

Rate-distance Tradeoff and Resource Costs for All-Optical Quantum Repeaters

arXiv:1603.01353

Mihir Pant^{1,2}, Hari Krovi², Dirk Englund¹ and Saikat Guha²

¹Massachusetts Institute of Technology

²Raytheon BBN Technologies

The limit of repeaterless QKD

Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. Fundamental limits of repeaterless quantum communications. October 2015. arXiv preprint arXiv: 1510.08863.

Bob

Raytheon

BBN Technologies

Takeoka, M., Guha, S., & Wilde, M. M. (2014). Fundamental rate-loss tradeoff for optical quantum key distribution. Nature communications, 5.

Quantum Repeaters

Challenges with Quantum memories

- Coupling with photonics
- Dilution fridge
- Error Corrected Memories

Sinclair et. al., *Physical review letters*, *113*(5), 053603 (2014). Guha et. al., *Physical Review A*, *92*(2), 022357 (2015).

All-Optical Repeaters

Simpler components

Raytheon

BBN Technologies

• Sources

Bob

- Detectors
- Beamsplitter
- Phase Shifters

But how practical is it?

Azuma, K., Tamaki, K., & Lo, H. K. (2015). All-photonic quantum repeaters. *Nature communications*, *6*.

Varnava, M., Browne, D. E., & Rudolph, T. (2006). Loss tolerance in one-way quantum computation via counterfactual error correction. *Physical review letters*, *97*(12), 120501.

Detailed analysis of the Scheme

Pant, M., Krovi, H., Englund, D., & Guha, S. (2016). Rate-distance tradeoff and resource costs for all-optical quantum repeaters. arXiv preprint arXiv:1603.01353.

Raytheon

BBN Technologies

Improvements

- Store "memory" photons locally
- "Boosted" Bell measurement
 - Increasing success probability of Bell measurement to 75% using ancilla single photons*

Raytheon BBN Technologies

- Better multiplexing
- Applying measurements in the beginning

Ewert, F., & van Loock, P., *PRL*, *113*(14), 140403 (2014)

Improved performance

k	size of state	# of single- photon- sources	# 3-GHZ state sources
7	113	3 M	15 k
8	237	10 M	50 k
9	489	36 M	180 k
10	993	120 M	600 k

Raytheon BBN Technologies

Analytical Result: Optimum repeater spacing independent of total distance

Pant, M., Krovi, H., Englund, D., & Guha, S. (2016). Rate-distance tradeoff and resource costs for all-optical quantum repeaters. arXiv preprint arXiv:1603.01353.

One way repeater based on Quantum Parity Code

200

L (km)

300

400

500

100

0

Bell measurement success probability = 1-1/2ⁿ

Ewert, F., Bergmann, M., & van Loock, P. (2015). arXiv preprint arXiv: 1503.06777.

(m,n)	size of state	# of single- photon- sources	# 3-GHZ state sources
(8,3)	48	200k	1k
(9,3)	54	700k	3.5k
(12,4)	96	2M	10k
(18,5)	180	4.4M	22k

with Sreraman Muralidharan and Liang Jiang (in preperation)

Conclusion

- A **48 photon** entangled state source can beat the repeaterless bound
 - •Reduction from **10**¹¹ **to 10**⁵ single photon sources (**1000 3 photon GHZ sources**): lots of room for further improvement
 - -Better error correction,
 - -Efficient cluster creation
 - -Fair comparison: error corrected quantum memory
 - •Similar ideas would also be useful for reducing resource costs in LOQC in general
 - –Li, Benjamin: 10¹⁰ components/logical qubit
 - Repeaters: a nearer term target compared to full blown LOQC