Tutorial at QCrypt, September 12-16, 2016

Challenges to physical security

of

today's quantum technologies

Vadim Makarov

Quantum Computing

A (very) brief history of cryptography

Broken?

Monoalphabetic cipher	invented ~50 BC (J. Caesar)	~850 (Al-Kindi)
Nomenclators (code books)	~1400 - ~1800	\checkmark
Polyalphabetic (Vigenère)	1553 - ~1900	1863 (F. W. Kasiski)
One-time pad	invented 1918 (G. Vernam)	impossible (C. Shannon 1949)
Polyalphabetic electromechanical (Enigma, Purple, etc.)	1920s – 1970s	\checkmark
•••		
DES	1977 – 2005	1998: 56 h (EFF)
Public-key crypto (RSA, elliptic-curv	ve) 1977 –	will be once we have q. computer (P. Shor 1994)
AES	2001 –	?
Quantum cryptography	invented 1984, in developmen	impossible *
Public-key crypto ('quantum-safe')	in development	?

Security model of QKD

Attack	Target component	Tested system
Laser damage V. Makarov <i>et al.,</i> arXiv:1510.03148	any	ID Quantique, research system
Spatial efficiency mismatch M Rau <i>et al.,</i> IEEE J. Quantum Electron. 21 , 6600905 (2015	receiver optics 5); S. Sajeed <i>et al.,</i> Phys. Rev. A 91 ,	research system 062301 (2015)
Pulse energy calibration S. Sajeed <i>et al.,</i> Phys. Rev. A 91 , 032326 (2015)	classical watchdog detector	ID Quantique
Trojan-horse I. Khan <i>et al.,</i> presentation at QCrypt (2014)	phase modulator in Alice	SeQureNet
Trojan-horse N. Jain <i>et al.,</i> New J. Phys. 16 , 123030 (2014)	phase modulator in Bob	ID Quantique*
Detector saturation H. Qin, R. Kumar, R. Alleaume, Proc. SPIE 88990N (2013)	homodyne detector	SeQureNet
Shot-noise calibration P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Rev. A 87,	classical sync detector	SeQureNet
Wavelength-selected PNS MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. Rev. A 8	intensity modulator 6, 032310 (2012)	(theory)
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011)	beamsplitter	research system
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011)	single-photon detector	research system
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)	single-photon detector	ID Quantique
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83, 06233	Faraday mirror	(theory)
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun. 2 , 349 (2011); L. Lydersen	single-photon detector et al., Nat. Photonics 4 , 686 (2010)	ID Quantique, MagiQ, research system
* Attack did not break security of the tested system, but may	be applicable to a different impleme	ntation.

Declassified and approved for release by NSA on 12-10-2008 pursuant to E.O. 12958, as amended. MDR 54498

26 · X

A HISTORY OF U.S. COMMUNICATIONS SECURITY (U) (The David G. Boak Lectures)

NATIONAL SECURITY AGENCY FORT GEORGE G. MEADE, MARYLAND 20755

Revised July 1973

TENTH LECTURE:

TEMPEST

In 1962, an officer assigned to a very small intelligence detachment in Japan was performing the routine duty of inspecting the area around his little cryptocenter. As required he was examining a zone 200 ft. in radius to see if there was any "clandestine technical surveillance". Across the street, perhaps a hundred feet away, was a hospital controlled by the Japanese government. He sauntered past a kind of carport jutting out from one side of the building and, up under the eaves, noticed a peculiar thing—a carefully concealed dipole antenna, horizontally polarized, with wires leading through the solid cinderblock wall to which the carport abutted. He moseyed back to his headquarters, then quickly notified the counter-intelligence people and fired off a report of this "find" to Army Security Agency, who, in turn, notified NSA. He was directed to examine this antenna in detail and perhaps recover it, but although the CIC had attempted to keep the carport under surveillance that night, the antenna had mysteriously disappeared when they checked the next day. Up on the roof of the hospital was a forest of Yagi's, TV-antennas, all pointing towards Tokyo in the normal fashion, except one. That one was aimed right at the U.S. cryptocenter. able impact on most of our cryptosystems, and because we view it as the most serious technical security problem we currently face in the COMSEC world.

First, let me state the general nature of the problem as briefly as I can, then I will attempt something of a chronology for you. In brief: any time a machine is used to process classified information electrically, the various switches, contacts, relays, and other components in that machine may emit radio frequency or acoustic energy. These emissions, like tiny radio broadcasts, may radiate through free space for considerable distances—a half mile or more in some cases. Or they may be induced on nearby conductors like signal lines, power lines, telephones lines, or water pipes and be conducted along those paths for some distance—and here we may be talking of a mile or more.

Now, let's go back to the beginning. During WW II, the backbone systems for Army and Navy secure TTY communications were one-time tapes and the primitive rotor key generator then called SIGTOT. Bell Telephone rented and sold the military a mixing device called a 131-B2 and this combined with tape or SIGTOT key with plain text to effect encryption. They had one of these mixers working in one of their laboratories and, quite by accident, noted that each time the machine stepped, a spike would appear on an oscilloscope in a distant part of the lab. They examined these spikes more carefully and found, to their real dismay, that they could read the plain text of the message being enciphered by the machine. Bell Telephone was kind enough to give us some of their records of those days, and the memoranda and reports of conferences that ensued after this discovery are fascinating. They had sold the equipment to the military with the assurance that it was secure, but it wasn't. The only thing they could do was to tell the Signal Corps about it. which they did. There they met the charter members of a club of skeptics (still flourishing!) which could not believe that these tiny pips could really be exploited under practical field conditions. They are alleged to have said something like: "Don't you realize there's a war on? We can't bring our cryptographic operations to a screeching halt based on a dubious and esoteric laboratory phenomenon. If this is really dangerous, prove it." The Bell engineers were placed in a building on Varick Street in New York. Across the street and about 80 feet away was Signal Corps' Varick Street cryptocenter. The Engineers recorded signals for about an hour. Three or four hours later, they produced about 75% of the plain text that was being processed—a fast performance, by the way, that has rarely een equalled. (Although, to get ahead of the story for a moment, in some circumstances now-a-Lays, either radiated or conducted signals can be picked up, amplified, and used to drive a tele-

Today's digital

vs. quantum

[vs. future quantum]

Crypto module - Quantum bus, computer, memory...

True randomness?

True randomness?

Issue reported patched in 2010

Do we trust the manufacturer?

Many components in QKD system can be Trojan-horsed:

- access to secret information
- electrical power
- way to communicate outside or compromise security

ID Quantique Clavis2 QKD system

Photo ©2008 Vadim Makarov. Published with approval of ID Qiantique

Double clicks

– occur naturally because of detector dark counts, multi-photon pulses... Discard them?

Intercept-resend attack... with a twist:

Proper treatment for double clicks: assign a random bit value.

N. Lütkenhaus, Phys. Rev. A **59**, 3301 (1999) T. Tsurumaru & K. Tamaki, Phys. Rev. A **78**, 032302 (2008)

Trojan-horse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Trojan-horse attack experiment

Artem Vakhitov tunes up Eve's setup

Trojan-horse attack for plug-and-play system

Eve gets back one photon \rightarrow in principle, extracts 100% information

N. Gisin et al., Phys. Rev. A 73, 022320 (2006)

Countermeasures?

D. Stucki et al., New J. Phys. 4, 41 (2002)

Countermeasures for plug-and-play system

S. Sajeed *et al.,* Phys. Rev. A **91**, 032326 (2015)

N. Jain *et al.*, New J. Phys. **16**, 123030 (2014)

Trojan-horse attack on Bob

Trojan-horse attack on Bob

Countermeasures for plug-and-play system

S. Sajeed *et al.,* Phys. Rev. A **91**, 032326 (2015)

N. Jain *et al.*, New J. Phys. **16**, 123030 (2014)

Pulse-energy-monitoring detector

Lesson 1. Industry needs implementation standards, certification and testing standards.

ETSI industry specification group for QKD

R. Alléaume et al., Proc. IEEE Globecom Workshop 2014, p. 656

First security standard: Trojan-horse in one-way system

M. Lucamarini et al., Phys. Rev. X 5, 031030 (2015)

Example of vulnerability and countermeasures

Photon-number-splitting attack

C. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, J. Cryptology 5, 3 (1992)

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000)

N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000)

S. Félix, N. Gisin, A. Stefanov, H. Zbinden, J. Mod. Opt. 48, 2009 (2001)

N. Lütkenhaus, M. Jahma, New J. Phys. 4, 44 (2002)

Decoy-state protocol

W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003)

★ SARG04 protocol

V. Scarani, A. Acín, G. Ribordy, N. Gisin, Phys. Rev. Lett. 92, 057901 (2004)

Distributed-phase-reference protocols

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002)

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. A. 68, 022317 (2003)

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, V. Scarani, arXiv:quant-ph/0411022v1 (2004)

Attack example: avalanche photodetectors (APDs)

Detector deadtime attack

H. Weier *et al.*, New J. Phys. **13**, 073024 (2011)

Attack example: avalanche photodetectors (APDs)

Faked-state attack in APD linear mode

Blinding APD with bright light

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Proposed full eavesdropper

Note: Intercept-resend always breaks QKD security

M. Curty, M. Lewenstein, N. Lütkenhaus, Phys. Rev. Lett. 92, 217903 (2004)

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4–5, 2009

Perfect countermeasure to detector attacks

Measurement-device-independent QKD

H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)

Industrial countermeasure (ID Quantique)

A. Huang et al., arXiv:1601.00993

Once equipment is tested and certified, end of story?

Can Eve modify equipment after installation?

Laser damage

V. Makarov et al., arXiv:1510.03148

Can we eavesdrop on commercial systems?

ID Quantique's Cerberis: Dual key agreement

Q)

Kerckhoffs' principle

Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi

A. Kerckhoffs, J. des Sciences Militaires 9, 5 (1883)

Everything about the system that is not explicitly secret is known to the enemy

Eavesdropping in real life?

What about device-independent protocols?

Assumptions:

- 1. No information-leakage channels
- 2. No memory

J. Barrett, R. Colbeck, A. Kent, Phys. Rev. Lett. **110**, 010503 (2013) V. Makarov *et al.*, arXiv:1510.03148

Conclusion

Physics promises unbreakable cryptography, but implementing it with our rudimentary quantum technology is a research challenge.

Suggested reading

Introduction to detector attacks and MDI-QKD

H.-K. Lo, M. Curty, K. Tamaki, Nat. Photonics 8, 595 (2014), 10 pages

Review of more hacking techniques

N. Jain et al., Contemp. Phys. 57, 366 (2016), 22 pages

Reviews are incomplete. If you are engineering a system, read original literature (or ask for my expert advice).

Informal security evaluation

Only industrial designs

NDA, full access to engineering documentation

Team of experts :)

Identify all known potential vulnerabilities in optics and electronics (Q1–4)

Stage I: Initial analysis of documentation

Stage II: Lab testing

Security analysis layers in quantum communication

- **Q7.** Installation and maintenance procedures
- Q6. Application interface

Q5. Post-processing (e.g., for QKD: sifting, error correction, privacy amplification, authentication)

- **Q4.** Operation cycle (state machine)
- Q3. Driver and calibration algorithms
- Q2. Analog electronics interface
- Q1. Optics

Example of initial analysis report

TABLE I: Summary of potential security issues in			system.				
Potential security issue	С	Q	Target component	Brief description	Requirements for complete analysis	Lab testing needed	Risk evaluation
	CX	$Q_{1-5,7}$			Complete circuit diagram of	Yes	High
	CX	Q1-3		See Ref. 3.	Complete circuit diagram of	Yes	High
	CX	Q1,2		See Ref. 4.	Complete circuit diagram of	Yes	High
	C0	Q2,3		Manufacturer needs to implement	Known issue. The manufacturer should patch it.	No	High
	CX	Q3-5,7			Known issue. The manufacturer should	No	Medium
	CX	Q1			Model numbers of all optical components; complete receiver for testing.	Yes	High
	CX	Q1–5			Complete circuit diagram of settings of	Yes	Insufficient information
	CX	Q1–3			Algorithm of	Yes	Low
	CX	Q1,2		See Ref. 13.	Model numbers of	Yes	Medium
	CX	Q4,5			Full system algorithms; complete system if decided to test.	Maybe	Low
	CX	Q1,3-5		Eve can	Algorithm for	Maybe	Low

