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One-Time	Pad:

§Classical:	𝑐 = 𝐸𝑛𝑐%& 𝑚 ∶= 𝑚⊕ 𝑠𝑘 ,			𝐷𝑒𝑐%& 𝑐 ≔ 𝑐 ⊕ 𝑠𝑘

§Quantum: 𝐸𝑛𝑐/,1 𝜌3 ≔ 𝑋/𝑍1𝜌3𝑍1𝑋/,		
𝐷𝑒𝑐/,1 𝜌7 ≔ 𝑋/𝑍1𝜌7𝑍1𝑋/ QOTP

Secure	Encryption

Alice

Bob

EveSecret	key	𝑠𝑘 Secret	key	𝑠𝑘

plaintext	message	𝑚 ciphertext 𝑐 = 𝐸𝑛𝑐%&(𝑚) 𝑚 = 𝐷𝑒𝑐%&	(𝑐)

𝑠𝑘 =	?
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Information-Theoretic	Security

Alice

Bob

EveSecret	key	𝑠𝑘 Secret	key	𝑠𝑘

plaintext	message	𝑚 ciphertext 𝑐 = 𝐸𝑛𝑐%&(𝑚) 𝑚 = 𝐷𝑒𝑐%&	(𝑐)

Perfect	/	information-theoretic	security:

§Ciphertext distribution	𝑃7 is	statistically	independent	of	message	
distribution	𝑃3.
Theorem: Secret	key	has	to	be	as	large	as	the	message.

Highly	impractical,	e.g.	for	encrypting	a	video	stream…

[Shannon	48,	Dodis 12,	Boykin	Roychowdhury 03]	

𝑠𝑘 =	?

QOTP



Computational	Security

Alice

Bob

EveSecret	key	𝑠𝑘 Secret	key	𝑠𝑘

plaintext	message	𝑚 ciphertext 𝑐 = 𝐸𝑛𝑐%&(𝑚) 𝑚 = 𝐷𝑒𝑐%&	(𝑐)

Security	guarantee:

§c	does	not	reveal	𝑠𝑘

§c	does	not	reveal	the	whole	𝑚
§c	does	not	reveal	any	bit	of	𝑚

§c	does	not	reveal	“anything”	about	𝑚

Threat	model:
§Eve	sees	ciphertexts (eavesdropper)
§Eve	knows	plaintext/ciphertext pairs
§Eve	chooses	plaintexts	to	be	
encrypted
§Eve	can	decrypt	ciphertexts

𝑠𝑘 =	?



Semantic	Security
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Bob

EveSecret	key	𝑠𝑘 Secret	key	𝑠𝑘

plaintext	message	𝑚 ciphertext 𝑐 = 𝐸𝑛𝑐%&(𝑚) 𝑚 = 𝐷𝑒𝑐%&	(𝑐)

Private-Key Encryption 59

PROOF (Sketch) The fact that (Enc,Dec) is EAV-secure means that, for
any S ⊆ {0, 1}ℓ, no ppt adversary can distinguish between Enck(m) (for uni-
form m ∈ S) and Enck(1ℓ). Consider now the probability that A successfully
computes f(m) given Enck(m). We claim that A should successfully compute
f(m) given Enck(1ℓ) with almost the same probability; otherwise, A could
be used to distinguish between Enck(m) and Enck(1ℓ). The distinguisher is
easily constructed: choose uniform m ∈ S, and output m0 = m, m1 = 1ℓ.
When given a ciphertext c that is an encryption of either m0 or m1, invoke
A(1n, c) and output 0 if and only if A outputs f(m). If A outputs f(m) when
given an encryption of m with probability that is significantly different from
the probability that it outputs f(m) when given an encryption of 1ℓ, then the
described distinguisher violates Definition 3.9.

The above suggests the following algorithm A′ that does not receive c =
Enck(m), yet computes f(m) almost as well as A does: A′(1n) chooses a
uniform key k ∈ {0, 1}n, invokes A on c← Enck(1ℓ), and outputs whatever A
does. By the above, we have that A outputs f(m) when run as a subroutine
by A′ with almost the same probability as when it receives Enck(m). Thus,
A′ fulfills the property required by the claim.

Semantic security. The full definition of semantic security guarantees con-
siderably more than the property considered in Theorem 3.11. The definition
allows the length of the plaintext to depend on the security parameter, and
allows for essentially arbitrary distributions over plaintexts. (Actually, we
allow only efficiently sampleable distributions. This means that there is some
probabilistic polynomial-time algorithm Samp such that Samp(1n) outputs
messages according to the distribution.) The definition also takes into ac-
count arbitrary “external” information h(m) about the plaintext that may be
leaked to the adversary through other means (e.g., because the same message
m is used for some other purpose as well).

DEFINITION 3.12 A private-key encryption scheme (Enc,Dec) is seman-
tically secure in the presence of an eavesdropper if for every ppt algorithm A
there exists a ppt algorithm A′ such that for any ppt algorithm Samp and
polynomial-time computable functions f and h, the following is negligible:

∣∣∣Pr[A(1n,Enck(m), h(m)) = f(m)]− Pr[A′(1n, |m|, h(m)) = f(m)]
∣∣∣ ,

where the first probability is taken over uniform k ∈ {0, 1}n, m output by
Samp(1n), the randomness of A, and the randomness of Enc, and the second
probability is taken over m output by Samp(1n) and the randomness of A′.

The adversary A is given the ciphertext Enck(m) as well as the external
information h(m), and attempts to guess the value of f(m). Algorithm A′
also attempts to guess the value of f(m), but is given only h(m) and the

[Goldwasser Micali 84]

𝑠𝑘 =	?



Classical	Semantic	Security

𝑚

[Goldwasser Micali 84]
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Classical	Indistinguishability

[Goldwasser Micali 84]

Definition	(IND): ∀𝒜:	Pr 𝒜	wins	𝑃𝑟𝑖𝑣𝐾O/P ≤ R
S + 	𝑛𝑒𝑔𝑙(𝑛)

𝑚

𝑏 ← {0,1}

𝑐 = ]𝐸𝑛𝑐%& 0 ^ 	if	b=0
𝐸𝑛𝑐%& 𝑚 	if	b=1				

𝑏′

𝑐

𝒜	wins	iff	𝑏 = 𝑏′

𝑃𝑟𝑖𝑣𝐾O/P

Theorem: SEM	⇔	IND

𝒜
Challenger



Our	Contributions

1. Formal	definition	of	Quantum	Semantic	Security

2. Equivalence	to	Quantum	Indistinguishability

3. Extension	to	CPA	and	CCA1	scenarios

4. Construction	of	IND-CCA1	Quantum	Secret-Key	
Encryption	from	Post-Quantum	One-Way	Functions

5. Construction	of	Quantum	Public-Key	Encryption	from	
Post-Quantum	One-Way	Trapdoor	Permutations



Quantum	Semantic	Security
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Quantum	Indistinguishability

Definition	(QIND): ∀𝒜:	Pr 𝒜	wins	𝑄𝑃𝑟𝑖𝑣𝐾O/P ≤ R
S + 𝑛𝑒𝑔𝑙(𝑛)

𝒜𝜌3
𝑏 ← {0,1}

𝜌7 = q𝐸𝑛𝑐%& |0〉 	if	b=0𝐸𝑛𝑐%& 𝜌3 	if	b=1
𝜌7

𝒜	wins	iff	𝑏 = 𝑏′

𝑄𝑃𝑟𝑖𝑣𝐾O/P

Theorem: QSEM	⇔ QIND

Challenger

QIND:	[Broadbent	Jeffery	15,	Gagliardoni Huelsing Schaffner 16]

𝑏′



Chosen-Plaintext	Attacks	(CPA)

Definition	(QIND-CPA): ∀𝒜:	Pr 𝒜	wins	𝑄𝑃𝑟𝑖𝑣𝐾st/ ≤ R
S + 	𝑛𝑒𝑔𝑙(𝑛)

𝒜
𝜌3𝑏 ← {0,1}

𝜌7 = q𝐸𝑛𝑐%& |0〉 	if	b=0𝐸𝑛𝑐%& 𝜌3 	if	b=1
𝑏′𝒜	wins	iff	𝑏 = 𝑏′

𝑄𝑃𝑟𝑖𝑣𝐾st/

Theorem: QSEM-CPA	⇔ QIND-CPA

Challenger

𝜌3

𝜌7

𝐸𝑛𝑐%&(𝜌3)

Fact: CPA	security	requires	randomized	encryption



Chosen-Ciphertext Attacks	(CCA1)

Definition	(QIND-CCA1): ∀𝒜:	Pr 𝒜	wins	𝑄𝑃𝑟𝑖𝑣𝐾ss/ ≤ R
S + 	𝑛𝑒𝑔𝑙(𝑛)

𝒜𝜌3𝑏 ← {0,1}

𝜌7 = q𝐸𝑛𝑐%& |0〉 	if	b=0𝐸𝑛𝑐%& 𝜌3 	if	b=1

𝑏′𝒜	wins	iff	𝑏 = 𝑏′

𝑄𝑃𝑟𝑖𝑣𝐾ss/

Theorem: QSEM-CCA1	⇔ QIND-CCA1

Challenger

𝜌7

𝜌7

𝐷𝑒𝑐%&(𝜌7)

Fact: QSEM-CCA1	
u
⇒ QIND-CPA	

u
⇒ QIND

𝜌3

𝐸𝑛𝑐%&(𝜌3)



Our Contributions

üFormal	definition	of	Quantum	Semantic	Security

üEquivalence	to	Quantum	Indistinguishability

üExtension	to	CPA	and	CCA1	scenarios

4. Construction	of	IND-CCA1	Quantum	Secret-Key	
Encryption	from	Post-Quantum	One-Way	Functions

5. Construction	of	Quantum	Public-Key	Encryption	from	
Post-Quantum	One-Way	Trapdoor	Permutations



Quantum	Secret-Key	Encryption

Not	even	CPA	secure,	scheme	is	not	randomized!

Goal:	build	CCA1-secure	quantum	secret-key	encryption

Ingredients:	

§quantum	one-time	pad	(QOTP)

Plaintext
QOTP

Ciphertext

Long	Key



Quantum	Secret-Key	Encryption
Goal:	build	CCA1-secure	quantum	secret-key	encryption

Ingredients:	

§quantum	one-time	pad	(QOTP)

§quantum-secure	one-way	function	(OWF)

𝑓: 𝑥 ↦ 𝑦 easy	to	compute,	but	hard	to	
invert	even	for	quantum	adversaries,	e.g.	
lattice-problems,	…

Theorem: One-Way	Function	⟹ Pseudo-Random	Function

{𝑓&: 𝑥 ↦ 𝑦}&	 is	indistinguishable	from	
random	function	if	key	𝑘 is	unknown

[Hastad Impagliazzo Levin	Luby 99]

PRF

𝑥

𝑦

OWF

𝑥

𝑦



Goal:	build	CCA1-secure	quantum	secret-key	encryption

Ingredients:	

§quantum	one-time	pad	(QOTP)

§quantum-secure	one-way	function	(OWF)	⟹ PRF

Quantum	Secret-Key	Encryption

Plaintext
QOTP

Ciphertext

Long	Key

Randomness

𝑟

PRF

Classical	version:	[Goldreich Goldwasser Micali 85]



Intuition	of	CCA1	security

Plaintext
QOTP

Ciphertext

Long	Key

Randomness

PRF !"#$ ← {0,1}

"+ = -
./012 |0〉 	if	b=0
./012 "# 	if	b=1

$′

:;012("+)

!	wins	iff	$ = $′

ABCDEFGGH

Challenger
"+

"+

E/012("#)

"#

1. Replace	pseudo-random	function	with	totally	
random	function

2. Encryption	queries	result	in	polynomially many	
ciphertexts with	different	randomness:

3. With	overwhelming	probability	the	
randomness	of	the	challenge	ciphertext will	be	
different	from	previous	r’s.

𝑟R

𝑟{

𝑟∗



Conclusion	and	Open	Questions
üFormal	definition	of	Quantum	Semantic	Security

üEquivalence	to	Quantum	Indistinguishability

üExtension	to	CPA	and	CCA1	scenarios

üConstruction	of	IND-CCA1	Quantum	Secret-Key	Encryption	
from	Post-Quantum	One-Way	Functions

üConstruction	of	Quantum	Public-Key	Encryption	from	Post-
Quantum	One-Way	Trapdoor	Permutations

§How	to	define	quantum	CCA2	security?
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Questions

http://arxiv.org/abs/1602.01441



Quantum	Public-Key	Encryption


