Breaking Symmetric Cryptosystems using Quantum Period Finding

Marc Kaplan Paris Center for Quantum Computing & University of Edinburgh

Joint work with G. Leurent, A. Leverrier, M. Naya-Plasencia (Inria EPI Secret)

Post-quantum cryptography

Public key cryptography: Shor's algorithm breaks RSA, DH, ECC in polynomial time Large effort to develop quantum-resistant scheme - Lattice, code, multivariate, etc...

- D-Wave's people claim that they can solve problems fast using their quantum computer (or can they?)
- NSA thinks we need quantum-secure crypto (or do they?)

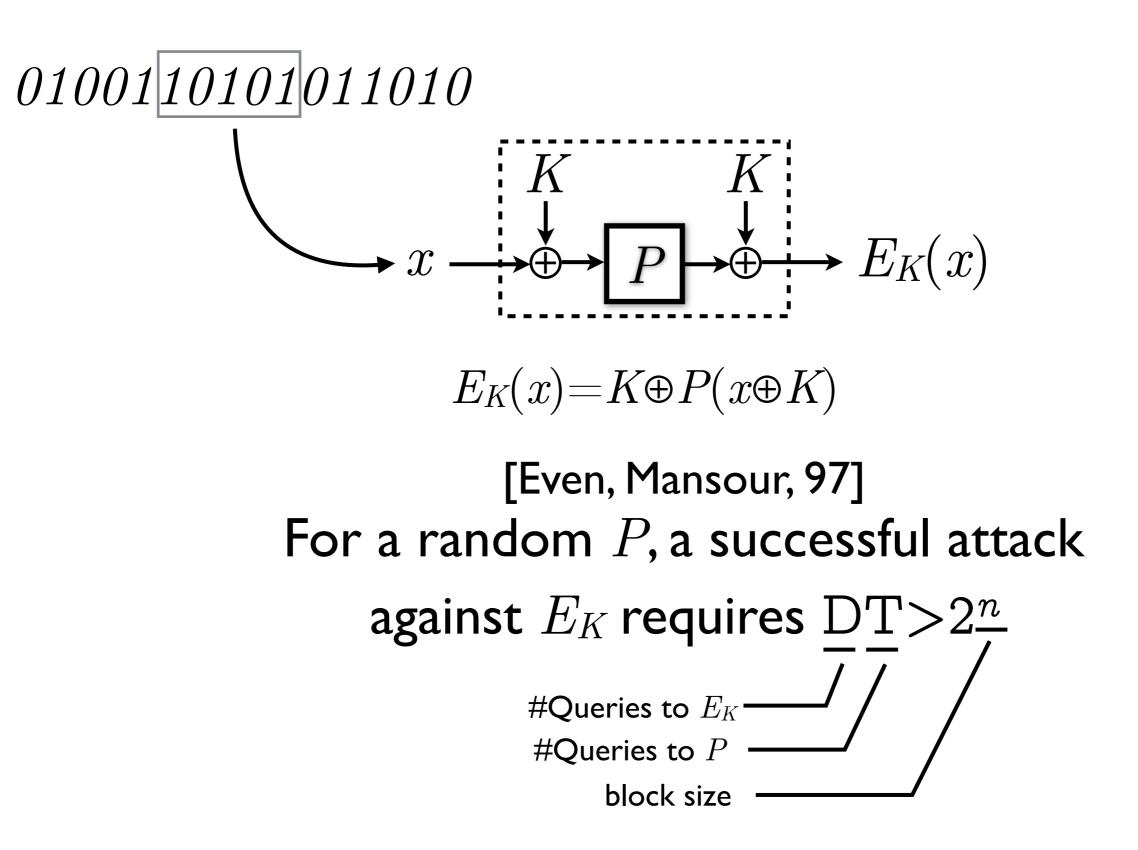
Post-quantum cryptography

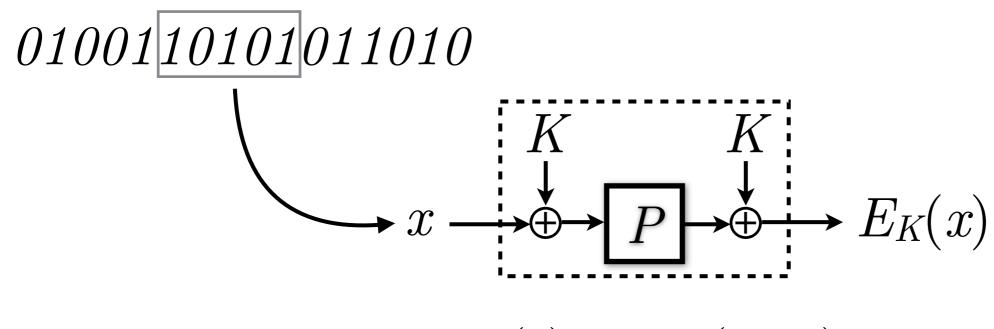
Symmetric cryptography: Grover's algorithm searches exhaustively for a key of length k in time 2^{k/2} Recommendation: double the key length

Goal of this talk: go beyond this claim

But...

- I. We don't break AES, but modes of operations
- 2. In most situations, building a quantum computer is insufficient for our attacks to work





 $E_K(x) = K \oplus P(x \oplus K)$

[Kuwakado, Mori '12] For a random P, there is a key recovery attack using O(n) quantum queries to E_K and P

Simon's problem

- $\underline{\mathsf{Input}}: \quad f: \{0,1\}^n \to \{0,1\}^m$
- <u>promise</u>: $f(x)=f(y) \Leftrightarrow x=y$ or $x=y \oplus s$ for some s

Output : s

Simon's algorithm: O(n) quantum queries to f

Oracle: $E_K(x) = K \oplus P(x \oplus K)$ **Function**: $f(x) = E_K(x) \oplus P(x)$ **Period**: $f(x \oplus K) = E_K(x \oplus K) \oplus P(x \oplus K)$ $= K \oplus P(x) \oplus P(x \oplus K) = f(x)$

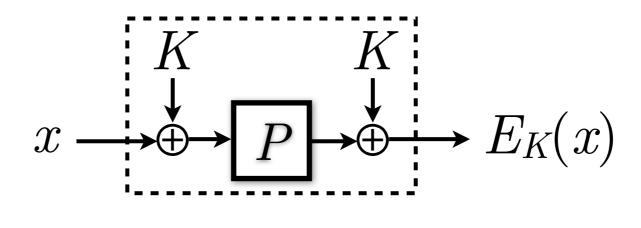
Simon's algorithm returns K with O(n)quantum queries to E_K and P

<u>Remark I</u>

No reduction to Simon: $f(x)=f(x \oplus K)$ for any x, but f(x)=f(y) for other values too.

Promise :
$$f(x) = f(y) \Leftrightarrow x = y \text{ or } x = y \oplus K$$

Simon's algorithm works as long as the \ll bad \gg collisions in f looks random



 $E_K(x) = K \oplus P(x \oplus K)$

[Kuwakado, Mori '12] For a random P, there is a key recovery attack using O(n) quantum queries to E_K and P

Remark II

Simon's algorithm requires to make quantum queries (in superposition) to $f\,$

The adversary needs a quantum access to the cryptographic oracle

Model introduced by

- Boneh, Zhandry, 13

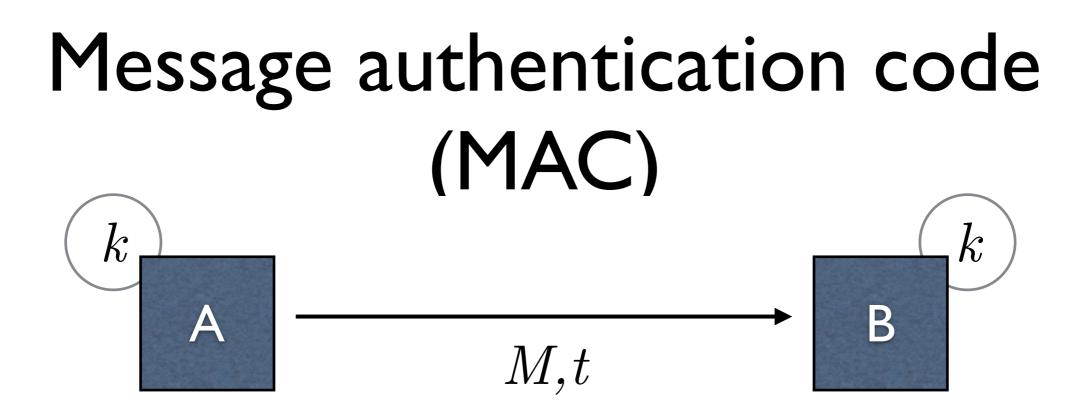
Quantum chosen plaintext attacks

- Damgård, Funder, Buus Nielsen, Salvail, 13 Superposition attacks

Quantum chosen plaintext attacks

Quantum chosen plaintext attacks

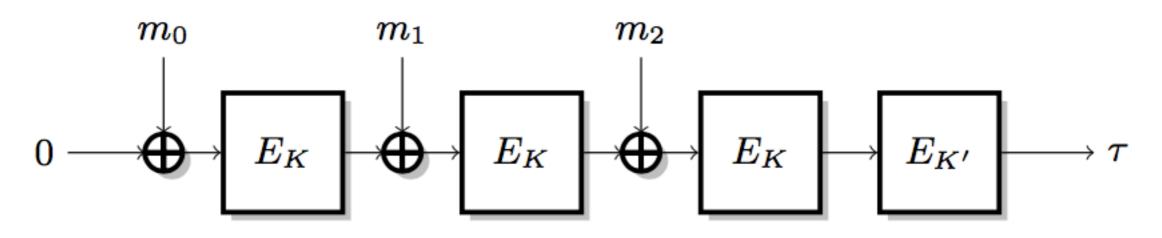
- Strongest non-trivial model of quantum attacks
- Well defined
- Possible attacks
 - Hidden quantum effects
 - Obfuscation
 - Quantum internet



- Alice uses the secret key k to compute a tag : $t = \operatorname{Mac}_k(M)$
- $\bullet~$ Bob can detect adversarial modifications of M
- The security only depends on the security of some block cipher

Cipher Block Chaining (CBC)

 $m = m_0 ||m_1||m_2$



Security proof (Bellare, Killian, Rogaway) If E_K is a secure, then CBC-MAC is secure. Boneh-Zhandry: Is CBC-MAC quantum-secure?

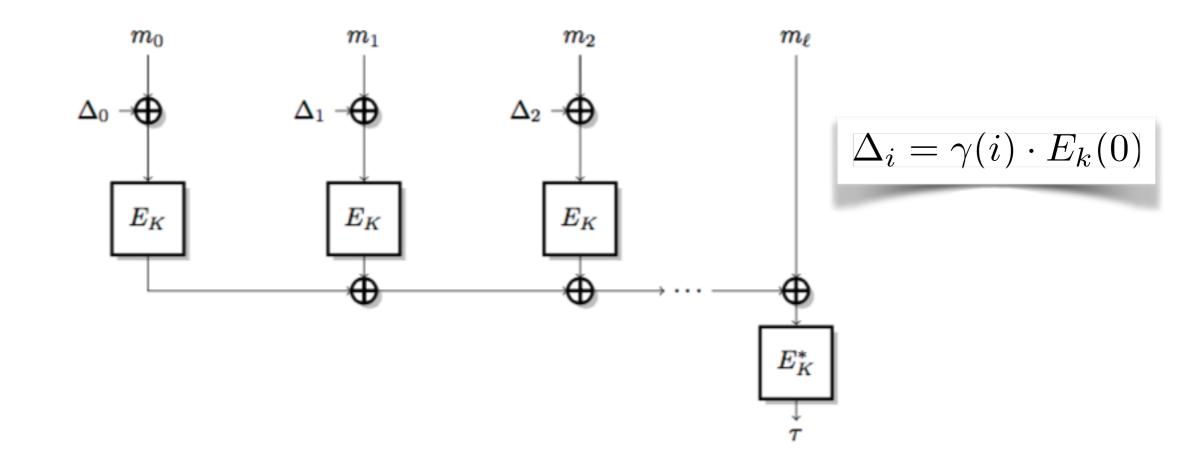
Cipher Block Chaining (CBC)

Function:
$$f(b, x) = \begin{cases} CBC-MAC(\alpha_0 || x) & \text{if } b = 0\\ CBC-MAC(\alpha_1 || x) & \text{if } b = 1 \end{cases}$$

$$\underline{\mathsf{Period}}: \quad f(0,x) = f(1,x \oplus E_K(\alpha_0) \oplus E_K(\alpha_1))$$

Forgery: $\alpha_0 ||m_1||m_2 \longrightarrow \text{Same Tag}$ $\alpha_1 ||m_1 \oplus E_K(\alpha_0) \oplus E_K(\alpha_1)||m_2 \longrightarrow \text{Same Tag}$

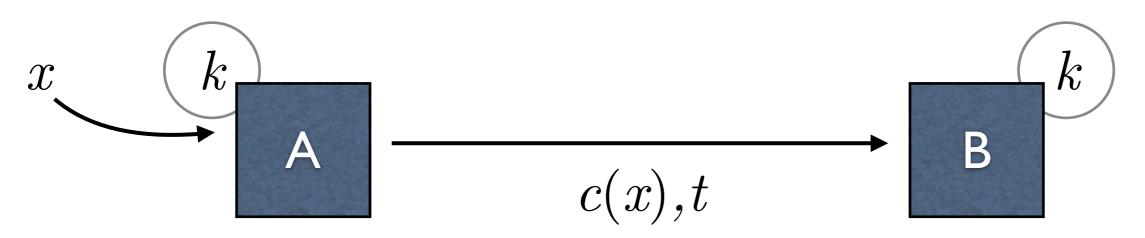
PMAC



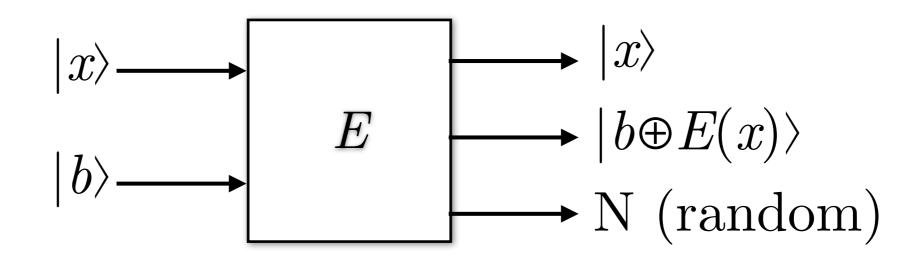
Security proof (Black, Rogaway): If E_K is secure cipher, then PMAC is secure.

Broken by Simon's algorithm

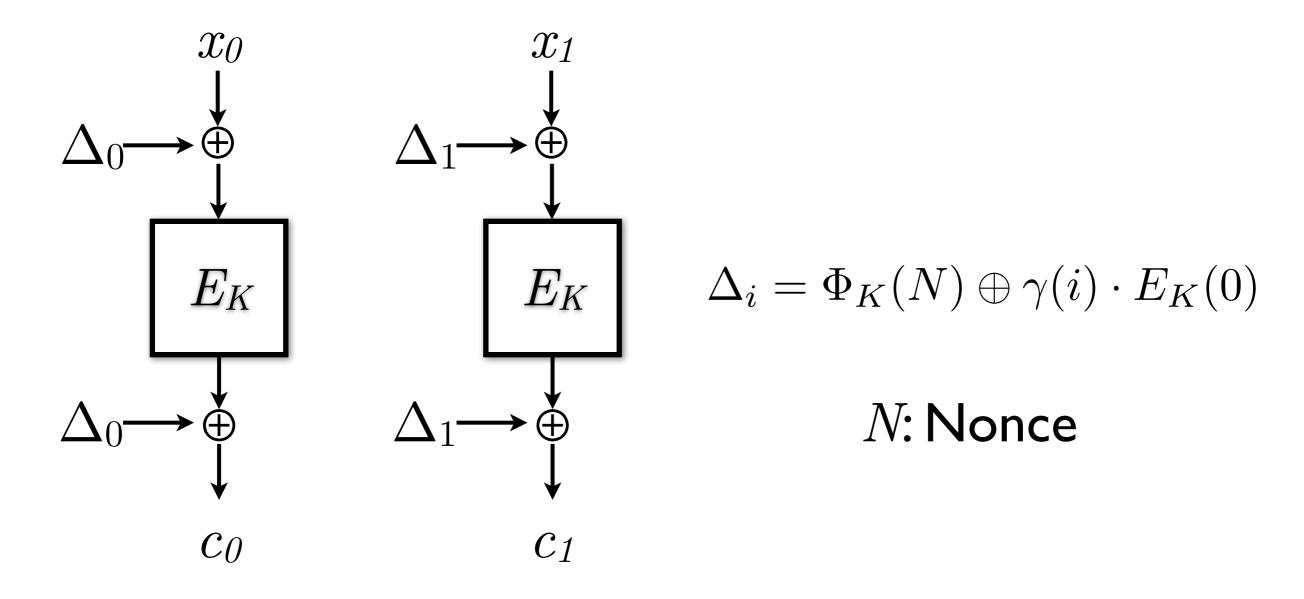
Authenticated encryption



- Confidentiality and integrity
- CAESAR competition
- Nonce based construction



Offset codebook mode (OCB)



Goal: extract the offsets Δ_i

Offset codebook mode (OCB)

<u>**Oracle</u>:** $OCB_k(N, m_0, m_1)$ **Can not chose** N</u>

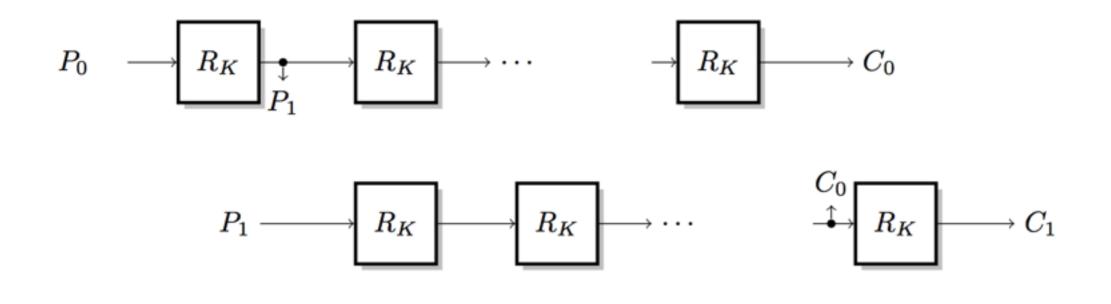
Function: $f(m) = c_0 \oplus c_1$ where $(c_0, c_1, \tau) = \text{OCB}_k(N, m || m, \varepsilon)$

Summary: modes of operations

	3-round Feistel	Distinguisher (corrected)
	Even-Mansour	Key recovery
	LRW	Distinguisher
MAC	CBC-MAC	Forgery
	PMAC	Forgery
	GMAC	Forgery / Nonce
AE	GCM	Forgery / Nonce
	OCB	Forgery / Nonce
CAESAR	CLOC	Forgery
	AEZ	Forgery / associated data
	COPA	Forgery / associated data
	OTR	Forgery / associated data
	POET	Forgery / associated data
	OMD	Forgery / associated data
	Minalpher	Forgery / associated data

Slide attacks

[Biryukov & Wagner, FSE '99]



Slid Pair: $(P_0, C_0), (P_1, C_1)$ s.t. $P_1 = R_K(P_0)$

Simon's algorithm: Exponential speedup to find slid-pairs

Conclusion

« Simon's algorithm : [...] actually maybe *not* that useless »*

« so many systems that are vulnerable to Simon attack exist and are used »*

SECURITY

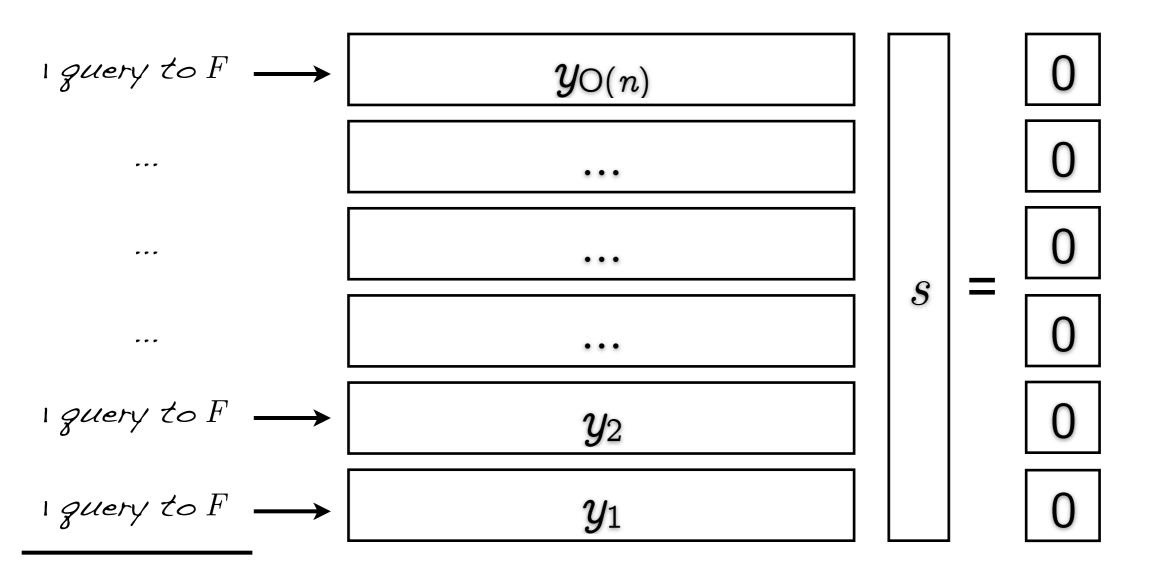
TED STATES OF AMERIC

Quantum computers threaten symmetric crypto too

But quantum-safe modes of operations also exist

Thank you!

Simon's algorithm



O(n) queries to F