

Theoretical analysis and proof-of-principle demonstration of self-referenced continuous-variable quantum key distribution

Constantin Brif,¹ Daniel B. S. Soh,^{1,2} Patrick J. Coles,³ Norbert Lütkenhaus,³ Ryan M. Camacho,⁴ Junji Urayama,⁴ and Mohan Sarovar¹

¹Sandia National Laboratories, Livermore, CA 94550, USA
 ²Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
 ³Institute of Quantum Computing, University of Waterloo, N2L 3G1 Waterloo, Canada
 ⁴Sandia National Laboratories, Albuquerque, NM 87123, USA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation

- Coherent-state CV-QKD can achieve information-theoretically secure key distribution with modest technological resources.
- It is particularly appealing due to the expectation that the integrated photonics implementation of CV-QKD will be easier than that of DV-QKD, resulting in greater practicality and wide-spread utilization.
- Conventional CV-QKD protocols require transmission of a high-intensity coherent pulse, local oscillator (LO), between Alice and Bob. The shared LO is needed to ensure that Alice and Bob use the same reference frame.
- The requirement for LO transmission is a major obstacle to the implementation of CV-QKD.
- **Security problems**: There exist side-channel attacks that exploit detection using a publicly shared high-power LO.
- **Technological issues**: Co-transmitting the LO with the signal states requires techniques that involve combinations of time-division multiplexing, wavelength-division multiplexing, and polarization encoding.

Motivation

 Technological issues associated with LO transmission would be especially severe for integrated photonics implementation of CV-QKD, since timedivision multiplexing and polarization manipulation and maintenance are more difficult on-chip.

With LO transmission

Without LO transmission

When LO transmission is eliminated, the hardware simplification is a real advantage for on-chip implementation

New approach: SR-CV-QKD

- We have developed a new CV-QKD protocol that eliminates the transmission of an LO.
- Instead of transmitting an LO, Alice sends regularly spaced **reference pulses** whose quadratures are measured by Bob to estimate Alice's phase reference.
- We call this new protocol self-referenced CV-QKD (SR-CV-QKD)
- Key advantages of SR-CV-QKD:
 - ✓ It greatly simplifies the hardware requirements at Alice's and Bob's since it enables them both to employ independent (truly local) LOs.
 - It obviates a key assumption of most CV-QKD security proofs namely that the LO is trusted – and thus provides a more secure implementation of CV-QKD.
 - ✓ It is manifestly compatible with chip-scale implementation since it only requires (low-loss and low-noise) classical optical communication components.

How it works

- In a physical implementation of the SR-CV-QKD protocol, Alice chooses two independent Gaussian random variables (q_A , p_A), both normally distributed with zero mean and a fixed variance V_A , and sends Bob a **coherent-state signal pulse** with amplitude $q_A + i p_A$.
- She also sends a **coherent-state reference pulse** with publicly known fixed amplitude $V_R^{1/2}$, which is much smaller than that of a typical LO.

- In each round, Bob performs homodyne measurement of one of the quadratures of the received signal pulse.
- He also performs heterodyne measurement of both quadratures of the received reference pulse.
- The key operation is the estimation of the phase difference θ between Alice's and Bob's frames.

Estimation of phase difference

 $\hat{\theta} =$

Since Bob knows the mean quadrature values of the reference pulse both in Alice's frame, (q_{AR} , p_{AR}), and in his own frame, (q_{BR} , p_{BR}), he can calculate an estimate of the phase difference:

$$\tan^{-1}\left(\frac{p_{B_R}q_{A_R} - q_{B_R}p_{A_R}}{q_{B_R}q_{A_R} + p_{B_R}p_{A_R}}\right)$$

Assuming, without loss of generality, that Alice's reference pulse has

$$p_{AR} = 0,$$

we obtain:

$$\hat{\theta} = \tan^{-1} \left(\frac{p_{B_R}}{q_{B_R}} \right)$$

Effect of quantum uncertainty

- Since the reference pulse has a relatively small amplitude, its quantum uncertainty will produce an error in the phase difference estimate: $\hat{\theta} = \theta + \varphi$
- The estimation error φ is a random variable distributed according to some probability distribution $P(\varphi)$. We assume that θ and φ are independent random variables, since they arise from separate physical processes.
- The density matrix for the state shared between Alice and Bob before they perform any measurements: $ho_{AB} = \mathcal{E}(
 ho_{SV})$
- The effect of the (mismatched) reference frame alignment between Alice and Bob:

$$\rho_{AB}(\hat{\theta},\theta) = U_A(-\hat{\theta})U_B(\theta)\rho_{AB}U_A^{\dagger}(-\hat{\theta})U_B^{\dagger}(\theta)$$

• The effect of averaging over distributions of random variables θ and φ :

$$\overline{\rho}_{AB} = \overline{\rho_{AB}(\hat{\theta}, \theta)} = \int_{-\pi}^{\pi} d\varphi \mathcal{P}(\varphi) \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \rho_{AB}(\hat{\theta}, \theta)$$

Effect of quantum uncertainty

• In terms of the covariance matrix, only off-diagonal elements are affected:

$$\langle Q_A Q_B \rangle = \int_{-\pi}^{\pi} d\varphi \mathcal{P}(\varphi) \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \operatorname{Tr} \left[\rho_{AB}(\hat{\theta}, \theta) Q_A Q_B \right]$$
$$= \sqrt{T\eta (V^2 - 1)} \overline{\cos \varphi}$$

- *T* is the channel transmittance, η is the detector efficiency, χ is the channel noise (referred to the input of the channel), and $V = V_A + 1$.
- The effect on asymptotic key rates secure against individual and collective attacks is through the parameter: $\frac{1}{\sqrt{1-1}}$

$$\xi = 1 - (\overline{\cos\varphi})^2$$

• Under reasonable assumptions on $P(\varphi)$ (symmetric and tight), we derive a tight bound on ξ :

$$\xi \lessapprox \overline{\varphi^2} = V_{\hat{\theta}} = \frac{\chi + 1}{V_R} + \frac{\sigma_R}{T\eta V_R}$$

• $\delta_R = 1$ in the single-reference-pulse mode, $\delta_R = 0$ in the twin-reference-pulse mode.

Expected secure key rates

• Using the analysis outlined above, we obtain analytic expressions for asymptotic key rates secure against individual and collective attacks.

Proof-of-principle experiment

Schematic of our experimental setup (for simplicity, the same laser was used for both Alice's and Bob's LOs):

Proof-of-principle experiment

- Our experimental work focused on:
- 1. Characterizing the performance of the central element of SR-CV-QKD signal reconstruction through compensation of the drifting phase;
- 2. Performing a proof-of-principle demonstration of key distribution using the new protocol.

Summary

- SR-CV-QKD obviates a key assumption of most CV-QKD security proofs namely that the LO is trusted – and thus provides a more secure implementation of CV-QKD.
- SR-CV-QKD is manifestly compatible with chip-scale implementation since it only requires classical optical communication components. This enables miniaturization of CV-QKD hardware.
- Our results, along with demonstrations by other groups, establish SR-CV-QKD as a practical protocol with significant benefits in terms of hardware simplification and compatibility with integrated photonics.

Silicon photonics transceiver

References

PHYSICAL REVIEW X 5, 041009 (2015)

Generating the Local Oscillator "Locally" in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

 Bing Qi,^{1,2,*} Pavel Lougovski,¹ Raphael Pooser,^{1,2} Warren Grice,¹ and Miljko Bobrek³
 ¹Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6418, USA
 ²Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
 ³RF, Communications, and Intelligent Systems Group, Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006, USA (Received 2 March 2015; published 21 October 2015)

PHYSICAL REVIEW X 5, 041010 (2015)

Self-Referenced Continuous-Variable Quantum Key Distribution Protocol

Daniel B. S. Soh,^{1,2,*} Constantin Brif,¹ Patrick J. Coles,³ Norbert Lütkenhaus,³ Ryan M. Camacho,⁴ Junji Urayama,⁴ and Mohan Sarovar^{1,†}

¹Sandia National Laboratories, Livermore, California 94550, USA
 ²Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
 ³Institute of Quantum Computing, University of Waterloo, N2L 3G1 Waterloo, Canada
 ⁴Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
 (Received 16 March 2015; revised manuscript received 23 August 2015; published 21 October 2015)

Letter

Vol. 40, No. 16 / August 15 2015 / Optics Letters 3695

Optics Letters

High-speed continuous-variable quantum key distribution without sending a local oscillator

DUAN HUANG,¹ PENG HUANG,^{1,3} DAKAI LIN,¹ CHAO WANG,¹ AND GUIHUA ZENG^{1,2,*}

¹State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory on Navigation and Location-based Service, and Center of Quantum Information Sensing and Processing, Shanghai Jiao Tong University, Shanghai 200240, China ²College of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China ³e-mail: huang.peng@situ.edu.cn ^{*}Corresponding author: ahzeng@situ.edu.cn

Received 22 May 2015; revised 15 July 2015; accepted 15 July 2015; posted 16 July 2015 (Doc. ID 241439); published 3 August 2015