Theoretical analysis and proof-of-principle demonstration of self-referenced continuous-variable quantum key distribution

Constantin Brif,¹ Daniel B. S. Soh,¹,² Patrick J. Coles,³ Norbert Lütkenhaus,³ Ryan M. Camacho,⁴ Junji Urayama,⁴ and Mohan Sarovar¹

¹Sandia National Laboratories, Livermore, CA 94550, USA
²Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
³Institute of Quantum Computing, University of Waterloo, N2L 3G1 Waterloo, Canada
⁴Sandia National Laboratories, Albuquerque, NM 87123, USA
Motivation

- **Coherent-state CV-QKD** can achieve information-theoretically secure key distribution with modest technological resources.

- It is particularly appealing due to the expectation that the integrated photonics implementation of CV-QKD will be easier than that of DV-QKD, resulting in greater practicality and wide-spread utilization.

- Conventional CV-QKD protocols require transmission of a high-intensity coherent pulse, **local oscillator (LO)**, between Alice and Bob. The shared LO is needed to ensure that Alice and Bob use the same reference frame.

- **The requirement for LO transmission is a major obstacle to the implementation of CV-QKD.**

- **Security problems**: There exist side-channel attacks that exploit detection using a publicly shared high-power LO.

- **Technological issues**: Co-transmitting the LO with the signal states requires techniques that involve combinations of time-division multiplexing, wavelength-division multiplexing, and polarization encoding.
Motivation

- Technological issues associated with LO transmission would be especially severe for **integrated photonics implementation** of CV-QKD, since time-division multiplexing and polarization manipulation and maintenance are more difficult on-chip.

With LO transmission

Without LO transmission

When LO transmission is eliminated, the hardware simplification is a real advantage for on-chip implementation.
New approach: SR-CV-QKD

- **We have developed a new CV-QKD protocol that eliminates the transmission of an LO.**

- Instead of transmitting an LO, Alice sends regularly spaced *reference pulses* whose quadratures are measured by Bob to estimate Alice's phase reference.

- We call this new protocol **self-referenced CV-QKD (SR-CV-QKD)**

- **Key advantages of SR-CV-QKD:**
 - It greatly simplifies the hardware requirements at Alice's and Bob’s since it enables them both to employ independent (truly local) LOs.
 - It obviates a key assumption of most CV-QKD security proofs – namely that the LO is trusted – and thus provides a more secure implementation of CV-QKD.
 - It is manifestly compatible with chip-scale implementation since it only requires (low-loss and low-noise) classical optical communication components.
How it works

- In a physical implementation of the SR-CV-QKD protocol, Alice chooses two independent Gaussian random variables \((q_A, p_A)\), both normally distributed with zero mean and a fixed variance \(V_A\), and sends Bob a **coherent-state signal pulse** with amplitude \(q_A + i \, p_A\).

- She also sends a **coherent-state reference pulse** with publicly known fixed amplitude \(V_R^{1/2}\), which is much smaller than that of a typical LO.

- In each round, Bob performs homodyne measurement of one of the quadratures of the received signal pulse.

- He also performs heterodyne measurement of both quadratures of the received reference pulse.

- The key operation is the **estimation of the phase difference** \(\theta\) between Alice's and Bob's frames.
Estimation of phase difference

Since Bob knows the mean quadrature values of the reference pulse both in Alice's frame, \((q_{AR}, p_{AR})\), and in his own frame, \((q_{BR}, p_{BR})\), he can calculate an estimate of the phase difference:

\[
\hat{\theta} = \tan^{-1}\left(\frac{p_{BR}q_{AR} - q_{BR}p_{AR}}{q_{BR}q_{AR} + p_{BR}p_{AR}}\right)
\]

Assuming, without loss of generality, that Alice's reference pulse has \(p_{AR} = 0\), we obtain:

\[
\hat{\theta} = \tan^{-1}\left(\frac{p_{BR}}{q_{BR}}\right)
\]
Effect of quantum uncertainty

• Since the reference pulse has a relatively small amplitude, its quantum uncertainty will produce an error in the phase difference estimate:

\[\hat{\theta} = \theta + \varphi \]

• The estimation error \(\varphi \) is a random variable distributed according to some probability distribution \(P(\varphi) \). We assume that \(\theta \) and \(\varphi \) are independent random variables, since they arise from separate physical processes.

• The density matrix for the state shared between Alice and Bob before they perform any measurements:

\[\rho_{AB} = \mathcal{E} (\rho_{SV}) \]

• The effect of the (mismatched) reference frame alignment between Alice and Bob:

\[\rho_{AB}(\hat{\theta}, \theta) = U_A(-\hat{\theta})U_B(\theta)\rho_{AB}U_A^\dagger(-\hat{\theta})U_B^\dagger(\theta) \]

• The effect of averaging over distributions of random variables \(\theta \) and \(\varphi \):

\[\bar{\rho}_{AB} = \rho_{AB}(\hat{\theta}, \theta) = \int_{-\pi}^{\pi} d\varphi \mathcal{P}(\varphi) \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} \rho_{AB}(\hat{\theta}, \theta) \]
Effect of quantum uncertainty

• In terms of the covariance matrix, only off-diagonal elements are affected:

\[
\langle Q_A Q_B \rangle = \int_{-\pi}^{\pi} d\varphi \mathcal{P}(\varphi) \int_{-\pi}^{\pi} d\theta \frac{1}{2\pi} \text{Tr} \left[\rho_{AB}(\hat{\theta}, \theta) Q_A Q_B \right]
\]

\[
= \sqrt{T \eta (V^2 - 1) \cos \varphi}
\]

• \(T\) is the channel transmittance, \(\eta\) is the detector efficiency, \(\chi\) is the channel noise (referred to the input of the channel), and \(V = V_A + 1\).

• The effect on asymptotic key rates secure against individual and collective attacks is through the parameter:

\[
\xi = 1 - \left(\frac{\cos \varphi}{\cos \varphi}\right)^2
\]

• Under reasonable assumptions on \(P(\varphi)\) (symmetric and tight), we derive a tight bound on \(\xi\):

\[
\xi \lesssim \varphi^2 = V_{\hat{\theta}} = \frac{\chi + 1}{V_R} + \frac{\delta_R}{T \eta V_R}
\]

• \(\delta_R = 1\) in the single-reference-pulse mode, \(\delta_R = 0\) in the twin-reference-pulse mode.
Expected secure key rates

- Using the analysis outlined above, we obtain analytic expressions for asymptotic key rates secure against individual and collective attacks.
Proof-of-principle experiment

Schematic of our experimental setup (for simplicity, the same laser was used for both Alice’s and Bob’s LOs):
Proof-of-principle experiment

• Our experimental work focused on:

1. Characterizing the performance of the central element of SR-CV-QKD – signal reconstruction through compensation of the drifting phase;

2. Performing a proof-of-principle demonstration of key distribution using the new protocol.

![Phase-space representation of reconstructed signal pulses after phase-drift compensation](image1)

![Expected key rates for the current experimental setup](image2)
Summary

• SR-CV-QKD obviates a key assumption of most CV-QKD security proofs – namely that the LO is trusted – and thus provides a more secure implementation of CV-QKD.

• SR-CV-QKD is manifestly compatible with chip-scale implementation since it only requires classical optical communication components. This enables miniaturization of CV-QKD hardware.

• Our results, along with demonstrations by other groups, establish SR-CV-QKD as a practical protocol with significant benefits in terms of hardware simplification and compatibility with integrated photonics.
Generating the Local Oscillator “Locally” in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

Bing Qi,1,2,* Pavel Lougovski,1 Raphael Pooser,1,2 Warren Grice,1 and Milenko Bobrek3
1Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6418, USA
2Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
3RF, Communications, and Intelligent Systems Group, Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006, USA

I. INTRODUCTION

On the one hand, almost all of the reported attacks are related to the arrangement of LO may cause security advantage over previous proposals in which the propagation of LO through the fiber in a conventional fiber optic network was focused on practicality and wide-spread utilization. This is because the strong LO inside the optical fiber may significantly reduce the key rates of CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice and Bob’s measurement bases. The method of phase timing measurements of optical signals [14,15]. Since the first experimental demonstration of coherent-state CV-QKD protocol has received much attention. This arrangement of LO may cause security issues in practical CV-QKD implementation. A major obstacle to the implementation of CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice and Bob’s measurement bases. The method of phase timing measurements of optical signals [14,15]. Since the first experimental demonstration of coherent-state CV-QKD protocol has received much attention. This arrangement of LO may cause security issues in practical CV-QKD implementation.

Self-Referenced Continuous-Variable Quantum Key Distribution Protocol

Daniel B. S. Soh,1,2,* Constantin Brit,1 Patrick J. Coles,3 Norbert Lütkenhaus,3 Ryan M. Camacho,4 Junji Urayama,4 and Mohan Sarovar1,7
1Sandia National Laboratories, Livermore, California 94550, USA
2Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
3Institute of Quantum Computing, University of Waterloo, N2L 3G1 Waterloo, Canada
4Sandia National Laboratories, Albuquerque, New Mexico 87123, USA

High-speed continuous-variable quantum key distribution without sending a local oscillator

Duan Huang,1 Peng Huang,1,2 Dakei Lin,1 Chao Wang,1 and Guang Zeng1,2,*
1State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory on Navigation and Location-based Service, and Center of Quantum Information Sensing and Processing, Shanghai Jiao Tong University, Shanghai 200024, China
2College of Information Science and Technology, Northwest University, Xi’an, Shaanxi 710127, China
*e-mail: ghzeng@stu.edu.cn
*Corresponding author: ghzeng@stu.edu.cn

Received 22 May 2015; revised 15 July 2015; accepted 15 July 2015; posted 16 July 2015 (Doc. ID 241438); published 3 August 2015