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Motivation i) e

* Coherent-state CV-QKD can achieve information-theoretically secure key
distribution with modest technological resources.

* ltis particularly appealing due to the expectation that the integrated photonics
implementation of CV-QKD will be easier than that of DV-QKD, resulting in

greater practicality and wide-spread utilization.

* Conventional CV-QKD protocols require transmission of a high-intensity
coherent pulse, local oscillator (LO), between Alice and Bob. The shared LO
is needed to ensure that Alice and Bob use the same reference frame.

* The requirement for LO transmission is a major obstacle to the
implementation of CV-QKD.

* Security problems: There exist side-channel attacks that exploit detection
using a publicly shared high-power LO.

* Technological issues: Co-transmitting the LO with the signal states requires
techniques that involve combinations of time-division multiplexing, wavelength-
division multiplexing, and polarization encoding.




Motivation i) e

* Technological issues associated with LO transmission would be especially
severe for integrated photonics implementation of CV-QKD, since time-
division multiplexing and polarization manipulation and maintenance are more
difficult on-chip.
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When LO transmission is eliminated, the hardware
simplification is a real advantage for on-chip implementation




New approach: SR-CV-QKD h S,

* We have developed a new CV-QKD protocol that eliminates the
transmission of an LO.

* |nstead of transmitting an LO, Alice sends regularly spaced reference pulses
whose quadratures are measured by Bob to estimate Alice's phase reference.

* We call this new protocol self-referenced CV-QKD (SR-CV-QKD)

* Key advantages of SR-CV-QKD:

v |t greatly simplifies the hardware requirements at Alice's and Bob’s since
it enables them both to employ independent (truly local) LOs.

v It obviates a key assumption of most CV-QKD security proofs — namely
that the LO is trusted — and thus provides a more secure implementation

of CV-QKD.

v It is manifestly compatible with chip-scale implementation since it only
requires (low-loss and low-noise) classical optical communication
components.




How it works
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* |n a physical implementation of the SR-CV-QKD protocol, Alice chooses two
independent Gaussian random variables (g4, pa), both normally distributed with
zero mean and a fixed variance V,, and sends Bob a coherent-state signal pulse

with amplitude g, + 7 p,.

* She also sends a coherent-state reference pulse with publicly known fixed
amplitude Vz'"2, which is much smaller than that of a typical LO.
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In each round, Bob performs
homodyne measurement of one of
the quadratures of the received
signal pulse.

He also performs heterodyne
measurement of both quadratures
of the received reference pulse.

The key operation is the estimation
of the phase difference 6 between
Alice's and Bob's frames.




Estimation of phase difference T .

Since Bob knows the mean quadrature values of the reference pulse both in Alice's
frame, (Qar, Par), and in his own frame, (Qgr, Pgr), he can calculate an estimate of the
phase difference:
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Assuming, without loss of generality,
Signal pulse @B that Alice's reference pulse has

Par = 0,
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Effect of quantum uncertainty ) £

* Since the reference pulse has a relatively small amplitude, its quantum uncertainty
will produce an error in the phase difference estimate:  »

0=0+¢

* The estimation error ¢ is a random variable distributed according to some
probability distribution P(¢). We assume that 6 and ¢ are independent random
variables, since they arise from separate physical processes.

* The density matrix for the state shared between Alice and Bob before they perform

any measurements:
paB = E(psv)

* The effect of the (mismatched) reference frame alignment between Alice and Bob:

A

pap(0,60) = Ua(=0)Up(0)papUl(—0)UL(6)

* The effect of averaging over distributions of random variables 6 and ¢:
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Effect of quantum uncertainty Lt

In terms of the covariance matrix, only off-diagonal elements are affected:

Qu@s) = [ dePo) [ 5T [pan(@0.0)@a0s]

—Tr —Tr 2m

= /Tn(V2 —1)cos p

* Tis the channel transmittance, n is the detector efficiency, y is the channel noise
(referred to the input of the channel), and V =V, + 1.

T

* The effect on asymptotic key rates secure against individual and collective attacks
is through the parameter: 2
£ =1—(cosp)

* Under reasonable assumptions on P(¢) (symmetric and tight), we derive a tight
bound on ¢:
¢ €<?—VA—X+1' OR
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* 0Or = 1inthe single-reference-pulse mode, dz = 0 in the twin-reference-pulse mode.




Expected secure key rates ) .

* Using the analysis outlined above, we obtain analytic expressions for
asymptotic key rates secure against individual and collective attacks.
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Proof-of-principle experiment ) .

Schematic of our experimental setup (for simplicity, the same laser was used for
both Alice’s and Bob’s LOs):
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Proof-of-principle experiment

* Qur experimental work focused on:
1. Characterizing the performance of the central element of SR-CV-QKD - signal

reconstruction through compensation of the drifting phase;
2. Performing a proof-of-principle demonstration of key distribution using the new

protocol.
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Summary

i

* SR-CV-QKD obviates a key assumption of most CV-QKD security proofs —
namely that the LO is trusted — and thus provides a more secure
implementation of CV-QKD.

* SR-CV-QKD is manifestly compatible with chip-scale implementation since it
only requires classical optical communication components. This enables
miniaturization of CV-QKD hardware.
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* Qur results, along with demonstrations by other groups, establish SR-CV-QKD
as a practical protocol with significant benefits in terms of hardware
simplification and compatibility with integrated photonics.
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