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Quantum computing technology may soon deliver revolutionary improvements in
algorithmic performance, but it is useful only if computed answers are correct. While
hardware-level decoherence errors have garnered significant attention, a less recognized
obstacle to correctness is that of human programming errors—“bugs.” Techniques
familiar to most programmers from the classical domain for avoiding, discovering, and
diagnosing bugs do not easily transfer, at scale, to the quantum domain because of
its unique characteristics. To address this problem, we have been working to adapt
formal methods to quantum programming. With such methods, a programmer writes
a mathematical specification alongside the program and semiautomatically proves the
program correct with respect to it. The proof’s validity is automatically confirmed—
certified—by a “proof assistant.” Formal methods have successfully yielded high-
assurance classical software artifacts, and the underlying technology has produced
certified proofs of major mathematical theorems. As a demonstration of the feasibility
of applying formal methods to quantum programming, we present a formally certified
end-to-end implementation of Shor’s prime factorization algorithm, developed as part
of a framework for applying the certified approach to general applications. By leveraging
our framework, one can significantly reduce the effects of human errors and obtain a
high-assurance implementation of large-scale quantum applications in a principled way.

quantum programming | formal methods | Shor’s algorithm | human errors

As developments in quantum computer hardware bring promising quantum applications
closer to reality, a key question to contend with is “How can we be sure that a quantum
computer program, when executed, will give the right answer?” A well-recognized threat
to correctness is quantum computer hardware, which is susceptible to decoherence errors.
Techniques to provide hardware-level fault tolerance are under active research (1, 2). A less
recognized threat comes from errors—bugs—in the program itself, as well as errors in
the software that prepares a program to run on a quantum computer (compilers, linkers,
etc.). In the classical domain, program bugs are commonplace and are sometimes the
source of expensive and catastrophic failures or security vulnerabilities.

Quantum programs that provide a performance advantage over their classical
counterparts are even more challenging to write, understand, and certify (Fig. 1A).
They often involve the use of randomized algorithms and leverage unfamiliar quantum-
specific concepts, including superposition, entanglement, and destructive measurement.
Quantum programs are also hard to test. To debug a failing test, programmers
cannot easily observe (measure) an intermediate state due to the destructive nature
of quantum measurement. Moreover, many quantum algorithms generate samples
over an exponentially large output domain, whose statistical properties could require
exponentially many samples to be verified information-theoretically. Simulating a
quantum program on a classical computer can help but is limited by such computers’
ability to faithfully represent a quantum state of even modest size (which is why we must
build quantum hardware). The fact that near-term quantum computers are error-prone
adds another layer of difficulty.

Proving Programs Correct with Formal Methods. As a potential remedy to these
problems, we have been exploring how to use formal methods (aka formal verification)
to develop quantum programs (Fig. 1B). Formal methods are processes and techniques
by which one can mathematically prove that software does what it should, for all inputs;
the proved-correct artifact is referred to as formally certified. The formal verification
is usually conducted by using a proof assistant, which is a software tool for formalizing
mathematical definitions and stating and proving properties about them. A proof assistant
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Fig. 1. Comparison of developing quantum programs with (A) testing and with (B) formal methods. The major classical routines of debugging with testing are
blocked by quantum-specific features and can guarantee correctness only in test cases. In the formal methods approach, a proof assistant will mechanically
certify quantum programs along with their specifications and proofs. If successful, the certified implementation is guaranteed to meet desired specifications
on all possible inputs, even without running the program on real machines.

may produce proofs automatically or assist a human in doing
so, interactively. Either way, the proof assistant confirms that
a proof is correct by employing a proof verifier. Most modern
proof assistants implement proof verification by leveraging the
Curry–Howard correspondence, which embodies a surprising
and powerful analogy between formal logic and programming
language type systems (3, 4). Automating and confirming such
proofs have, for more than 50 years, been a grand challenge for
computing research (5) (SI Appendix, section 1).

While early developments of formal methods led to dis-
appointment (6), the last two decades have seen remarkable
progress. Notable successes include the development of the seL4
microkernel (7) and the CompCert C compiler (8). For the
latter, the benefits of formal methods have been demonstrated
empirically: Using sophisticated testing techniques, researchers
found hundreds of bugs in the popular mainstream C compilers
gcc and clang, but none in CompCert’s verified core (9).
Formal methods have also been successfully deployed to prove
major mathematical theorems [e.g., the four color theorem (10)]
and build computer-assisted proofs in the grand unification
theory of mathematics (11, 12).

Formal Methods for Quantum Programs. Our key observation
is that the symbolic reasoning that underlies formal methods
is not limited by the aforementioned difficulties of testing
directly on quantum machines or classically simulating them.
As a result, it may be a viable alternative to certifying the
correctness of quantum programs. Our research has explored
how to put this observation into practice. Precisely, using the Coq
proof assistant (13), we defined a simple quantum intermediate
representation (14) (SQIR) for expressing a quantum program as
a series of operations—essentially a kind of circuit—and specified
those operations’ mathematical meaning. Thus, we can state the
mathematical properties of an SQIR program and prove that they
always hold without needing to run that program. Assured that
the program is correct, we can run it on specific inputs by asking
Coq to extract the SQIR program to an OpenQASM 2.0 circuit
and then run it on a real machine.

Adapting formal methods developed for classical programs
to work on quantum ones is conceptually straightforward but
pragmatically challenging. Consider that classical program states
are (in the simplest terms) maps from addresses to bits (0 or 1);
thus, a state is essentially a length-n vector of Booleans. Quantum
states are much more involved: In SQIR, an n-qubit quantum
state is represented as a length-2n vector of complex numbers, and
the meaning of an n-qubit operation is represented as a 2n × 2n
matrix—applying an operation to a state is tantamount to multi-
plying the operation’s matrix with the state’s vector. Proofs over
all possible inputs thus involve translating such multiplications
into symbolic formulae and then reasoning about them.

Given the potentially large size of quantum states, such
formulae could become quite large and difficult to reason
about. To cope, we developed automated tactics to translate
symbolic states into normalized algebraic forms, making them
more amenable to automated simplification. We also eschew
matrix-based representations entirely when an operation can be
expressed symbolically in terms of its action on basis states. With
these techniques and others (15), we proved the correctness of
key components of several quantum algorithms—Grover’s search
algorithm (16) and quantum phase estimation (QPE) (17)—and
demonstrated advantages over competing approaches (18–21).

With this promising foundation in place, several challenges
remain. First, both Grover’s and QPE are parameterized by
oracles, which are classical algorithmic components that must
be implemented to run on quantum hardware. These must be
reasoned about, too, but they can be large (many times larger
than an algorithm’s quantum scaffold) and can be challenging
to encode for quantum processing, bug-free. Another challenge
is proving the end-to-end properties of hybrid quantum/classical
algorithms. These algorithms execute code on both classical and
quantum computers to produce a final result. Such algorithms are
likely to be common in near-term deployments in which quan-
tum processors complement classical ones. Finally, end-to-end
certified software must implement and reason about probabilistic
algorithms, which are correct with a certain probability and may
require multiple runs.
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1. Certified Implementations

Shor’s Algorithm and the Benefit of Formal Methods. To close
these gaps, and thereby demonstrate the feasibility of the appli-
cation of formal methods to quantum programming, we have
produced a fully certified version of Shor’s prime factorization
algorithm (17), which is famous for breaking widely used RSA
cryptographic systems. This algorithm has been a fundamental
motivation for the development of quantum computers and is
at a scale and complexity not reached in prior formalization
efforts.

As shown in Fig. 2, Shor developed a sophisticated, quantum-
classical hybrid algorithm to factor a number N : the key quan-
tum part—order finding—preceded and followed by classical
computation—primality testing before and conversion of found
orders to prime factors, after. The algorithm’s correctness proof
critically relies on arguments about both its quantum and classical
parts and also on several number-theoretical arguments.

While it is difficult to factor a number, it is easy to confirm
a proposed factorization (the factoring problem is inside the
NP complexity class). One might wonder why prove a program
correct if we can always efficiently check its output? When the
check shows that an output is wrong, this fact does not help
with computing the correct output and provides no hint about
the source of the implementation error. By contrast, formal
verification allows us to identify the source of the error: It is
precisely in the subprogram that we could not certify.

Moreover, because inputs are reasoned about symbolically, the
complexity of all-input certification can be (much) less than the

complexity of single-output correctness checking. For example,
one can symbolically verify that a quantum circuit generates a
uniform distribution over n bits, but directly checking whether
the output samples from a uniform distribution over n bits
could take as many as 22(n) samples (22). As such, with formal
methods, one could potentially certify implementations for major
quantum applications, like quantum simulation which is BQP-
complete (23) and believed to lie outside NP.

Overview of Our Implementation. An instantiation of the
scheme in Fig. 1B for Shor’s algorithm is given in Fig. 3 A
and B. We have certified the implementation against both a
correctness specification (e.g., the likelihood of success) and
a resource specification (e.g., the gate count) (SI Appendix,
Fig. S2). Note that the implementation is built on fault-tolerant
logical qubits and does not include their realization based on
physical qubits.

The core of the algorithm is the computation of the order r
of a modulo N , where a is (uniformly) randomly drawn from
the numbers 1 through N ; this component is bounded by the
dark box in Fig. 2. The quantum component of order finding
applies QPE to an oracle implementing an in-place modular
multiplier (IMM), whereas the correctness of QPE was previously
proved in SQIR with respect to an abstract oracle (15). The IMM
oracle corresponds to pure classical reversible computation when
executed coherently, but SQIR was not able to leverage this fact
to simplify the proof.
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Fig. 2. Overview of Shor’s factoring algorithm, which finds a nontrivial factor of integer N (not 1 or N) with high probability in polynomial time. This is a
quantum-classical hybrid algorithm, whose quantum part (marked cream) is a subprocedure of finding multiplicative orders (enclosed in the blue frame). We
implement and mechanically certified Shor’s algorithm (enclosed in the green frame), for N not prime, even, or a prime power (these cases can be efficiently
tested for and solved by classical algorithms). A detailed illustration of our implementation of ModExp(a, N) is in SI Appendix, Fig. S1.
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Fig. 3. Technical illustration of our fully certified implementation of Shor’s algorithm. (A) The schematic framework of our implementation in Coq. Intermediate
representations SQIR and RCIR are embedded in Coq, dealing with classical reversible and quantum circuits, respectively. (B) An instantiation of the formal
methods scheme in Shor’s implementation.

In response, we developed the reversible circuit intermediate
representation (RCIR) in Coq to express classical functions and
prove their correctness, which can be translated into SQIR as
shown in Fig. 3A. RCIR helps us easily build the textbook version
of IMM (24) (SI Appendix, Fig. S1) and prove its correctness
and resource usage (SI Appendix, Fig. S2, i). Integrating the
QPE implementation in SQIR with the translation of IMM’s
implementation from RCIR to SQIR, we implement the quan-
tum component of order-finding as well as the proof for its
correctness and gate count bound (SI Appendix, Fig. S2, ii).
The QPE correctness statement asserts that the likelihood of
obtaining the closest phase estimate of the input eigenstate is
no less than 4/π2, mechanically proved through expressing the
final state as matrix multiplications and scaling trigonometrical
functions (details in SI Appendix, section 1.E). We then formulate
a decomposition with the certified complex linear algebra in
SQIR for the input state |1〉 in Fig. 2 into r eigenstates of IMM,
|1〉 =

∑r−1
k=0 |ψk〉/

√
r, where |ψk〉 possesses the eigenvalue

e−2π ik/r . Applying QPE over IMM while inputting this uniform
superposition of eigenstates generates a close approximation of
k/r for any k from {0, 1, · · · , r − 1} with probability at least
4/π2r (SI Appendix, Fig. S2, ii) following a similar analysis of
QPE.

After executing the quantum part of the algorithm, some
classical code carries out continued fraction expansion (CFE) to
recover the order r. CFE is an iterative algorithm and its efficiency
to recover k/r in terms of the number of iterations is guaranteed
by Legendre’s theorem which we formulated and constructively
proved in Coq with respect to the CFE implementation. When
the recovered k and r are coprimes, the output r is the correct
order. The algorithm is probabilistic, and the probability that
coprime k and r are output is lower-bounded by the size of Zr ,
which consists of all positive integers that are smaller than r and
coprime to it. The size of Zr is the definition of the famous Euler’s
totient function ϕ(r), which we proved is at least e−2/blog(r)c4
in Coq based on the formalization of Euler’s product formula and
Euler’s theorem by de Rauglaudre (25). By integrating the proofs
for both quantum and classical components, we show that our
implementation of the entire hybrid order-finding procedure will
identify the correct order r for any a given that gcd(a, N ) = 1
with probability at least 4e−2/π2

blog2(N )c4 (SI Appendix, Fig.
S2, iii).

For the overall algorithm, we prove that the order finding
procedure combined with the classical postprocessing will out-
put a nontrivial factor with a success probability of at least
2e−2/π2

blog2(N )c4, which is exactly half of the success proba-
bility of order finding. Namely, we prove that for at least a half of
the integers a between 1 andN , the order r will be even and either

gcd(ar/2 + 1, N ) or gcd(ar/2 − 1, N ) will be a nontrivial factor
of N . Shor’s original proof (17) of this property made use of the
existence of the group generator of Zpk , also known as primitive
roots, for odd prime p. However, the known proof of the existence
of primitive roots is nonconstructive (26) meaning that it makes
use of axioms like the law of the excluded middle, whereas one
needs to provide constructive proofs (27) in Coq and other proof
assistants.

We provide a constructive proof without using primitive
roots by resorting to the quadratic residues in modulus pk and
connecting whether a randomly chosen a leads to a nontrivial
factor to the number of quadratic residues and nonresidues in
modulus pk. The counting of the latter is established based on
Euler’s criterion for distinguishing between quadratic residues
and nonresidues modulo pk in Coq.

Putting it all together, we have proved that our implementation
of Shor’s algorithm successfully outputs a nontrivial factor with
a probability of at least 2e−2/π2

blog2(N )c4 for one iteration.
Furthermore, we also prove in Coq that its failure probability of
t repetitions is upper-bounded by (1 − 2e−2/π2

blog2(N )c4)t ,
which boosts the success probability of our implementation
arbitrarily close to 1 after O(log4(N )) repetitions.

We also certify that the gate count in our implementation of
Shor’s algorithm using OpenQASM’s gate set is upper-bounded
by (212n2 + 975n+ 1031)m+ 4m+m2 in Coq, where n refers
to the number of bits representing N and m the number of bits
in QPE output. Note further m, n = O(logN ), which leads to
an O(log3 N ) overall asymptotic complexity that matches the
original paper. All these certification details are in SI Appendix,
section 3.

2. Executions

Although the proof assistant accepts the specification theorems
of our implementation of Shor’s algorithm, there still may
be misalignment between the specification statements and the
program’s correctness. To empirically confirm the absence of such
misalignment, we execute our certified-in-Coq implementation
of Shor’s algorithm through extraction (28) (Fig. 4A) and observe
the correctness of example cases. Due to the limitation of
existing quantum machines, we use a classical simulator called
DDSIM (29) to execute these quantum circuits, which necessarily
limits the scale of our empirical study. In Fig. 4B, we showcase
the details of factorization with N = 15 based on the simulation
(and see SI Appendix, Fig. S3 for order finding). Note that
existing experimental demonstrations of Shor’s algorithm for
N = 15 or 21 (e.g., refs. 30 and 31) require fewer resources

4 of 6 https://doi.org/10.1073/pnas.2218775120 pnas.org
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Fig. 4. End-to-End Execution of Our Implementation of Shor’s algorithm. (A) A schematic illustration of the end-to-end quantum-classical hybrid execution.
(B) An example of end-to-end execution and simulation of factorization. (C) Empirical statistics (i.e., minimal to maximal success probability) of the success
probability of factorization for every valid input N with respect to input size n from 4 to 10 bits.

because their implementations are specially designed for fixed
inputs and cannot extend to work for general ones. In Fig.
4C , we conduct a more comprehensive empirical study on the
gate count and success probability of factorization instances with
input size (log(N )) from 4 to 10 bits, i.e., N ≤ 1,024. Red
circles refer to instances (i.e., a few specific N s) that can be
simulated by DDSIM. The empirical success probabilities for
other N s up to 1,024 are calculated directly using formulas in
Shor’s original analysis with specific inputs and are displayed
in a blue interval called the empirical range per input size.
It is observed that 1) certified bounds hold for all instances
and 2) empirical bounds are considerably better than certified
ones for studied instances. The latter is likely due to the
nonoptimality of our proofs in Coq and the fact that we
investigated only small-size instances. SI Appendix, section 4
for details.

3. Related Work

Researchers have been actively attempting to verify large-scale
quantum algorithms recently. Boender et al. (32) verified a
quantum teleportation protocol over a single qubit, through the
use of matrix multiplication. Verification work on the QWIRE
quantum circuit language (18) produced proofs of the correctness
of a simple coin toss (33) and later quantum teleportation,
and Deutsch’s algorithm (34), but still no proofs of scalable
quantum algorithms. Bordg et al. (35) proved the correctness of
the Deutsch–Jozsa algorithm over an arbitrary number of qubits,
and Liu et al. (19) formalized the quantum Hoare logic (36)
for reasoning about quantum programs, and verified Grover’s
algorithm, both in the Isabelle/HOL proof assistant. Chareton et
al. (21) and Hietala et al. (15) also produced correctness proofs for
both Grover’s algorithm and quantum phase estimation, using
the QBricks block language built in Why3 and SQIR circuit
language built in Coq, respectively. Chareton et al. were able to
extend their result to cover the quantum part of the order-finding
component in Shor’s factorization algorithm. However, the
certified implementation of the classical part of order finding and
the remainder of Shor’s algorithm was not pursued. Moreover,

QBricks’s use of Why3 requires a larger trusted computing base
than Coq because Why3 relies on SMT solvers in verifying
proofs (37).

An important limitation of prior work is that it focuses
only on quantum (and generally unitary) circuits. Sophisticated
quantum algorithms like Shor’s algorithm feature interplay
between classical and quantum subroutines, and both must be
reasoned about together to prove correctness. This requires a
generalized framework capable of reasoning about the hybrid
probabilistic behavior of both quantum and classical components
(e.g., classical-quantum interaction and repeated runs), which is
usually more challenging and has been neglected by prior work,
whereas our work fills the gap.

Moreover, the arithmetic oracle realizing modular expo-
nentiation is the bulkiest subroutine of Shor’s algorithm’s
implementation, consisting of more than 95% gates. They
are typically programmed as classical reversible circuits and
transformed into quantum circuits via tools like Scaffold’s C2QG
module (38). We implement RCIR, the language for reversible
circuits with certified transformation to quantum circuits, to
help both with programming such oracles and the correctness
of their implementation. Finally, none of the existing work
allows the extraction of executable instructions on quantum
devices (or simulators). Our end-to-end certified implementation
completes this missing piece, which, among other benefits, allows
an empirical examination of the potential loopholes in the
specification.

4. Conclusions

The nature of quantum computing makes programming, testing,
and debugging quantum programs difficult, and this difficulty
is exacerbated by the error-prone nature of quantum hardware.
As a long-term remedy to this problem, we develop a framework
based on formal methods to mathematically certify that quantum
programs do what they are meant to, which we believe is a
principled approach to mitigating human errors in this critical
domain and achieving high assurance for the implementation of
important quantum applications.
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Data,Materials, and Software Availability. Codes data have been deposited
in https://github.com/inQWIRE/SQIR/tree/main/examples/shor (39).
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