracking the acoustic distribution of speech sounds in their language and

looking for bimodal distributions: if the distribution is bimodal, the dimension is
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contrastive, and if the distribution is unimodal, the dimensions is not contrastive

(Maye et al., 2002). This distributional learning account has received experimental

and computational support from simplified speech (e.g. Maye et al., 2002; Vallabha

et al., 2007), but is insufficient for naturalistic speech of the type that listeners

mostly hear (Bion et al., 2013). In particular, in order for this account to be suc-

cessful, it must be the case that distributions are unimodal when a dimension is

non-contrastive, and bimodal when it is contrastive, and we have shown this is

not necessarily the case in naturalistic speech. Distributions along contrastive di-

mensions can, and often are, unimodal (Bion et al., 2013), and, as a result, this

account cannot explain why e.g. Japanese, but not French, infants learn that length

is contrastive.

In this chapter, we present a new idea for how learners could use distributions

to learn phonetic categories, inspired by work demonstrating that (i) infants are sen-

sitive to higher-level contextual information (e.g. Feldman et al., 2013b; Thiessen,

2007), and (ii) there is real signal in higher-level contextual information for sepa-

rating short and long vowels, as shown in Chapter 3. Using vowel length as a test

case, we show that, unlike for previous distributional learning accounts, this story

makes critical predictions that hold true on naturalistic speech. In particular, we

show that it can qualitatively explain why Japanese, French, and Dutch infants

learn what they do about vowel length.

The remainder of the chapter is organized as follows. In the first section,

we lay out what the learning proposal is, and then we present analyses comparing

French and Japanese, as well as contrastive vs. non-contrastive dimensions in Dutch.
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These analyses show that there is signal in naturalistic speech that could support

this learning account.

5.1 Proposal: Distributional Learning Across Contexts

The proposal that we explore here is that infants track acoustic distributions

across contexts, and learn that a dimension is contrastive if the shape of the dis-

tribution along that dimension varies substantially across different contexts. As a

concrete example, infants might break down the overall distribution of vowels into

different distributions depending on, for example, what the preceding sound was1,

then compare the shape of those distributions, and learn that length is contrastive

if those distributions vary substantially in shape.

This proposal builds off of Maye et al. (2002)’s version of distributional learn-

ing in that infants are tracking acoustic distributions to determine contrastiveness.

It strays from their version of distributional learning, however, because this account

does not require a bimodal distribution in the data. Rather, the account proposes

that infants are looking to see whether multiple distributions (from different con-

texts) are shaped differently (e.g. more or less skewed right). Every distribution

an infant observes could be unimodal, but as long as they are differently shaped

unimodal distributions, the infant could still learn the contrast.

The reasoning behind this proposal is that the shape of the distribution will

vary across contexts because the relative proportion of different sound categories will

1As will be discussed, in practice, I will consider more elaborate contexts, but I use preceding
sound as an example here.
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Context 1 Context 2 Context 3

Context a Context b

Figure 5.1: A toy example demonstrating how changes in the relative proportion
of short and long vowels across contexts could lead to more extreme changes in
distribution shape in a language with a contrast (top row) than one with no contrast
(bottom row).

change across contexts, and different sound categories have different distributions.

The relative proportion of different sound categories could change across contexts,

because of phonotactics, phonological alternations, word properties, or other system-

atic regularities. These could cause the shape of the overall acoustic distribution to

change across contexts, but only if there are multiple sound categories along that

dimension.

In Figure 5.1, we present a toy example demonstrating this idea. In this

figure, the top row represents different contexts in a language that has a contrast

along this plotted dimension. The bottom row represents different contexts in a

language that does not have a contrast along this dimension. In a language with
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a contrast, different relative proportions of short and long vowels will cause the

distribution shape to change. For example, the overall distribution in Context 1

is skewed right, whereas the distribution in Context 3 is more skewed left, even

though both combined distributions will be unimodal. In a language without a

contrast, we might expect the acoustic distribution to shift around a bit based on

systematic contextual variability; however, we might not expect the distribution

shape to change as much as when there is a contrast, because the distribution will

be made up of the same category of vowels throughout. This leads to our idea

that tracking distributions across contexts could be revealing about the existence of

multiple categories.

Just as for standard distributional learning accounts, in order for this account

to be successful, certain properties must hold of naturalistic speech. It must be

the case that the distribution shape varies more across contexts in languages with

a contrast than in a language without this contrast. It must also be the case that,

within a language, the shape varies more when there is a contrast than when there is

not. Through a number of analyses, we will show that these properties hold for vowel

length in all the corpora we consider. In Analysis 1, we first show that, as our account

predicts, there are more extreme distribution shape changes in Japanese (which has

a length contrast) than French (which does not). This holds true both when we

define a sound’s context to be a combination of its quality, prosodic position, and

neighboring sounds (e.g. phrase-medial /o/ vowels in frame t k), as well as when

we define a sound’s context to be its word frame. We then turn our attention to

Dutch, in which some, but not all, vowel qualities have vowel length contrasts. Using
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similar analyses, we again show that within Dutch, the distribution shape changes

more when we consider the subset of vowels that do contrast length than when we

consider the subset of vowels that do not contrast length.

5.2 Analysis 1: French vs. Japanese

In this section, I test whether this learning account can qualitatively explain

why Japanese infants learn that vowel length is contrastive in their language, while

French infants do not, by testing whether the necessary signal is present in speech.

That is, we test whether the acoustic distribution shape changes more substantially

across contexts in Japanese than in French, and show that, as predicted by this

account, it does.

5.2.1 Data

We use one Japanese corpus and one French corpus for our analyses. The

corpora both consist of spontaneously-produced, adult-directed speech, but differ in

the details of how the speech was elicited, as will be described below. Ideally, these

analyses would use corpora of speech produced to infants who are learning the vowel

length contrast; however, we do not have access to an annotated IDS corpus (for

a language without a contrast) that parallels our Japanese IDS corpora, and being

able to perform fair comparisons between the two languages is critical. In addition,

results from Chapter 3 and Appendix A suggest that top-down information accounts

performed similarly on ADS and IDS, so we do not have strong reason to believe
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Figure 5.2: Overall distribution of short and long vowels in Japanese adult-directed
speech (from CSJ). Similarly to the R-JMICC IDS corpus, only 10.9% of vowel
tokens are phonemically long.

that the results would differ substantially if we used IDS instead, but future work

should examine this more thoroughly.

5.2.1.1 The Corpus of Spontaneous Japanese (CSJ)

We use the Corpus of Spontaneous Japanese (Maekawa, 2003) for our Japanese

corpus. This is a large corpus of spontaneously produced adult-directed speech.

Around 90% of the speech consists of spontaneously produced monologues, and

the remaining 10% consists of spontaneous dialogues. The monologues consist

of speakers talking about their academic field, or more casual topics (e.g. what

their most delightful memory is, what they would do if they lived on a deserted

island, etc.) in a relaxed environment in front of a small group. The dialogue

portions consist of (i) speakers discussing the content of the monologues, (ii) speakers

engaged in task-oriented dialogue, where they need to guess the fees associated

with a celebrity appearance, or (iii) speakers engaged in free conversation with the
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experimenter.

The full corpus consists of 7.5 million words, or around 650 hours, of sponta-

neous speech, but only a portion of the full corpus was manually annotated for the

segmental information required for our analyses. As a result, our analysis focuses on

the core portion of the CSJ. The core portion includes speech by 75 speakers, and

consists of about 500,000 words or 44 hours of spontaneous speech (of which about

15 hours are dialogues). The core portion of the speech corpus consists of 811,731

total vowel tokens of which 722,968 (or 89.1%) are phonemically short and 88,763

(or 10.9%) are phonemically long. Just as in the R-JMICC IDS corpus, the overall

distribution is unimodal along the duration dimension (see Figure 5.2). Analyses of

the speech reveal that it has the expected properties of spontaneous speech, includ-

ing phonetic reductions, disfluencies, informal language, faster speaking rate, and

so forth (Maekawa, 2003).

Transcriptions

The core portion of the corpus was annotated at the segment and word levels

by the corpus creators (Maekawa, 2003). The segmental transcriptions are basi-

cally phonemic, but some phonetic information was also included (e.g. information

about vowel devoicing, timing of closure release in stops, and palatalization of conso-

nants before /i/, and more). Researchers provided phonetic transcriptions of speech

from which phoneme labels were created. These phoneme labels were automatically

aligned to the speech using an Hidden Markov Model-based alignment procedure.

These automatic alignments were then hand-corrected by expert human labellers.
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Figure 5.3: Overall distribution of vowels along the duration dimension in French
adult-directed speech (from NCCFr). The duration measurements in this corpus
were relatively imprecise, so the tall peak could arise because vowels of shorter
durations could not be represented.

5.2.1.2 Nijmegen Corpus of Casual French (NCCFr)

We use the Nijmegen Corpus of Casual French (Torreira et al., 2010) for our

French corpus, which like the CSJ is a corpus of spontaneously produced adult-

directed speech. Unlike the CSJ, however, the NCCFr consists exclusively of con-

versational speech. The corpus consists of a total of about 36 hours of spontaneous

speech, and involves forty-six French speakers (24 male, 22 female) engaged in con-

versation with their friends. The corpus consists of 132,037 total vowel tokens,

whose distribution along the duration dimension is plotted in Figure 5.3.

To get the recordings, twenty-three confederates were recruited, and asked to

bring two close friends of the same sex with them to the recording. The confederate

knew what the purpose of the recordings was (i.e. phonetic analysis of spontaneous

speech), but the two friends did not, and the confederate’s role was to elicit natu-

ral speech, by continuing the conversation by raising familiar topics. For technical
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reasons, the two friends’ speech was recorded, but the confederate’s speech was not

recorded. Each session lasted about 90 minutes, and included three types of speak-

ing tasks. In the first portion of the session (∼10-30 minutes), the experimenter

informed the group that the confederate’s microphone was not working, and had

the confederate leave the room with them to repair it. The speech of the other

participants (who stayed in the room) was recorded during this time. In the second

portion of the session, the confederate re-entered the room and joined the conversa-

tion. Topics were left entirely up to the participants, and included discussion about

upcoming exams, an ongoing strike, and travel plans. In the third and final session

(∼40 minutes), speakers chose five questions about social and political issues from a

list and had to negotiate an answer to each question, which they wrote down. The

corpus creaters compared the speech to journalistic speech and analyses confirmed

that this corpus did indeed consist of casual speech (Torreira et al., 2010). The NC-

CFr involved more disfluencies, more repeated words, more casual and slang words,

more swear words, and fewer uses of double negation (an indicator of formal speech

in French) than the journalistic speech.

Transcriptions

The corpus was orthographically transcribed by two professional transcribers.

The corpus was transcribed at the segmental level by Martine Adda Decker (p.c.

with M. Ernestus, January 14, 2019). The precise details of how the corpus was

transcribed are not known; however, other phonetic research has been done using

these transcriptions (e.g. Torreira and Ernestus, 2010).
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5.2.1.3 Information Extracted from Corpora

We extract a number of pieces of information from the two corpora.

Acoustic cues

Unlike in the analyses in Chapters 3-4, we only extract the duration of each

vowel in milliseconds, and do not extract formant values. Unfortunately, the French

corpus had relatively imprecise measures of duration, and did not represent differ-

ences in duration that were shorter than 50ms. In order to make the comparison

between French and Japanese fair, we rounded all durations in the Japanese corpus

to this same degree of precision as in French, which did not have a big effect on the

shape of the Japanese distribution shown in Figure 5.2.

Contextual factors

In addition to extracting acoustic information, we also extracted contextual

information about each vowel. We extracted all contextual information that was

available for both corpora.

• Vowel quality: This was a categorical variable that took one of five values

(/a/, /e/, /i/, /o/, /u/) for Japanese, and one of the following values for

French: /a/, /e/, /i/, /o/, /u/, /E/ /@/, /œ/, /ø/, /y/, /O/, nasalized /E/,

nasalized /a/, and nasalized /O/.

• Prosodic position: We represented prosodic position with four indicator

values: (1) whether the vowel was word-initial or not (only the first vowel in a
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Analysis What contextual information was used
Analysis 1a Neighboring sounds + prosodic position + vowel quality

(e.g. phrase-final [o] vowels in frame [s #]
Analysis 1b Word frame (e.g. vowels in frame [k ko])

Table 5.1: Description of what contextual information was used in each analysis.
We only include contextual information that infants have been shown to have access
to by the time they learn the vowel length contrast.

word counted), (2) whether the vowel was word-final or not, (3) whether the

vowel was phrase-initial or not, and (4) whether the vowel was phrase-final or

not.

• Neighboring sounds: We extracted the identity of the immediately previous

sound and the immediately following sound (both categorical variables), as

labelled by the phonetic transcription. This was marked as ‘#’ if the vowel

was preceded by silence. Again, vowel length contrast is thought to be learned

later than other types of contrasts (Sato et al., 2010).

• Word frame: We extracted the word frame that the vowel occurred in. For

example, one word frame could have been [b i ru], which would include both

[bi:ru] and [biru]. The word frame included quality information for each sound

in the word, but did not include any length information about the sound in

question or any of the other sounds in the word frame.
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5.2.2 Methods

5.2.2.1 Analysis Description

We perform two different comparisons between French and Japanese. Both

aimed to test whether distribution shape changes across contexts were more extreme

in Japanese than in French, but differed in how they defined context (Table 5.1).

In the first analysis (Analysis 1a), we considered the context of the sound to

be: (i) the vowel quality of the vowel, (ii) the prosodic position of the vowel, and

(iii) the immediately preceding and immediately following sounds. That is, one

“context” could be word and utterance-medial /o/ vowels that were preceded by

/t/ and followed by /k/. We chose these contextual factors based on a combination

of what was readily available from the corpus annotations for all corpora, what had

been used in the analyses in Chapter 3, as well as what infants are thought to know

about by the time they learn about the length contrast.

In the second analysis (Analysis 1b), we considered the context of the sound

to be the word frame that it occurred in without any length information (i.e. with

long and short sounds represented identically).

Other than this, the two analyses were identical. In the results we present,

we took every context that had at least 50 vowel tokens in it2, so as to minimize

both sparsity issues and computation time. We then computed the distance between

the shape of the distribution in each context as compared to every other context

that met threshold in a pair-wise fashion. That is, if there are 100 contexts with

2As will be discussed, the same results hold for every way of choosing contexts that we tested.
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more than 50 vowel tokens in them, each of those contexts will be compared against

the remaining 99. We computed the average pairwise distance for each language,

and also plotted the overall distribution that the distances took in both Japanese

and French. We used Earthmover’s distance as the distance metric between two

distribution shapes, as described in the following section.

5.2.2.2 Earthmover’s Distance

Earthmover’s distance, also known as Wasserstein or Kantorovich-Monge-

Rubinstein distance, is a metric that is commonly used in computer science and

statistics to measure the distance between two distributions (Rubner et al., 1998;

Villani, 2008).

Informally, it is often talked about in terms of two piles of dirt, which represent

the two distributions being compared. In this context, Earthmover’s distance can

be thought of as minimum cost of turning one earth pile into the other, where cost

corresponds to a combination of the amount of earth being moved as well as the

distance it has to be moved. In other words, the distance is the minimum average

distance a piece of dirt will have to be moved in order to turn one pile into the other.

More formally, the Earthmover’s distance, W, between two distributions, PX

and PY is defined as follows:

W (PX ,PY ) := min
PX,Y

E [‖X − Y ‖] , (5.1)

∑
Y

PX,Y = PX ,
∑
X

PX,Y = PY

108



where PX,Y is the joint distribution whose marginals are equal to PX and PY . The

optimization (minimization) is over every possible joint distribution PX,Y (with the

correct marginals). We can think of each of these distributions as one solution

that tells us what “dirt” in the first distribution corresponds to what “dirt” in the

second distribution (that will allow us to transform one distribution into the other).

In other words, if there is a piece of “meta-dirt,” that we need to place in the first

distribution, PX , and the second distribution, PY , we can think of X in PX,Y as

the location where that piece of dirt gets placed in the first distribution and Y as

the location where that piece of dirt gets placed in the second distribution. The

requirement that the marginals equal PX and PY is to ensure that we only consider

solutions in which the way we have placed the dirt actually creates the distributions

we are considering. Then, for each of these possible solutions/mappings between

the dirt in the first distribution and the dirt in the second distribution, we can

calculate how far away, on average, the location where we place our meta-dirt in our

first distribution is from the location where we place it in our second distribution.

This corresponds to the expectation in Equation (5.1). The Earthmover’s distance

between two distributions, then, is the minimum of those average distances over all

possible solutions.

As a concrete example, consider two identical piles of dirt (distributions),

where half the mass is at 0 and half the mass is at 1. By virtue of these distributions

being identical, they have the same shape. One possible solution would be to “move”

all of the dirt from 0 to 1, and all of the dirt from 1 to 0. However, a simpler solution

would be to just keep all of the dirt where it is. As a result, the Earthmover’s distance

109



will be 0, because at minimum, we do not have to move any dirt, even though there

are solutions where we will have to move it more. In sum, Earthmover’s distance is

a metric of how much we have to alter one distribution to make it into another, and

we use this metric to compare whether there are greater distribution shape changes

across contexts in Japanese than in French.

5.2.3 Results

The results comparing Japanese and French are shown in the boxplots in Fig-

ure 5.4 (in which, context = quality + prosodic position + neighboring sounds) and

Figure 5.5 (in which, context = word frame). Each point in these graphs represents

how different in shape the acoustic distributions are between a pair of contexts,

with greater differences in shape indicated by higher Earthmover’s distance. Both

the average and median pairwise Earthmover’s distance is higher in Japanese than

French for both Analyses 1a and 1b. In Analysis 1a (context consists of the quality,

prosodic position, and neighboring sounds), the average Earthmover’s distance is

42.9 in Japanese, but 25.2 for French. The median Earthmover’s distance is 27.7 in

Japanese, but 19.7 in French. In Analysis 1b (context is simply the vowel’s word

frame), the average Earthmover’s distance is 36.2 in Japanese, and 26.7 in French.

The median Earthmover’s distance is 21.0 in Japanese, and 17.9 in French.

However, more strikingly, the French and Japanese boxplots differ in their

overall shape, in that the Japanese plots have longer tails (more outliers extending

towards larger values of Earthmover’s distance). This means that there are more
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French vs. Japanese Results
(Context = Vowel quality + Prosodic position + Neighboring Sounds)

Figure 5.4: Results from Analysis 1a, which compared French and Japanese. Con-
text is defined as a combination of vowel quality, prosodic position, and neighboring
sounds. Each point represents how different the acoustic distributions are between a
pair of contexts, with greater differences indicated by higher Earthmover’s distance.
The Japanese plot has a much longer tail, which means that there are more pairs of
contexts with extreme distribution shape changes in a language that has a contrast
along this dimension.

Context Percent Long Count Frequency Rank
Phrase-initial, word-final /e/ vowels 64.7 1357 18
Phrase-initial and final /a/ vowels 56.7 255 95
Phrase-initial and final /e/ vowels 87.9 244 100

Table 5.2: Information about a subset of the Japanese contexts that drive the long
tail in Analysis 1a (Figure 5.4 above). “Count” refers to the number of vowel tokens
in this context in the portion of the CSJ that we used for this analysis. “Frequency
rank” indicates the rank of the context when all contexts are ordered in terms of
frequency (i.e. a rank of 1 would mean this was the most frequent context observed).
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French vs. Japanese Results
(Context = Word Frame)

Figure 5.5: Results from Analysis 1b, which compared French and Japanese. Con-
text is simply defined as the word frame the sound occurred in. Greater differences
in distribution shape are indicated by higher Earthmover’s distance.

Word Frame Percent Long Count Frequency Rank
# e # 68.1 2465 5

#y u # 92.8 1375 12
#an o # 51.9 981 20
#y o # 75.7 569 29
# i # 30.9 538 32

# e to# 81.0 385 38
# a # 41.5 328 52
# u # 30.0 70 171

Table 5.3: Information about the Japanese contexts that drive the long tail in Figure
5.5 above.
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pairs of contexts that have extreme distribution shape changes in Japanese, a lan-

guage that has a contrast along the duration dimension, than in French, a language

that does not. This overall qualitative pattern holds for both ways of defining con-

text, though the extreme Earthmover’s distances are much higher for Analysis 1a

than 1b. In particular, for Japanese, some context pairs exceed Earthmover’s dis-

tances of 400 in Analysis 1a, but only 250 in Analysis 1b. Meanwhile, in Analysis

1a, the French context pairs reach Earthmover’s distances of almost 200, compared

to 125 in Analysis 1b.

Overall, in both cases, we observe that the distribution shape changes are

much more extreme when a contrast is present than when it is not. These results

suggest that there is signal present in naturalistic speech that support the proposed

learning account in both ways of relying on contextual information.

Further analysis of the contents of the Japanese tails reveals that these tails

are largely driven by a few contexts that have a different shape from all of the re-

maining contexts. These driving contexts (contexts that repeatedly and consistently

result in Earthmovers distances above 250 in Analysis 1a or above 150 in Analysis 1b

when paired with other contexts) tend to be contexts that consist mostly of phone-

mically long vowels. That is, they are contexts in which long vowels are extremely

overrepresented relative to their overall 10% base rate of occurrence. For example,

in Analysis 1a, one driving context is /e/ vowels that are both phrase-initial and

phrase-final (i.e. utterances that consist only of the vowel quality [e]). 87.9% of

vowels in this context are phonemically long, while only 12.1% are phonemically

short. Another driving context is [a] vowels that form their own utterances. In this
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context, 56.7% of vowels are phonemically long, while 43.3% are phonemically short.

In Analysis 1b, the following word frames are among the driving contexts (where

the underscores surround the vowel in question, whose quality is known, but length

is unknown): [ e ] (in which 68.1% of vowels are phonemically long), [y u ] (in which

92.8% are long), [an o ] (in which 51% are long), [y o ] (in which 75.7% are long),

[ a ] (in which 41.5% are long), and [ e to] (in which 81.0% are long). These results

reveal that not only do we get the predicted pattern, but that this pattern appears

for the hypothesized reason. Contexts differ in the relative proportion of short and

long vowels when there is a contrast, which causes the distribution shape to change

more across contexts when there is a contrast than when there is not.

5.2.4 Discussion

In this section, we showed that critical predictions that our learning account

makes hold true on naturalistic speech. In particular, in two different ways of

defining ‘context,’ Japanese exhibits much more extreme distribution shape changes

across contexts than French. Therefore, our results are among the first to be able

to qualitatively explain why Japanese infants might learn that length is contrastive,

while French infants do not (despite the fact that both overall distributions are

unimodal). This account is promising because the contexts that seem to drive this

effect are very frequent, so they make up a large proportion of the tokens and would,

arguably, be quite noticeable to infants (assuming these results replicate on IDS).

Most importantly, unlike past accounts, this account works for naturally produced
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speech.

This learning account takes advantage of precisely the signal that the top-down

information account used to achieve good categorization performance in Chapter 3.

In particular, this account relies on there being different relative proportions of

short and long vowels across different contexts, which could arise for grammatical

reasons (e.g. phonotactics, alternations, and so forth) or non-grammatical reasons

(e.g. historical reasons). Because the signal is driven by these contexts in which

long vowels are overrepresented relative to their low overall base rate of occurrence,

this account makes the strong prediction that these types of contexts are necessary

for phonetic learning to happen. This prediction could be tested relatively easily.

For the signal we are currently testing for, we need to have access to speech corpora

that have been transcribed and aligned at the sound level. But, to test for the

existence (and sufficient frequency) of these driving contexts, we could simply use

orthographically annotated corpora, which are much more prevalent.

In this case of Japanese, most of these critical contexts arise because of specific

word types/exclamations. That is, there seem to be a few word types with long

vowels that either do not have short vowel minimal pairs, or, do, but outnumber

them drastically. Even when we define context as a combination of the vowel quality,

neighboring sounds, and prosodic position, the signal we are picking up on seems

to come from particular word types/exclamations. In fact, some of the signal in

Analysis 1a comes from the same words as in Analysis 1b. For example, [a] and [e]

that form an entire utterance provide some of the signal in Analysis 1a, while the

frames [ a ] and [ e ] provide some of the signal in Analysis 1b. Despite the fact that
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they are the same word types/exclamations, they result in more extreme distance

measures in Analysis 1a than 1b because by not including word information, these

frames are only picked up when they occur as an entire utterance. These vowels

are substantially acoustically lengthened when they occur as an entire utterance,

so they deviate even more strongly from the typical context shape than when we

consider all instances of these words. This explains why the tail extends to much

longer distances in Analysis 1a and 1b.

Two notes on the status of the word in these analyses: first, while it is true

that words are the source of this signal in Japanese, this need not be the case, and

the source of the signal could vary across contrasts and languages. For example,

to differentiate [n] vs. [N] in English, the fact that [N] does not occur word-initially

could serve as signal.

Second, despite the fact that we build in word-level information to both of the

analyses (i.e. whether a sound is word-initial or word-final in Analysis 1a and the

word frame in Analysis 1b), the results from Analysis 1a suggest that listeners might

be able to pick up on these contrasts without full word information. This is because

the driving contexts in Analysis 1a, shown in Table 5.2, consist of vowels that form

entire utterances (and are surrounded by pauses), so Japanese infants could notice

that the shape of the distribution changes substantially in some contexts having

only partial word-form knowledge.

In summary, this analysis compared two different languages which differ in

how length is treated, and showed that distribution shape changes were greater for

a language with a contrast than without. Crucially, distribution shape changes that
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arise from different relative proportions of short and long vowels seem to be larger

than distribution shape changes that stem from systematic acoustic variability.

Of course, in order for this learning account to work, it would need to explain,

within one language, which dimensions infants learn are contrastive or not. In the

next section, we perform this analysis, showing that within one language, places

where contrasts exist show much more extreme shape changes than places where

contrasts do not exist.

5.3 Analyses 2 and 3: Dutch

As discussed, we would ideally also like to show that within a language it is

possible to pick out the contrastive vs. non-contrastive dimensions by looking for

extreme distribution shape changes. Direct comparisons between different acoustic

dimensions (e.g. duration vs. formants in French, where the former does not con-

trast categories but the latter does) are difficult because different dimensions have

different scales, making it unclear how to make the necessary comparisons.

We overcome this issue in this section, by taking advantage of a property of

Dutch vowel length. In Dutch, some pairs of vowel qualities also contrast in length,

but others do not. In particular, while /A, a:/, /E, e:/ and /O, o:/ are said to contrast

in duration, /I, i, u, y/ are said not to (Nooteboom and Slis, 1972; Swingley, 2019).

This is a slightly different case than in Japanese, because the contrasts are also

accompanied by vowel quality changes; however, the contrast exists and infants

learn about it (Dietrich et al., 2007; Van der Feest and Swingley, 2011). In this
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section, we use two Dutch corpora (one infant-directed and one adult-directed) to

show that the distribution shape changes more substantially across contexts when

we consider the subset of vowels that do exhibit a vowel length contrast than when

we consider the subset of vowels that do not exhibit a vowel length contrast.

5.3.1 Data

5.3.1.1 Ernestus Corpus of Spontaneous Dutch (ECSD; Dutch ADS)

We use the Ernestus Corpus of Spontaneous Dutch (Ernestus, 2000) for one

of our Dutch corpora. The corpus consists of adult-directed, conversational speech

that was spontaneously produced by twenty different speakers. The speakers were

all male, and were between the ages of 21 and 55 years old. The corpus consists of

about 15 hours of recorded speech, which includes 153,200 word tokens and 9,035

word types. The speech was elicited as follows. Pairs of colleagues or friends talked

with each other in a soundproof room in sessions that lasted about 90 minutes each.

The sessions had two portions. In the first half, the pairs of speakers spoke freely

about any conversation topic they wanted. The experimenter was present, but only

participated if they needed to enliven the conversation. In the second half, the pairs

of speakers engaged in a task-oriented conversation, in which they negotiated about

the purchase of camping goods. As with the other corpora used in this chapter,

the speech was casual in nature, and exhibited many properties of spontaneously

produced speech, despite the slightly artificial setting of the recording. It is worth

noting that four word types accounted for 8.2% of all of the word tokens, and two
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of them had long vowels in them (maar ‘but’ and nee ‘no’).

Transcriptions

Professional transcribers created a orthographic transcription of the interac-

tions, which was manually aligned to the speech. The corpus was also phonetically

transcribed; however, unlike with the past corpora, the phonetic transcription was

created via forced alignment, not manually. The forced alignment procedure took as

input the speech files, the orthographic transcriptions, a lexicon containing multiple

possible pronunciations for all word types, and acoustic models for the phones, and

output a phonetic transcription that was aligned to the speech. More details about

how the forced alignment worked can be found in Schuppler et al. (2011).

The forced aligned annotations were validated by Schuppler et al. (2011), who

performed the alignment. Because there was no manually annotated portion of the

ECSD that could be used to validate the transcriptions, the researchers evaluated

the quality of the forced aligner using the spontaneous portion of the IFA Dutch

Spoken Language Corpus, a similar corpus that was manually annotated. They ran

the exact same forced aligner on that corpus and compared the output of the forced

aligner against the manual annotations. The authors observed a 14% discrepancy

between the manual annotations and forced-aligned annotations which is in the

range of human disagreement. However, because they did not directly validate

durational information, it is currently unclear how accurate annotations of the start

and end points of the phones are. This could introduce some noise into our analyses,

as it will have consequences on how accurate the vowel durations are, as well as how
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accurately we can determine which word a vowel belong to, and future work should

replicate these findings once cleaner data become available.

5.3.1.2 Swingley Dutch Infant-Directed Speech

We also tested the predictions of the account on a corpus of Dutch infant-

directed speech collected by Fikkert (1994) and Levelt (1994). The annotated por-

tion of this corpus is small: it contains a total of 300 utterances, with a total of only

1296 vowel tokens. However, the data more closely resembles the type of data that

infants learn from, so we chose to analyze it.

The corpus consists of naturalistic longitudinal observations. Experimenters

did home visits every two weeks for about 7-15 months and recorded their spon-

taneous interactions with the children. The full corpus consists of speech directed

at 11 children; however, the portion we use only includes speech directed to one

of them (Catootje), who was aged 1;10. The speaker was a native Dutch-speaking

mother, but was not the child’s mother, though a caregiver was usually present for

the interactions. The spontaneous speech was produced in the context of playing or

discussing picture books in sessions that lasted between 30-45 minutes.

Transcriptions

The corpus was transcribed at the word level, and time-aligned phonetic an-

notations were created by Dan Swingley (Swingley, 2019). Given the transcriptions,

the speech toolkit HTK (Young et al., 2002) was used to estimate the boundaries
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of the phones using the HVITE forced-alignment tool. The output of the forced-

alignment tool was manually corrected in Praat (Boersma, 2001) by D.S. a speaker

of Dutch. The boundaries of the phones as well as the labels were corrected, as

needed.

In the shareable format of the corpus, the word-level transcription was not

time-aligned to the speech. Using the word-level transcriptions as well as the time-

aligned phonetic transcriptions, I manually aligned the word-level transcription to

the speech, based on the location of the phones. Although I am not a speaker of

Dutch, this was a straight-forward task because the mapping between the word-level

information and sound-level information was apparent.

5.3.2 Methods

The methods were largely similar to those used in the French vs. Japanese

comparisons, but with slight modifications based largely on corpus size. We subset-

ted the Dutch ADS and IDS data sets into two portions each, that we then compared

within corpus. For both corpora, the first subset consisted of all /A, a:, E, e:, O, o:/

vowels (which are thought to contrast in duration). The second subset consisted of

all /I, i, y, u/ vowels (which are not thought to contrast by duration) (Nooteboom

and Slis, 1972; Swingley, 2019). The IDS analyses effectively only included /I, i,

u/ vowels in the second subset, because there were only a couple of /y/ vowels in

the whole corpus. In the following sections, we outline the corpus-specific design

decisions we made.
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5.3.2.1 Analysis 2: Dutch ADS

For the analyses on the adult-directed speech, we again defined context in

two ways: in Analysis 2a, we defined context as a combination of the vowel quality,

prosodic position, and neighboring sounds. In Analysis 2b, we defined context as the

word frame of the vowel. We then chose contexts that had over 50 vowel tokens in

them. As before, we did pairwise one-by-one comparisons between the distribution

shape in each context and every other context that met the threshold of 50 vowel

tokens. We again used Earthmover’s distance to quantify the distribution shape

change. We computed the overall average Earthmover’s distance, and plotted the

overall distribution of pairwise distances observed for each subset of vowels.

For Dutch, there were more vowels in the “contrastive” subset than the “non-

contrastive” subset. This means that there were relatively more contexts that met

the 50 vowel token threshold in the contrastive case than the non-contrastive case.

To try to address this issue, we also ran versions (i) where we included the same

number of contexts for both the Dutch IDS and the Dutch ADS, and (ii) where

we artificially decreased the size of the (larger) contrastive subset. All alternatives

resulted in the same qualitative findings as those we report here.

5.3.2.2 Analysis 3: Dutch IDS

Unlike for the other analyses, for the analyses on Dutch IDS, we only defined

context in one way: word frames. We did not run an analysis looking at context as

a combination of the vowel quality, neighboring sounds, and prosodic position, due
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to the small dataset size.

We chose all word frames that had at least 10 vowel tokens in them. As

before, we did pairwise one-by-one comparisons between the distribution shape in

each context and every other context that met threshold. We used Earthmover’s

distance, computed the overall average Earthmover’s distance for each subset of

data, and plotted the distribution of distances observed.

5.3.3 Results

The results comparing contrastive and non-contrastive vowels in Dutch mirror

the results observed when comparing French to Japanese.

5.3.3.1 Dutch ADS

The results from Dutch ADS (Analysis 2) are shown in Figure 5.6. As before,

the average and median Earthmover’s distance is larger when there is a length con-

trast than when there is not. For Analysis 2a (context = quality + prosodic position

+ neighboring sounds), the average Earthmover’s distance is 40.9 for the contrastive

subset, but 29.0 for the non-contrastive subset. The median Earthmover’s distance

is 25.8 for the contrastive subset and 21.2 for the non-contrastive subset. For Anal-

ysis 2b (context = word frame), the average Earthmover’s distance is 35.4 for the

contrastive subset of vowels, but 30.7 for the non-contrastive subset. The median

Earthmover’s distance is 29.3 for the contrastive subset of vowels, but 26.3 for the

non-contrastive subset.
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Context = Vowel quality + Prosodic position + Neighboring Sounds

Context = Word Frame

Figure 5.6: Distribution shape changes across contexts in Dutch ADS
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In addition, just as in French/Japanese, the boxpot corresponding to the con-

trastive subset has a much longer tail than the boxplot corresponding to the non-

contrastive subset, in both ways of defining context. The one difference that we do

observe between this analysis and the previous analysis is that the tail for Analy-

sis 2a (Dutch ADS) does not extend as far as for Analysis 1a (French/Japanese).

In this analysis, the highest distance is around 250, while it reached 400 in the

French/Japanese analysis. One reason for this could be that length contrasts have

a different status in Dutch vs. Japanese. In Dutch, there are also quality differ-

ences, while they are strictly length contrasts in Japanese. Another reason could be

that the Japanese analysis was picking up on exclamations which were particularly

acoustically long.

Overall, however, we observe the same pattern of results as before, but within

one language instead of between languages. This is real signal that Dutch listeners

could pick up on to learn about the vowel length contrast in Dutch.

5.3.3.2 Dutch IDS

The results from the Dutch infant-directed speech corpus (context = word

frames) are shown in Figure 5.7. The results are, again, consistent with our learning

account. In particular, the average Earthmover’s distance is higher for the vowels

that contrast in length than for vowels that do not. The average Earthmover’s

distance is 49.0 for the contrastive subset, but 27.8 for the non-contrastive subset.

The median Earthmover’s distance is 27.8 for the contrastive subset, but 23.8 for
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Context = Word Frame

Figure 5.7: Distribution shape changes across contexts in Dutch IDS

the non-contrastive subset.

In addition, as before, the tail for the contrastive vowels is longer than the tail

for the non-contrastive vowels. The scale is different than before (the largest distance

is 120 rather than 250 or even 400); however, the same pattern that differentiates the

non-contrastive from the contrastive vowels exists. That is, even in very small data

sets, the necessary signal for infants to learn the contrast appears in naturalistic

speech corpora. Taken together with the other analyses, this is promising evidence

for this account that infants learn the contrasts of their language by tracking the

acoustic distributions across contexts, and searching for substantially large changes

in shape.
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5.3.4 Discussion

In this section we showed that in Dutch, just as in French vs. Japanese,

the distribution shape varies more across contexts in the subset of vowels that do

contrast in length than in the subset of vowels that do not. These results provide

further evidence that this is a relative stable property of contrastive dimensions that

infants may be able to exploit.

The Dutch analyses are an important complement to the Japanese/French

analyses, because they move us toward understanding what signal might be present

for an infant to learn one particular language’s contrasts. These results show that,

even within one language, there is signal that infants could exploit: there are dif-

ferences between vowel qualities that do contrast in length and those that do not.

However, it is very important to emphasize that our results are not intended to

illustrate the step-by-step process that infants follow to learn the phonetic contrasts

of their language in an unsupervised fashion. Rather they are meant to show that

there are real, reliable, and robust differences between cases where there is a pho-

netic contrast and cases where there is no phonetic contrast that are detectable in

naturalistic speech. For example, we demonstrate that the subset of Dutch vowels

with a length contrast has more extreme distribution shape changes across contexts

than the subset of Dutch vowels without a length contrast. This is important be-

cause it is one of the first times that these two subsets have been differentiated

on naturalistic speech. However, infants would not necessarily know how to group

these vowels before they learn about the contrast. Future work will need to be done
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to turn this into a full-fledged unsupervised learning account, and we speculate on

future directions of this sort in Chapter 6. Nonetheless, the fact that we can even

show a difference between the contrastive and non-contrastive subsets on natural-

istic speech and that this difference replicates regardless of what language, corpus,

speaking style, type of context, or context-pair inclusion criterion we use, is already

a step forward.

5.4 Summary and Discussion

In this chapter, I presented a new idea for how infants could learn that a

particular acoustic dimension of their language is contrastive, and provided initial

support that the signal necessary for this learning story is present in naturalistic

speech. I showed that it was present between languages, and could explain why

infants of one language (Japanese) learn there is a contrast, while infants of another

language (French) do not. In addition, I showed that the subset of Dutch vowels that

do have a length contrast differ from the subset that does not, within one language.

Overall, these results constitute one of the first accounts that can explain language-

specific phonetic learning. Unlike many past learning accounts, this account has

support from naturalistic speech.

At the core of the account is the idea that changing relative proportions of

sound categories across contexts will lead to different distribution shapes across

contexts. Our results suggest that this is, to some extent, a property of contrastive

dimensions that infants could pick up on. This result did not need to happen. First,

128



it could have been that systematic acoustic variability caused large differences in

distribution shape across contexts in French, just as in Japanese. Second, these

driving contexts (that consist primarily of a non-dominant category) did not need

to be so prevalent in the speech data. In particular, if all of the contexts that

deviated from 90% short vowels and 10% long vowels were infrequent, this result

would not have arisen. Instead, this result arose and it arose in any way we tried

running the analysis - changing the language, corpus, speech style, context type,

context inclusion criteria, etc. all led to the same results.

These analyses raise many open questions. I will discuss some of the more

practical issues here, and will leave more speculative discussion about e.g. how this

relates to further phonetic learning, what work needs to be done to turn this into

an unsupervised learning account, and whether listeners can actually do this for the

General Discussion in Chapter 6.

5.4.1 Do these results generalize to infant-directed speech?

With the exception of the Dutch infant-directed speech corpus, the analyses

used adult-directed speech corpora because they were the only large, naturalistic

corpora that had the necessary phonetic transcriptions and alignments. Future work

should certainly test these predictions on IDS when the necessary corpora become

available; however, in the meantime, I speculate that these results will hold true on

IDS just like on ADS. First, comparing Dutch ADS and Dutch IDS provides some

initial support that these results will hold. In order for this pattern to hold in IDS
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more generally, we must (i) still observe a long tail for the Japanese IDS corpus, and

(ii) not observe a long tail for the French (or other non-contrastive) IDS corpus.

The fact that we observe a long tail for the Japanese corpus stems from the

fact that there are contexts or word frames that primarily have long vowels in them.

Therefore, we would expect a long tail in the Japanese IDS data as well, as long

as these contexts exist in the IDS. There has been a lot of discussion of differences

between ADS and IDS for phonetic learning (e.g. Cristia and Seidl, 2014; De Boer

and Kuhl, 2003; Eaves Jr et al., 2016; Kirchhoff and Schimmel, 2005; Kuhl et al.,

1997; McMurray et al., 2013), but these tend to discuss differences in the acoustics

(e.g. expanded vowel spaces) and focus less on differences in what is said. The

fact that the top-down information account models performed so well in Chapter 3

suggests that the necessary contexts do exist in IDS, just as in ADS. As has been

explained before, the existence of these contexts does not imply that the tail will

still be present, but it seems fairly reasonable that it would still exist based on the

logic of this account.

What seems less clear is whether there would still be no tail in French. If,

for example, French mothers elongate certain vowels more in some contexts than

others in IDS, but not ADS, then this could lead to an analogous tail in French.

One example is if French mothers elongate vowels that make up an entire utterance

much more than they elongate other vowels (if they elongate all vowels equally then

all of the distributions will be shifted and this should not make a big difference in

shape). This seems relatively likely to be the case; however, even if they do this,

if Japanese mothers do the same thing, then we would still expect to see a longer
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tail for Japanese than French, even if both tails were longer for IDS than ADS.

Combined with the Dutch ADS vs. IDS results, it seems likely that the pattern

would hold in IDS.

5.4.2 Implications beyond language acquisition

We have discussed these results in the light of acquisition, but they have impli-

cations for language change and language universals as well. At a high level, these

results highlight a critical connection between phonetic learning and phonotactic

constraints (or other systematic regularities that dictate which contexts particular

sound categories tend to occur in). As a result, this account makes predictions

about which contrasts will or will not persist over time. In particular, it predicts

that phonemic contrasts will disappear if the contrasting sounds start occurring in

identical contexts. Put slightly differently, it predicts that languages without phono-

tactic constraints (or in which sound category makeup is identical across contexts)

cannot exist, unless there are other cues present that infants could use to learn pho-

netic contrasts. These predictions are testable both by looking at historical language

data, as well as by in-lab experiments testing iterative generational learning, and

future work should investigate them.

5.4.3 Corpus sizes

It is important to note that the full datasets we used for the analyses were

always larger for the contrastive cases than for the non-contrastive cases. The
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CSJ (spontaneous Japanese corpus) is larger than the NCCFr (spontaneous French

corpus), and because there are more vowel qualities in Dutch that do contrast in

length than that do not contrast, the Dutch contrastive dataset was always larger

than the non-contrastive dataset. This is potentially problematic - the long-tail

effect is driven by a small number of contexts, and so, if these contexts did not occur

in the dataset, then we would not observe the pattern. Having a smaller dataset

size for the non-contrastive cases, increases the possibility that these contexts exist

in speech even for French, but were simply not represented in the dataset. We were

aware of this problem, and corrected for it. We both (i) artificially balanced the

sizes of the data sets (by randomly sampling vowel tokens from the larger corpus),

and (ii) considered more contexts in the non-contrastive case than in the contrastive

case. We observed the effect regardless. To some extent, this gets rid of the problem

by making it a more fair comparison; however, there is still a possibility that the

relevant contexts were simply not present in the non-contrastive corpora when they

are available to infants who get access to much more data. Of course, having more

data for Japanese would also probably increase the number of driving contexts there.

As a result, it seems unlikely that this would explain the whole effect; however, this

is an issue that is worth keeping in mind.

Beyond just the different ways of dealing with imbalanced corpus sizes, there

are additional decisions to make when choosing which contexts to include in the

analyses. For example, we could include contexts that have more than N vowels in

them (where N could be any arbitrary number), or we could simply include the top

M contexts. Again, the results hold true regardless. In fact, any procedure will yield
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the long tail in Japanese as long as at least some of the driving contexts described

in Tables 5.2 and 5.3 are present in the data used, which seems likely based on

their counts and frequency ranks. This relatively consistency is promising for this

account, as it suggests that this effect is relatively robust.

That is, no matter how we run this analysis - no matter the language, the

corpus, the speech style, the context type, the context inclusion criteria - the results

come out the same. There is more distribution shape change across contexts when

there is a contrast than when there is not on naturalistic speech. This is strong

support for a new learning account of how infants learn what dimensions of their

language contrast. We speculate further about this learning account in Chapter 6.
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Chapter 6: General Discussion

6.1 Summary of this Dissertation

This dissertation asked how contextual information (like who spoke a sound,

what the neighboring sounds where, and where in an utterance a sound occurred)

can help in separating overlapping categories, focusing both on the problem of adult

speech perception and on infant phonetic learning. In Chapter 3, we tested the effi-

cacy of two ways of using context in helping to disambiguate overlapping categories.

We tested top-down information accounts, where listeners make use of context to

bias their expectations of what category they will observe, as well as normaliza-

tion accounts, where listeners use context to help factor out systematic variability.

Although well-studied, these ideas have been somewhat conflated in past work and

have rarely and with limited success been applied to naturalistic spontaneous speech.

In this dissertation, we further explored these two ideas, trying to overcome these

issues with past work. We disentangled these two ideas and carefully studied the

relative contribution of each of them to the listener’s task, applying them to spon-

taneous speech. Our simulations showed that a top-down information strategy is

effective even on spontaneous speech, but that normalization is not. This result was

surprising given that normalization has been found to be effective in the past.
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In Chapter 4, we resolved this discrepancy, by showing that normalization was

helpful when we ran our same analyses on simplified controlled lab data - of the type

generally studied in the normalization literature - rather than on naturalistic spon-

taneous speech. We then provided simulations and a mathematical analysis showing

that normalization may be ineffective when there are context-specific category im-

balances - precisely of the type that are useful for top-down information accounts.

This suggests that a learner whose input contains imbalances through phenomena

such as phonotactic constraints and phonological alternations, is better off using

context to bias their perception in a top-down fashion rather than normalizing it

out, at least as we have implemented these strategies here.

This led us, in Chapter 5, to propose a new account for how infants might learn

that a particular dimension contrasts in their language that does just that. This

account was inspired both by distributional learning accounts (Maye et al., 2002),

and by findings that infants are sensitive to higher-level contextual information (e.g.

Feldman et al., 2013b; Thiessen, 2007). We suggested that infants could track the

acoustic distributions of speech sounds across contexts, and learn that a particular

dimension is contrastive if the distribution shape varies substantially across contexts

along that dimension. We showed that, unlike past accounts, this account makes

predictions that hold true on naturalistic speech, and that it can qualitatively explain

why Japanese, French, and Dutch infants learn what they do. Importantly, it does

so on highly variable, naturalistic speech.

In what follows, we end with a discussion of how we might expect these results

to generalize (or not) to other problems in speech perception and learning, where
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this leaves normalization in the literature, what the implications of and next steps

for testing the proposed learning account are, as well as the importance of testing

ideas on spontaneous data in addition to controlled lab data.

6.2 How generalizable are these results?

The results presented in this dissertation are directly applicable to the Japanese

vowel length contrast, but this is just one test case where context has been argued

to play a role, due to overlap in perceptual cues. To what extent do our results

generalize to other overlapping category problems in phonetic learning and speech

perception? We discuss this, in turn, for: (i) top-down information being helpful in

separating short and long vowels in Chapter 3, (ii) normalization being unhelpful

for separating short and long vowels in Chapter 3, as well as (iii) there being signal

that supports our distributional learning across contexts account.

6.2.1 Top-down information is helpful for separating short and long

vowels

It is relatively likely that our results showing the efficacy of top-down infor-

mation accounts would generalize to other tasks in speech perception and phonetic

learning. In both of these areas, there is already ample evidence that top-down

information is useful (though mostly from controlled lab data). In addition, there

is evidence that there are systematic regularities in which contexts sounds of all

types occur (reviewed in the top-down information background section). Therefore,
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although the generality of this result would need to be confirmed on more realistic

data, we speculate that these results would generalize to other cases.

6.2.2 Normalization is ineffective for separating short and long vowels

The picture is a bit more complicated for our results on normalization. Our

analysis reveals that normalization is ineffective when it is difficult to estimate the

normalization function. As we have shown here, it will be difficult to estimate

normalization functions for contextual factors that would be helpful for top-down

information accounts (i.e. when there are regularities in which categories occur in

which contexts). In addition, as will be discussed more extensively in Section 6.3, it

will also be difficult to estimate one good normalization function for contextual fac-

tors that affect the productions of different categories differently (e.g. a contextual

factor that acoustically lengthens long vowels more than they acoustically lengthen

short vowels). To the extent that people are dealing with contextual factors that do

not fall into one of these classes, normalization could very well help for the tasks of

speech perception and phonetic learning. In particular, it is possible that in the case

of Japanese vowel length, there is sufficient signal via top-down information to dis-

tinguish most short/long minimal pairs without attending to the acoustic duration

at all, so that in conversational speech, the durational contrast is mostly neutral-

ized. It may be the case that normalization is ineffective for contrasts with low

functional load (like Japanese vowel length), but more effective for contrasts with

high functional load, where speakers must produce a perceptible contrast in order to
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be understood. We, nonetheless, speculate that the ineffectiveness of normalization

will generalize to many other contrasts, as naturalistic speech is full of top-down

information, which helps predict which sound will be uttered, even without hearing

the acoustics of the sound, but hurts normalization. However, further work will need

to be done to study the extent to which these findings generalize to other contrasts

within the domains of speech perception and phonetic learning.

6.2.3 Distribution shape changes can signal contrastive dimensions

The analyses we performed in support of our learning account in Chapter 5

were already more general than those in Chapter 3 and 4, because they considered

multiple languages. However, they still nonetheless all focused on vowel length. This

was done, in part, because this was a natural extension from the work in Chapter

3. Beyond that, vowel length was a natural choice because there is one main, clear

and agreed-upon cue to the length contrast (i.e. duration) that is readily available

in any corpus that is annotated at the segmental level (this is not true for other cues

like formants, which need to be measured after transcriptions are made). However,

future work will test whether this result generalizes, considering both a broader

range of languages and corpora, and a broader range of contrast types.

Will this result generalize to other corpora and languages when we still consider

vowel length? This result holds for corpora in French, Japanese, and Dutch, and

we predict that it should generalize to other corpora types and languages as well.

As discussed, one of the most important tests will be whether it generalizes to
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infant-directed speech. Beyond that, considering the test cases of English (which is

similar to Dutch, in that it has secondary length distinctions), as well as Spanish will

be informative, and phonetically annotated adult-directed corpora are available for

these languages (e.g. Buckeye Corpus (Pitt et al., 2005) and the Nijmegen Corpus of

Casual Spanish (Torreira and Ernestus, 2012), which parallels NCCFr). One of the

issues in comparing French and Japanese is that the vowel inventories of these two

languages are quite different: Japanese has 5 vowel qualities, while French has 10-15.

Because vowel quality was part of how we defined context in some of our analyses,

this created (probably harmless) differences between French and Japanese, in that

there were more context types in French. Turning to Spanish instead of French

would allow us to avoid this problem, because Spanish has the same exact five

vowel qualities as Japanese, allowing for fairer comparisons. In addition, turning to

other languages would also allow us to test whether the contexts that drive the long

tail still primarily arise from word types, or whether phonotactics and alternations

can also create this signal in the data.

Will this result generalize to other contrasts? In principle, there is no reason

why it should not. The logic remains the same, even when we turn to other contrasts:

where there are multiple categories along a dimension, there should be changes in

relative category proportions across contexts because of the language’s frequent word

forms, phonotactics, and other properties. Because different categories have different

distributions and locations in acoustic space, this will change the distribution in ways

that might be visible and detectable from the speech signal.

Future work will investigate whether this is the case, starting with contrasts

139



that, like length, are signaled by one primary acoustic dimension. For example, it

would be interesting to compare a language that contrasts [s]-[S] against one that

does not, along centroid frequency (the primary cue to this contrast). From the

corpora that will become available to us, English vs. Spanish, in which [S] only

appears in loanwords, might be a good case to consider. Another contrast that

would be worth considering is [r] vs. [l] along the third formant, and Japanese vs.

English could serve as a good test case for that. Other cases like nasalization would

also be interesting to consider eventually, but there is less of an agreed upon primary

cue that listeners are thought to use. Nonetheless, comparing French against English

vowels would be an interesting test case for nasalization.

There are two types of contrasts that would be especially interesting to con-

sider. First, it would be interesting to look at a contrast where the categories are

much more balanced in their overall frequency. Vowel length is unique in that one

of the categories occurs so much less frequently than the other. When we looked

at vowel length, the driving contexts sometimes consisted of over 75-80% long vow-

els, even though long vowels constitute only 10% of all vowel tokens. When the

categories are more balanced to begin with, contexts that overrepresent particular

categories will be more similar in make-up to the most common contexts, so it is

worth seeing whether this result continues to hold there.

Second, it will be interesting to compare languages where a particular contrast

is meaningfully contrastive in one, but allophonic (and common) in the other. Com-

paring nasalization in French vs. English would be a good test case for this because

French has contrastive nasal and oral vowels, but these are allophonic in English:
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vowels are predictably nasalized before nasal consonants. For English, this means

that the relative proportion of nasal and non-nasal vowels will vary substantially

across contexts: vowels before nasals will be primarily nasal, and all other vowels

will be primarily oral. This is precisely the type of signal that this account picks

up on, so it will be interesting to see how the signal differs between contrastive vs.

allophonic cases.

One possible outcome is that the signal will be different for the contrastive vs.

allophonic vs. the non-allophonic cases that we have considered. For the allophonic

case, the relative proportion of different categories will be much more consistent

across contexts: almost all of the vowels before nasals will belong to one category

(nasals) and almost all of the vowels before other sounds will be non-nasals, and

this could potentially result in different signal.

The more likely outcome, however, is that the allophonic cases will be indistin-

guishable from the contrastive cases. This is not particularly problematic because

even English infants need to learn about nasal vs. oral vowels in order to represent

rules about them and to produce the correct segment in the right environment. If our

learning account cannot differentiate phonetic contrasts from allophonic segments,

then a full learning account would need to invoke proposals about how infants learn

allophonic rules (e.g. Peperkamp et al., 2006) on top of our current learning account.

The accounts that have been proposed for how infants learn about allophones are ac-

tually quite similar in nature to the account proposed here. In particular, Peperkamp

et al. (2006) proposed that infants might learn that two sounds are allophones by

measuring the discrepancy in context probabilities for each pair of segments, based
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on the observation that these segments will be in complementary distribution (i.e.

will occur in mutually exclusive contexts).

It is worth noting that this would result in a two-stage process, where infants

first learn the phonetic categories of their language, before learning the phonemes

of their language. This sort of two-stage process (as proposed in Peperkamp et al.

(2006)) has been criticized in the past by Dillon et al. (2013). In particular, Dillon

et al. (2013) have argued that the initial phonetic categories cannot be accurately

learned without some model of phonology, and if the outcome of the first stage

of the process (i.e. phonetic learning) is wrong, the second stage (i.e. phonemic

learning) will fail. This is an important argument to keep in mind as we further

develop this learning story. One possible counterargument is that I, too, agree

that the output of past phonetic learning models has been insufficient, but it is

possible that the input to the second stage may be better using our phonetic learning

account than previous phonetic learning accounts. In fact, the goal of this work is to

improve upon those models, and this might make Peperkamp et al. (2006)’s proposal

more effective. Another possibility to pursue is trying to build in more phonology

into our proposal. For example, perhaps there is a way to not only measure how

much distribution shape changes across contexts, but to also combine this with a

mechanism to understand why the extreme distribution shape changes occur. It is

possible that there is a way to distinguish cases where the extreme distribution shape

changes happen because of a predictable rule (indicating an allophonic contrast) or

not (indicating a phonemic contrast), but we leave this for future work.
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6.3 The Status of Normalization

The idea that normalization plays a role in processing and acquisition is a

widely held idea, but our results bring up important issues with it that comple-

ment other problems discussed in earlier work Johnson (1997, 2006); Pierrehumbert

(2002). In order to normalize well, it is important to be able to estimate the correct

normalization function. Failing to do so can actually increase the amount of vari-

ability and overlap between categories, rather than reduce it, as we saw in the toy

example in Figure 2.2. The results in this dissertation show that one obstacle to

estimating the normalization function well is the fact that different sound categories

occur in different contexts with different probabilities. For example, short and long

vowels differ in what consonants they are likely to precede, which makes factoring

out systematic acoustic variability from the following consonant difficult. This is a

problem for any contextual factor that both affects which target sound is likely to

occur a priori, and systematically affects a target sound’s acoustics (i.e. any contex-

tual factor that would be a good top-down predictor of vowel category). Therefore,

this is not a problem for sources of systematic variability like speech rate or gender:

short (or long) vowels are no more likely to occur in fast speech than slow speech, or

in speech by men than women (and vice versa), so speech rate and speaker gender

are unlikely to be informative about whether a particular vowel is short or long.

That being said, there are other problems with normalization that would also

affect factors like speech rate and gender. Context can affect how some categories

are produced more than others. For example, long vowels might be acoustically
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lengthened more than short vowels in slow speech. In its current form, normaliza-

tion cannot handle these types of sources of systematic variability because it uses

one normalization function across all categories. If different categories are actually

differentially affected, then the learned normalization function is guaranteed to be

wrong for some tokens, and this may increase variability and overlap rather than

reduce it.

Variation due to speech rate, gender and other speaker characteristics is also

a challenge for top-down prediction, since these effects change the realization of an

acoustic token but do not alter the prior distribution on what tokens will be present

(women pronounce sibilants differently than men, but they are not a priori more

likely to produce /s/ vs /S/) Strand and Johnson (1996). These cases indicate that

top-down prediction cannot operate alone, but must be supplemented with some

other mechanism; in principle, this could be either normalization or adaptation.

However, the adaptation account is supported by experimental evidence regarding

other kinds of variability between speakers, such as dialect. Even young infants are

capable of learning to adapt to dialect variation given sufficient evidence (e.g. van

Heugten and Johnson, 2014). Normalization is not a good account of this learning

process, since it would require complex phonological alternations such as vowel shifts

to be normalized directly in the acoustic space rather than learned phonologically

(Elsner et al., 2013). Since an adaptation mechanism would also be able to cope

with variability due to speech rate or gender, studies of these factors do not provide

independent evidence that normalization must also be present.

The question that remains is whether normalization could be altered to over-
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come these issues and be effective for categorization and acquisition. Here, we dis-

cuss possible changes; future work should investigate whether these changes make

normalization effective.

With regards to adult speech perception, one possibility would be for listeners

to learn different normalization functions for each category type (i.e. one normaliza-

tion function for short vowels and another for long vowels). This would also allow

the process to take into account category imbalances. However, if the listener is

equipped with one normalization function for short vowels and one normalization

function for long vowels, they will not know which function to use until they have

already categorized the sound, so normalization would not, in this case, be helpful

during the categorization process (only after). Another possibility would be that

listeners build separate normalization functions for separate categories, but average

them during categorization, weighting them by the relative proportion of each cate-

gory type. A third, and perhaps most likely, possibility is that instead of comparing

the overall context means to determine if there is systematic variability between con-

texts (as the current normalization implementation does), listeners could compare

the short vowel mean in one context to the short vowel mean in another context,

as well as the long vowel mean in one context to the long vowel mean in another

context. Once they have done so, they could normalize only when they notice dif-

ferences between the means within each category type. We saw in the toy example in

Figure 2.2 that category imbalances can artificially increase (or decrease) the mean,

making it seem like the sounds in a context are systematically acoustically length-

ened (or shortened). However, this problem would be avoided if the short and long
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vowels were treated differently. Of course, this idea would only be possible for adults

who have learned to categorize and know the distinction between short vowels and

long vowels. These three ideas have not yet been tested, and it is currently unclear

that they would increase the efficacy of normalization on spontaneous speech, but

future work should investigate them.

The issues with normalization become even more problematic when consider-

ing acquisition. The learner does not yet know the distinction between short and

long vowels, and cannot take into account category imbalances. As a result, they

will necessarily be applying inaccurate normalization functions, which may actu-

ally increase category overlap rather than reduce it. In addition, throughout the

dissertation, we saw that normalization performance depended on the precise set

of factors being normalized out. Therefore, a learner would have determine which

factors to factor out - and would need to learn that some factors that systematically

affect acoustic productions should be factored out, but other factors that similarly

affect acoustic productions should not be factored out. These issues complicate the

view that normalization is helpful in language acquisition.

Overall, although normalization has received a lot of support in the literature,

there is actually little to no evidence suggesting that this is a strategy that could

be helpful for acquisition and processing naturalistic speech. A lot of the evidence

that has been used to argue for normalization is also consistent with a top-down

information strategy, which, unlike normalization, was shown to be effective here,

as well as adaptation accounts. In addition, normalization has mostly been tested

on controlled lab speech, rather than the speech that listeners primarily hear and
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learn from. We showed here that these results from lab speech do not necessarily

generalize to naturalistic speech (and did not in the case of Japanese vowel length).

This work calls into question the role that normalization could play in acquisition

and processing. Future work should work to see if amending the normalization

process helps, but in its current form, there is more evidence against normalization

than for it. In order to stand by the idea that normalization helps disambiguate

overlapping categories, it is critical to find some evidence that normalization - in any

form - is actually effective in separating categories when applied to spontaneously

produced speech.

That being said, the fact that we show that normalization may not lead to

better separation between short and long vowels does not imply that listeners do

not normalize. If it is the case that listeners process their input by normalizing

acoustics relative to context, then our results indicate that listeners are overcoming

even more overlap between short and long vowels than represented in Figure 2.1.

Our results show that normalization is unlikely to be the solution to the overlapping

categories problem.

Finally, normalizing via a learned normalization function is only one way to

implement the idea of factoring out systematic variability, and other alternatives

may be more effective for processing and acquisition.

One alternative would be that instead of normalizing by learning an explicit

normalization function (implemented here as a linear regression or neural network),

listeners might rely on a alternative set of acoustic cues that are more invariant

than those that are typically measured and described. For example, researchers
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have argued that instead of absolute duration, listeners might rely on the ratio of a

vowel’s duration to a neighboring vowel’s duration, or the ratio of a vowel’s duration

to its word’s duration as an acoustic cue to vowel length in Japanese (Hirata, 2004).

Other cues like the ratio of first and second formants to third formant values, as well

as ratios between stop closure and previous vowel duration have been argued to be

helpful for perception of vowel qualities and stops, respectively (e.g. Monahan and

Idsardi, 2010; Port and Dalby, 1982). The idea is that categories may not overlap as

substantially along these other acoustic cues as they do along those that are typically

discussed (like individual formants or duration). These accounts are promising:

MEG experiments have shown that the auditory cortex is sensitive to ratios of these

sorts (Monahan and Idsardi, 2010), and analyses have shown that these can be clear

cues to category membership (Hirata, 2004; Monahan and Idsardi, 2010), though

these analyses have been of controlled lab speech rather than naturalistic speech.

Preliminary work of ours found that these alternative acoustic cues did not help for

the Japanese vowel length contrast, but it is possible that other untested acoustic

cues would, and future work should be done to systematically study this class of

ideas as applied to naturalistic speech.

A second alternative to normalization of the type discussed in this disserta-

tion would be an adaptation strategy, which reduces systematic variability without

having to calculate an explicit normalization function (Kleinschmidt and Jaeger,

2015). It does so by essentially learning a separate mapping between acoustics and

linguistic category for each context observed. This avoids the need to learn a pre-

cise normalization function, but can still overcome systematic variability by treating
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each context separately. Currently, we run into data sparsity issues, as this requires

splitting already small datasets by context (even more so than in the analyses in

Chapter 5); however, it is promising to continue pursuing, as it does not encounter

any of the issues that normalization does, and can explain the experimental findings

that have been used to argue for normalization.

6.4 The Status of Distributional Learning Across Contexts

In Chapter 5, we presented a new account of learning which dimensions are

contrastive that seems promising, but more work will need to be done to show that

this is actually a viable learning account.

First and foremost, as discussed previously, it will be important to make sure

that these results generalize more broadly. From there, it will be important to work

out a particular learning mechanism that could make use of this signal, as well

as think about how this early phonetic learning feeds into later learning. Finally,

it will be important to verify that humans can actually perform these types of

computations. We discuss various portions of this, in turn, in the sections that

follow.

6.4.1 Relationship with Other Phonetic Learning

Beyond learning which dimensions are contrastive, infants must learn how

many categories that dimension contrasts. For example, while Japanese has two

vowel lengths (short and long), some languages, like Estonian, have three vowel
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lengths, and infants need to identify what kind of language they are in, once they

have identified that a particular dimension is contrastive. In addition, infants learn

the particular location of the categories in acoustic space (i.e. what has typically

been operationalized as the mean and variance of a category). Finally, they need

to be able to categorize particular tokens into those categories. Assuming that the

presented learning account is true, how could the remainder of this learning happen?

In the following sections, I will speculate on how the various components of learning

could take place given that an infant has learned what dimensions contrast in their

language.

6.4.1.1 Learning how many categories exist along a contrastive di-

mension

It is common for a particular dimension to contrast more than two categories.

Although languages with three vowel lengths are relatively rare, common dimensions

like voice onset time can contrast multiple categories. Therefore, once an infant has

learned that a particular dimension is contrastive, they may need to learn that

there are more than two categories along it. One possibility is that this is learned

simultaneously with learning the category parameters (i.e. something akin to means

and variances), which will be discussed in the following section. However, it could

also be learned separately, and I present one idea about how this learning could

happen here.

In particular, in the analyses comparing French and Japanese, we saw that the
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contexts driving the signal in the input consisted of contexts in which long vowels

were overrepresented relative to their base rate of occurrence. These contexts were

different in shape from the vast majority of the other contexts. It is possible that

this might be extended in a three-way contrast (that consists, hypothetically, of

Category A, Category B, and Category C). In particular, in a three-way contrast,

perhaps there are some contexts consisting primarily of Category A tokens, some

contexts consisting primarily of Category B tokens, and other contexts consisting of

Category C tokens. In this case, on the surface, we might observe a long tail that

resembles what we observed in the Japanese case. However, unlike in the two-way

contrast case, the tail would include contexts with distributions that are different

in shape from the vast majority of contexts, but also different from each other.

That is, while in the two-way length contrast, there seem to be two main types

of distribution shape differentiated in the tail, in a three-way contrast case, there

might be three main types of distribution shape differentiated in the tail (those that

primarily have Category A, those that consist primarily of Category B, and those

that consist primarily of Category C). Infants might consider not just whether there

are big changes in distribution shape, but also which contexts are driving them, and

if they are, in turn, similar to each other. If they notice that the driving contexts

themselves are different in shape from one another, they could possibly learn that

there are as many categories as there are “different category shapes.”
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6.4.1.2 Learning the category parameters

Once infants have learned that a particular dimension is contrastive, they must

also learn where the categories are in acoustic space. One possibility is that infants

learn how many categories exist along a dimension (as described in the previous sec-

tion), and then learn where those categories are. Another possibility is that infants

learn the category parameters and number simultaneously.

Possibility 1: Infants learn how many categories a dimension contrasts

and then learn the category parameters

The first possibility is that, once they have learned how many vowels exist, they

then use that information to learn where the categories are. Within this possibility,

one option is that, once infants know how many categories exist, finding the actual

categories is trivial - simply clustering the categories into two, three, or more groups

based on the overall acoustics could arrive at the correct solution (or nearly correct

solution that can be corrected over time).

Another possibility is as follows: if it turns out that there are, in fact, two

main types of distribution shape in the tail in a two-way contrast (one that consists

primarily of Category A, and another that consists primarily of Category B), but

three main types of distribution shape in the tail in a three-way contrast (one that

consists primarily of Category A, another that consists primarily of Category B,

and still others that consist primarily of Category C), then it is possible that the

location and shape of the distribution in each of these context types could clue a
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learner in to the category parameters. That is, the distribution in contexts consist-

ing primarily of Category A will likely have parameters (e.g. mean and variance)

that are fairly similar to those of Category A, whereas distributions in contexts

consisting primarily of Category B will have parameters that more closely resemble

those of Category B itself. Therefore, if an infant notices that there are multiple

types of distribution shape, then they could use the parameters of these contexts as

initial category parameters. Of course, there would be some noise in these estimates;

however, because there is so much variability to begin with in how each category is

produced, it might not hurt the learner too much.

Possibility 2: Infants simultaneously learn the number of categories and

category parameters

Another possibility is that they learn the number of categories at the same

time as the parameters. Here, I will outline one possible way that this could happen,

inspired entirely by Balaji et al. (2019). This will also move us in the direction of a

full-fledged unsupervised learning model that explicitly takes into account distribu-

tion shape changes across contexts.

The key idea is as follows: having introduced the idea of comparing distri-

bution shapes across contexts, a new way of conceptualizing the category learning

problem is trying to identify the set of categories that best explains the observed

variability and change in distribution shapes across contexts. For example, one pos-

sible category set is one single category with e.g. mean 100 and variance 20; another

possible category set is two categories - one with mean 100 and variance 20, and
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another with mean 200 and variance 40. With this in mind, if successful, a French

infant would land on a one-category solution that has parameters corresponding to

the short category in French. A Japanese infant, on the other hand, would arrive

at a two-category solution that has the parameters corresponding to short and long

vowels in Japanese. Two categories would allow them to explain why there are such

large distribution shape changes.

One way this can be thought about comes directly from a paper that tries to

define a variant of Earthmover’s distance that is not as sensitive to category imbal-

ances across contexts (Balaji et al., 2019). The paper points out that Earthmover’s

distance is affected by what the relative proportion of categories is across contexts:

even if two distributions contain identical categories, if one distribution is 50%/50%

short and long vowels, and the other has 90%/10%, then the Earthmover’s distance

between them will be large. This is precisely the signal that our learning account

picks up on; however, for some applications in computer science, this property is

problematic and Balaji et al. (2019) propose a new variant of Earthmover’s that

corrects for this.

At this point, it would be helpful to introduce their formal definition of what

they term “normalized Wasserstein distance” and what we will refer to as “nor-

malized Earthmover’s distance.” We will then explain how this could relate to the

learning.

Let G be a set of generator functions with k components defined as G :=

[G1, ...,Gk]. We can think of this as the underlying category set we have been

discussing, where each component corresponds to one category. One possible G has
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one (short vowel) component (e.g., G = [N (100, 20)]), and another possible G has

two components (e.g., G = [N (100, 20), N (200, 40)], corresponding to a short vowel

category and a long vowel category).

Next, let PG,π be a mixture probability distribution for a random variable

X, where X = Gi (Z) with probability πi for 1 ≤ i ≤ k. Z is assumed to have

a normal distribution. This is essentially defining a probability distribution over

surface acoustic cues, X, in a particular context. In this context, π dictates what

the relative probability of each of the categories is. In one context, we might generate

the surface acoustic duration from the short vowel category distribution 50% of the

time, and generate a sound from the long vowel category distribution 50% of the

time. In this case, π = [0.5, 0.5] and G = [N (100, 20), N (200, 40)]. In another

context, we might generate a sound from the short vowel category distribution 90%

of the time, and generate a sound from the long vowel category distribution 10%

of the time. In this case, π = [0.9, 0.1], and G = [N (100, 20), N (200, 40)]. In a

third case, we might only have one vowel category, so we will generate our acoustic

value, Xi from that category. In this case, π = [1.0] and G = [N (100, 20)]. That is,

PG,π is simply a way of defining a probability distribution over what acoustic cues,

X, we will see based on the categories that exist in our language, and their relative

probability in that context.

Then, normalized Earthmover’s distance, W̃ , is defined as follows.

W̃ (PX ,PY ) := min
G,π(1),π(2)

W
(
PX ,PG,π(1)

)
+W

(
PY ,PG,π(2)

)
(6.1)
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where Earthmover’s distance, W , is defined as in Equation (5.1).

That is, in comparing two distributions, we consider a particular category set,

G, a particular relative proportion of each of those categories in the first distribution,

π(1), and a particular relative proportion of each of those categories in the second

distribution, π(2). For each combination of those, we calculate the Earthmover’s

distance between the first distribution and PG,π(1) , which we sum with the Earth-

mover’s distance between the second distribution and PG,π(2) . The final normalized

Earthmover’s distance is the minimum of those sums, over all G, π(1), π(2).

This will allow us to treat a Japanese distribution from a context that is 90%

long and 10% short, and a distribution from a context that is 10% short and 90%

long as similar in shape, because instead of comparing these distributions against

one another (as we are currently doing), we will compare them against intermediate

distributions that both have the same underlying category set, but explicitly rep-

resent that the tokens in the first distribution mostly come from the long category,

and the tokens in the second distribution mostly come from the short category.

This could potentially relate to learning sound categories, because we can

think of learning as choosing the G that best explains the change in distribution

shape across contexts, where the G that best does this is the one that minimizes

distance. One issue that arises is that based on the way it is currently defined,

if we are comparing G’s with one component to G’s with two components, then

the G with two components will always necessarily reduce the distance. Therefore,

we would need to correct for this (e.g. with a prior for fewer categories) in a full

version; however, this could be one way to turn the signal that we have observed
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into a learning account. Japanese infants learn that there are two categories because

that solution best explains the distribution shape changes observed across contexts,

whereas French infants learn that there is one category because that solution explains

the lack of distribution shape changes well, without need to add in a second category.

In practice, this is unlikely to work on naturalistic speech. There is systematic

acoustic variability that could affect the results, so it would be necessary to build

in something that could allow for some shifts in context arising for other reasons

than the underlying category structure. Nonetheless, it is interesting to think about

as we move towards building unsupervised models, as it provides a new framework

and way of thinking about learning, where learning consists in explicitly trying to

explain these differences in shape.

6.4.1.3 Learning to categorize individual sounds

The last portion of the learning problem consists of learning to categorize indi-

vidual tokens, given knowledge about where the categories are. We saw in Chapter

3 that we can categorize particular vowels fairly accurately using contextual infor-

mation in a top-down fashion, once categories are known, and the categorization

would presumably be even better once specific word identity information was in-

cluded. Therefore, once children know the location of the sound categories in acous-

tic space, they could use a combination of the acoustics and systematic differences

in the contexts different sounds occur in to start predicting their category member-

ship. This could be updated over time - after all, children are thought to continue
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making categorization and production errors for a number of years after initially

learning about the distinction. It is worth noting that children will be helped out

once they know the category parameters because they will know that there is an

extreme frequency imbalance between short and long vowels.

6.4.2 Can people do this?

Once this effect is further verified in other corpora, languages, and contrasts,

it will be important to show that humans can actually perform these computations,

and that they could use them to learn about phonetic categories. This account re-

quires that listeners keep track of acoustic distributions across many contexts - some

of the analyses use more than 150 contexts, though most use fewer and these results

still hold if we reduce the number of contexts even further. In addition, this account

requires that listeners make relatively fine-grained comparisons between those dis-

tributions. Although this is not computationally trivial, this account is similar to

other accounts (e.g. normalization accounts and adaptation accounts) in terms of

what it requires of the listener. For example, normalization and adaptation ac-

counts both require that listeners compute distributions across many contexts, and

normalization accounts additionally require that listeners be able to learn specific

functions that map from one distribution to another. In addition, the fact that lis-

teners can easily perform tasks like accent adaptation (e.g. Bradlow and Bent, 2008;

Maye et al., 2008; Norris et al., 2003) and speaker identification suggests that they

can compute and compare relatively complex acoustic distributions. Regardless, if
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further analyses continue to suggest that this is a promising account, future work

should experimentally test whether listeners learn different things about phonetic

contrasts when they are presented with distributions that change in shape across

contexts vs. distributions that are relatively stable across different contexts.

6.5 Adaptation as another top-down information account of acquisi-

tion

The results presented in this dissertation are promising for the role of top-

down contextual information in acquisition. Results from Chapter 3 indicated that

using contextual information in a top-down fashion results in relatively accurate

categorization of short and long vowels. Furthermore, in this work, we only included

a small set of contextual factors, and adding in additional factors could help separate

short and long vowels even further. In particular, with the exception of part-of-

speech, our work did not include any word type or word-level information, which

has been argued to be helpful in the past (e.g. Feldman et al., 2013a). This suggests

that using contextual information as top-down information or to guide expectations

could be extremely helpful in adult speech perception.

In Chapter 5, we began laying out one possible learning account for how this

contextual information could be used to learn phonetic contrasts; however, there are

other ways that top-down information could be used in acquisition accounts, and,

here, we focus on another promising account: adaptation.

An adaptation strategy builds a separate mapping from acoustics to categories
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for each context encountered. In doing so, it has access to information about which

categories are more/less likely to occur within a particular context. Therefore, it

is possible that within particular contexts, the short and long vowel categories are

more separated than they appear overall. For example, short vowels and long vowels

might be well-separated when they occur in phrase-final position and preceded by

a particular consonant. If the distribution is bimodal along the duration dimension

in a particular context like this one, then the learner could learn that there are

two categories along the duration dimension via a process of distributional learning

(Maye et al., 2002), and then generalize this to other contexts where the distinction

is less clear.

In particular, our results have shown that there seems to be something about

carefully enunciated Japanese speech that reliably elicits different durations for short

versus long vowels. While most of the input infants hear is highly-variable and

spontaneous, infants do sometimes get some exposure to clearer instances of speech

through e.g. hearing their parents read them books. Therefore, it is, in principle,

possible that children learn which words have which vowels precisely by listening to

social situations in which their parents speak carefully.

This type of adaptation strategy, in which children learn about the distinc-

tion in a particular context and generalize it, is a particularly promising strategy,

as it provides both a way to take advantage of top-down expectations of category

membership, as well as a way to remove systematic variability. By building a sepa-

rate mapping from signal to category for each context, it has access to information

about top-down information about which categories are more or less likely to oc-
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cur in a particular context, and, therefore, can account for results that have been

used to argue for top-down information accounts. At the same time, experimental

results that have been used to argue for normalization functions can also be ex-

plained by adaptation strategies, as these results show that listeners account for the

fact that sounds are produced differently in different contexts, but cannot dissoci-

ate whether listeners do so via an explicit normalization function, or by building

a separate model for each context. As a result, adaptation accounts can explain

the experimental findings that have been used to argue in favor of both top-down

information accounts and normalization accounts in a unified way. However, again,

infant-directed speech corpora are generally quite small, and it is difficult to test

adaptation accounts without running into data sparsity issues.

In sum, although we have provided one possible learning account, there are

other ways that infants could make use of contextual information, including but

not limited to adaptation accounts, and future work should continue to investigate

these various possibilities by implementing them computationally and testing how

effective they are at learning the contrast between short and long vowels, as well as

other contrasts.

6.6 Controlled Lab Speech vs. Naturalistic Speech

Finally, the results presented in this dissertation reiterate once again that there

is a crucial distinction between controlled laboratory speech and spontaneously pro-

duced naturalistic speech. Essentially all of our understanding of speech perception
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comes from work on carefully controlled and carefully enunciated laboratory speech,

but almost all of our experience as listeners comes from messy, variable spontaneous

speech. These two types of speech differ quite substantially from each other in

nature, both in how the speech is produced, as well as the content of the speech.

Indeed, where tested, many of the ideas developed on controlled lab speech have

been shown to be ineffective on spontaneous speech. Previous work has shown that

top-down information accounts developed and tested on carefully controlled or syn-

thesized speech do not generalize to spontaneously produced lab speech Antetomaso

et al. (2017). The current work shows that normalization is helpful on lab speech,

but ineffective on spontaneously produced speech.

There is obviously a great deal of value that comes from working on speech

where various factors are controlled for and isolated. In addition, listeners can

process synthesized and controlled lab speech effortlessly, so our theories must be

able to handle clear, enunciated speech, in addition to more naturalistic daily speech.

However, what is critical is for ideas generated and tested on this lab speech to then

be applied to spontaneous speech, to make sure that researchers are working on the

same problem that listeners are solving.

There has certainly been some research starting to look at spontaneous speech,

especially with the development of hand-annotated child-directed speech corpora

such as from Mazuka et al. (2006). As we have discussed, Antetomaso et al. (2017)

applied the model from Feldman et al. (2013a) to spontaneous Japanese speech,

showing that the model’s success did not generalize to spontaneous speech. Other

work has also investigated spontaneous speech corpora both in the case of the over-
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lapping categories problem Narayan et al. (2017); Swingley and Alarcon (2018) and

more widely Guevara-Rukoz et al. (2018); Ludusan et al. (2016,0); Martin et al.

(2016). However, it is still not prevalent, and our work aligns with previous work in

revealing that studying spontaneous speech is critical for ensuring our ideas apply

to naturalistic listening situations, and that we are at the point where we can make

scientific progress by doing so.

6.7 Conclusion

In conclusion, this dissertation studied how contextual information could be

useful for phonetic learning and speech perception. We first compared the relative

efficacy of two ways of using context to help in phonetic learning. The first involved

making use of contextual information as top-down information to guide expectations

about what category was likely to be heard. The second involved factoring out sys-

tematic acoustic variability that resulted from the context a sound was produced

in. These ideas have been conflated and almost entirely studied on controlled lab

speech, not naturalistic speech. In this work, we showed that, for the case of the

Japanese vowel length distinction, a top-down information strategy is effective even

on spontaneous speech, but, contrary to previous findings, normalization is not. We

then resolved this discrepancy in findings, by demonstrating that the same normal-

ization procedure is helpful on lab speech - the focus of most previous studies - but

ineffective on spontaneous speech - the focus of our study. We provided simulations

and a mathematical analysis showing that normalization may be ineffective when
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there are context-specific category imbalances - precisely of the type that are useful

for top-down information accounts. Finally, we provided a potential solution for

how infants learn about phonetic contrasts. This account explicitly takes advantage

of the context-specific category imbalances that we show exist in the input. We

provide evidence that this account can qualitatively predict what Japanese, French,

and Dutch infants learn about vowel length, making it one of the first accounts to be

able to do so. Taken together, these results force us to come to a more nuanced and

precise view of the role that context might play in speech perception and phonetic

learning.

More generally, they show that results from controlled lab speech do not neces-

sarily generalize to naturalistic speech and that using realistic speech data matters.

The field has tended to focus on whether listeners do or do not use particular strate-

gies, making the key assumption that these strategies would be effective for learning

and processing naturalistic speech. This was true for distributional learning in the

early 2000s (which infants have been shown to do in the lab, but is now widely

understood to be insufficient for naturalistic speech), and prior to this dissertation,

it was also largely true for normalization and top-down information accounts. Sim-

plifications are crucial for science; however, if the simplifications change the learning

problem, then they can lead the field astray. This dissertation demonstrated the

need to study naturalistic speech, so that we can make sure we, as researchers, are

solving the same problems that listeners do.
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Appendix A: Normalization and Top-Down Information Results on

Japanese Adult-Directed Speech (R-JMICC)

This appendix reports results from applying the normalization and top-down

information categorization models to R-JMICC adult-directed speech, rather than

the R-JMICC infant-directed speech which was discussed in the main text. For more

information about what each of the reported models is, see the data and methods

section in Chapter 3. As discussed, the results are similar to those from the IDS

reported in Chapter 3.

A.1 Top-Down Information Results

The results are summarized in Table A.1.

A.1.0.1 Baseline Model

Our baseline model simply used absolute duration and formant values to pre-

dict the vowel category of a sound. This model reached an overall accuracy of 90.5%.

It correctly categorized 98.9% of short vowels, and 11.9% of long vowels. It had a

BIC of 14820. The BIC for the ADS results is lower than for the IDS results, because

the ADS portion of the data set is smaller, but overall the results are comparable
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to those from IDS, and reveal that the model has not learned anything about the

distinction between short and long vowels (due to the high base rate of short vowels).

A.1.0.2 Acoustic and Higher-Level Contextual Information Model

The following models used contextual factors as direct predictors to category

membership, in addition to using absolute duration and formant values. When part-

of-speech was simplified to the distinction between function and content words, the

model reached an overall accuracy of 95.8%, correctly classifying 98.5% of short

vowels and 70.4% of long vowels. The BIC was 8331. When we included full part-

of-speech information, the model achieved an overall accuracy of 95.8%, correctly

classifying 98.5% of short vowels and 70.4% of long vowels. The BIC was 8328.

Similarly for the IDS, both models substantially improved the baseline, though an

even greater percentage of long vowels is classified correctly on ADS than on IDS

(where long vowel accuracy reaches around 64%. Another difference we observe

is that for ADS, the results are almost identical regardless of how part-of-speech

information is used, while including more detailed part-of-speech information causes

performance to go up on IDS. Overall, however, we observe the same pattern of

results for ADS and IDS: using contextual information in a top-down information

improves categorization performance.
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A.1.0.3 Higher-Level Contextual Information Model Without Acous-

tics

In the final model, we only used contextual factors (including full part-of-

speech information) as direct predictors of category membership. That is, the model

did not have access to any acoustic information and could only make use of informa-

tion about how likely each category is to occur a priori. Even without any acoustic

information, this model achieved an overall accuracy of 95.1%, correctly classifying

98.4% of short vowels and 64.6% of long vowels. The model BIC was 9105. Simi-

larly as for IDS, even without any acoustic information, the model can successfully

classify a large portion of vowels just based on where the sound occurred.

A.2 Normalization Results

A summary of the results is presented in Table 3.3. We only ran a subset

of the models on the ADS. In particular, we compared the baseline unnormalized

model against two linear regression normalization models that used all contextual

factors, but either used simplified part-of-speech information or full part-of-speech

information. These results show that normalization is ineffective for the R-JMICC

ADS, just as it was on the IDS.
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A.2.0.1 Unnormalized Model

The baseline model is identical to the baseline model from the previous analysis

and uses unnormalized duration and formants as predictors of category membership,

without running any linear regression models. As a reminder, this logistic regression

model reached an overall accuracy of 90.5%. It correctly categorized 98.9% of short

vowels, and 11.9% of long vowels. It had a BIC of 14820.

A.2.1 Linear Regression Normalization Model Results

The following models used linear regression to normalize duration and for-

mants, and used normalized acoustics as predictors of category membership. When

all of the contextual factors with simplified part-of-speech (function vs. content

word) were regressed out, the model had an overall categorization accuracy of 90.2%,

correctly classifying 99.7% of the short vowels and 2.4% of the long vowels. It had

a BIC of 16306. When all of the contextual factors including full part-of-speech

information were regressed out, the model had an overall categorization accuracy of

90.2%, correctly classifying 99.7% of the short vowels and 1.7% of the long vowels.

It had a BIC of 16348.

A.3 Summary of R-JMICC ADS vs. IDS Results

Overall, the results on adult-directed speech qualitatively mirror the results

on infant-directed speech. The biggest difference appears to be that the top-down

information model achieves slightly better categorization performance on the adult-
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directed speech, though the ADS portion of the dataset is smaller so it is difficult

to compare. Regardless of which type of data we use, we observe that using contex-

tual information as top-down information helps separate short and long vowels, but

normalizing for systematic contextual variability does not (at least as we implement

it).
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Appendix B: Derivation for Equation 4.3

Notation

Nl,c - The number of vowels of length l (phonemically short or long) in context c

µl,c - The mean duration of vowels of length l (phonemically short or long) in context

c

vi - The unnormalized duration of vowel token i

Derivation

The following derives Equation 4.3, which characterizes how the means of two cate-

gories will move relative to one another as a result of normalization when top-down

expectations are present. First, we write out what the unnormalized average dura-

tion of long vowels and short vowels is, beginning with long vowels. The average

duration of long vowels is simply the sum of every long vowel’s duration, divided by

the total number of long vowels:

µunnorm
l=long =

1

Nl=long

∑
i: li=long

vi (B.1)

Summing every long vowel’s duration is equivalent to summing every long vowel’s

duration in every context, and then adding up the sums from each context, which
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can be written as

µunnorm
l=long =

1

Nl=long

∑
j

∑
i: li=long,ci=j

vi (B.2)

We then multiply in
Nl=long,c=j

Nl=long,c=j
to obtain:

µunnorm
l=long =

1

Nl=long

∑
j

Nl=long,c=j

Nl=long,c=j

∑
i: li=long,ci=j

vi (B.3)

The value 1
Nl=long,c=j

∑
i: li=long,ci=j

vi is simply µunnorm
l=long,c=j. This is because we are

summing the durations of all long vowels in context j and then dividing that by the

total number of long vowels in context j, which is equivalent to the mean duration of

long vowels in context j. This gives us the following equation for the unnormalized

average duration of long vowels:

µunnorm
l=long =

∑
j

Nl=long,c=j

Nl=long

µunnorm
l=long,c=j (B.4)

Similarly, the unnormalized average duration of short vowels is

µunnorm
l=short =

∑
j

Nl=short,c=j

Nl=short

µunnorm
l=short,c=j (B.5)

Next, we compute the normalized average duration of long vowels and short vow-

els, starting with long vowels. To normalize a particular vowel’s duration based

on the context it occurs in, we take that vowel’s unnormalized duration, vi, and

subtract from it the average duration of vowels in that context. The average du-

ration of vowels in that context can be calculated by taking the sum of all short

vowel durations in that context, adding that to the sum of all long vowel dura-
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tions in that context, and then dividing the total sum (of short vowel and long

vowel durations) by the total number of vowels in that context. This difference,(
vi − 1

Nc=ci

(∑
k: lk=long,ck=ci

vk +
∑

k: lk=short,ck=ci
vk

))
, is the normalized duration

value for one particular long vowel, i. We can then take the sum of this value

from each long vowel token, and divide by the total number of long vowels to obtain

the average long vowel normalized duration:

µnorm
l=long =

1

Nl=long

∑
i: li=long

(
vi −

1

Nc=ci

( ∑
k: lk=long,ck=ci

vk +
∑

k: lk=short,ck=ci

vk

))
(B.6)

Multiplying everything out yields

µnorm
l=long =

1

Nl=long

∑
i: li=long

vi −
1

Nl=long

∑
i: li=long

1

Nc=ci

∑
k: lk=long,ck=ci

vk

− 1

Nl=long

∑
i: li=long

1

Nc=ci

∑
k lk=short,ck=ci

vk (B.7)

The first term in Equation B.7 is summing the unnormalized durations of all long

vowels and dividing by the total number of long vowels there are, so this first term

is equivalent to the mean unnormalized duration of long vowels. Therefore, we can

rewrite Equation B.7 as:

µnorm
l=long = µunnorm

l=long −
1

Nl=long

∑
i: li=long

1

Nc=ci

∑
k: lk=long,ck=ci

vk

− 1

Nl=long

∑
i: li=long

1

Nc=ci

∑
k lk=short,ck=ci

vk (B.8)

From here, we will rewrite both the second and third terms of Equation B.8, and we
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make an aside here to show how. Consider first the second term of Equation B.8. In

it, we are summing over all long vowels. Just as in the transition from Equation B.1

to Equation B.2, we can rewrite this as summing over all long vowels in a particular

context, and then summing over these contexts, which yields (B.9). To get from

(B.9) to (B.10), notice that the term, 1
Nc=j

∑
k: lk=long,ck=j

vk in the inner sum will

be the same for every long vowel in context j, so this term will be repeated exactly

Nl=long,c=j times.

1

Nl=long

∑
i: li=long

1

Nc=ci

∑
k: lk=long,ck=ci

vk =
1

Nl=long

∑
j

∑
i: li=long,ci=j

1

Nc=j

∑
k: lk=long,ck=j

vk

(B.9)

=
1

Nl=long

∑
j

Nl=long,c=j
1

Nc=j

∑
k: lk=long,ck=j

vk

(B.10)

Using the same logic for the third term, we can, therefore, rewrite Equation B.8 as

follows:

µnorm
l=long = µunnorm

l=long −
∑
j

1

Nc=j

Nl=long,c=j

Nl=long

∑
i: li=long,ci=j

vi−
∑
j

1

Nc=j

Nl=long,c=j

Nl=long

∑
i: li=short,ci=j

vi

(B.11)

As before, the mean duration of long vowels in a particular context is equivalent to

the sum over all long vowel durations in that context, divided by the total number

of long vowels in that context. Writing this out notationally will help us rewrite
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Equation B.11:

µunnorm
l=long,c=j =

1

Nl=long,c=j

∑
i: li=long,ci=j

vi (B.12)

Using Equation B.12, we can rewrite Equation B.11 as

µnorm
l=long = µunnorm

l=long −
∑
j

Nl=long,c=j

Nc=j

Nl=long,c=j

Nl=long

µunnorm
l=long,c=j−

∑
j

Nl=long,c=j

Nc=j

Nl=short,c=j

Nl=long

µunnorm
l=short,c=j

(B.13)

Factoring out
Nl=long,c=j

Nc=jNl=long
gives us the following equation for the mean normalized

duration of long vowels,

µnorm
l=long = µunnorm

l=long −
∑
j

[
Nl=long,c=j

Nc=jNl=long

(
Nl=long,c=jµ

unnorm
l=long,c=j +Nl=short,c=jµ

unnorm
l=short,c=j

)]
(B.14)

Similarly, the mean normalized duration of short vowels is

µnorm
l=short = µunnorm

l=short−
∑
j

[
Nl=short,c=j

Nc=jNl=short

(
Nl=short,c=jµ

unnorm
l=short,c=j +Nl=long,c=jµ

unnorm
l=long,c=j

)]
(B.15)

Up until this point, we have calculated the mean unnormalized duration of long

vowels and short vowels, as well as the mean normalized duration of long vowels

and short vowels. We can subtract the average unnormalized short vowel duration

from the average unnormalized long vowel duration to obtain a measure of how

far apart the two vowel categories are before normalization. Similarly, we can sub-

tract the average normalized short vowel duration from the average normalized long

vowel duration to obtain a measure of how far apart the two vowel categories are

after normalization. To compare whether the means of the two categories move
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closer together or farther apart after normalization, we can calculate the value of(
µnorm
l=long − µnorm

l=short

)
−
(
µunnorm
l=long − µunnorm

l=short

)
, by simply plugging in the relevant terms

from above.

(
µnorm
l=long − µnorm

l=short

)
−
(
µunnorm
l=long − µunnorm

l=short

)
=
(
µunnorm
l=long − µunnorm

l=short

)
−
(
µunnorm
l=long − µunnorm

l=short

)
(B.16)

−
∑
j

Nl=long,c=j

Nc=jNl=long

(
Nl=long,c=jµ

unnorm
l=long,c=j +Nl=short,c=jµ

unnorm
l=short,c=j

)
+
∑
j

Nl=short,c=j

Nc=jNl=short

(
Nl=long,c=jµ

unnorm
l=long,c=j +Nl=short,c=jµ

unnorm
l=short,c=j

)
=
∑
j

[(
Nl=short,c=jµ

unnorm
l=short,c=j +Nl=long,c=jµ

unnorm
l=long,c=j

Nc=j

)(
Nl=short,c=j

Nl=short

− Nl=long,c=j

Nl=long

)]
(B.17)

This gives us Equation 4.3 from the main text:

(
µnorml=long − µnorml=short

)
−
(
µunnorml=long − µunnorml=short

)
=∑

j

[
Nl=short,c=j

Nl=short

− Nl=long,c=j

Nl=long

] [
Nl=long,c=j

Nc=j

µl=long,c=j +
Nl=short,c=j

Nc=j

µl=short,c=j

]
(B.18)

We can then study whether this value is positive or negative. This value will be

positive when the difference between the normalized means is greater than the dif-

ference between the unnormalized means (i.e. when normalization is effective and

reduces the overlap between categories). Likewise, this value will be negative when

normalization is ineffective and actually increases the overlap between categories.

As stated in the main text, this equation reveals that when different categories
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differ in the contexts that they are likely to occur in, then normalization may actually

increase the amount of overlap between different categories.
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