Observation of quantum fingerprinting beating the classical limit

<u>Feihu Xu, MIT</u>

Jianyu Guan, Hualei Yin ..., Qiang Zhang, Jian-Wei Pan, USTC Lixin You, CAS

Communication complexity

World map of daily utilization of IPv4 addresses

Find the *minimum* amount of communication needed to solve distributed computational tasks.

- Fundamental Physics and CS
- Green communication and networks
- VLSI circuit design
- Data structure design

A. C.-C. Yao, Proc. of the 11th Annual ACM STOC, 209 (1979)

Example: censor illegal movie copy

Send entire file: *n* bits

Send a short **fingerprint** using classical state: $O(\sqrt{n})$ bits*

- No access to shared randomness
- Each one sends a string to Referee
- Referee compares between strings to find the illegal copy
- How many bits must be transmitted?

* Algorithmica **16**, 298 (1996) ** Phys. Rev. Lett. **87**, 167902 (2001) Send a much shorter fingerprint using **quantum** state: $O(\log_2 n)$ qubits**

Why quantum fingerprinting?

Proven classical bound*:

$$O(\sqrt{n})$$
 - bits

Proven quantum bound**:

$O(\log_2 n)$ - qubits

An exponential saving in communication!

But, it requires $\log_2(n)$ entangled qubits ...

* A. Ambainis, Algorithmica **16**, 298 (1996) ** H. Buhrman, *et al.*, Phys. Rev. Lett. **87**, 167902 (2001)

Previous experiments: single-qubit transmission

PRL 95, 150502 (2005)

PHYSICAL REVIEW LETTERS

week ending 7 OCTOBER 2005

Single-Qubit Optical Quantum Fingerprinting

Rolf T. Horn,¹ S. A. Babichev,^{1,2} Karl-Peter Marzlin,¹ A. I. Lvovsky,^{1,2} and Barry C. Sanders¹ ¹Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada ²Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany (Received 23 September 2004; revised manuscript received 1 December 2004; published 4 October 2005)

PHYSICAL REVIEW A 72, 050305(R) (2005)

Experimental quantum communication complexity

Pavel Trojek,^{1,2} Christian Schmid,^{1,2} Mohamed Bourennane,³ Časlav Brukner,⁴ Marek Żukowski,⁵ and Harald Weinfurter^{1,2}
¹Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
²Sektion Physik, Ludwig-Maximilians-Universität, D-80799 München, Germany
³Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
⁴Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, A-1090, Wien, Austria
⁵Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański, PL-80-952 Gdańsk, Poland (Received 8 June 2004; published 28 November 2005)

- Smaller error probability for *single-qubit* transmission
- No reduction in the transmitted information compared with the classical case

A practical coherent-state protocol

J. Arrazola, N. Lütkenhaus, Phys. Rev. A, 89, 062305 (2014)

Transmitted Information

States of a single photon across n modes span a Hilbert space of dimension n, which is mathematically equivalent to $O(log_2 n)$ qubits

A coherent state with total photon number $\mu = |\alpha|^2$ across *n* modes spans a Hilbert space equivalent to $O(\mu \log_2 n)$ qubits

Restrict μ to a <u>small constant</u> -> Exponentially small subspace of a larger Hilbert space -> Exponential improvement over classical

Cost: number of modes is linear in the input size

J. Arrazola, N. Lütkenhaus, Phys. Rev. A, 89, 062305 (2014)

Proof-of-concept implementation

RCrypt2015

- ✓ Constructed a more *efficient* error correcting code
- Designed an improved decision rule for the referee
- ✓ Built a modified plug&play QKD system to perform the experiment

F. Xu, J. Arrazola, ..., N. Lütkenhaus, Hoi-Kwong Lo, Nature Commun. 5, 8735 (2015)

For messages up to 100 Mbits, the information transmitted is <u>66%</u> lower than the best known classical protocol

F. Xu, J. Arrazola, ..., N. Lütkenhaus, Hoi-Kwong Lo, Nature Commun. 5, 8735 (2015)

Whether quantum fingerprinting can beat the classical theory limit?

Best known classical protocol: $32\sqrt{n}$ Classical theoretical limit: $\frac{\sqrt{n}}{20}$

Three orders of magnitude smaller!

L. Babai, P. G. Kimmel, Proceedings of the 12th Annual IEEE Conference on Computational Complexity, 239–246 (1997)

Our Solution

✓ Proved a *tighter* classical theoretical bound

 ✓ Utilized superconducting single-photon detectors with *ultralow* dark counts

Constructed a phase-stabilized Sagnac interferometer

Beating the classical theory limit by 19% over 20 km fiber!

J. Guan, F. Xu et al. Phys. Rev. Lett. 116, 240502 (2016)

Tighten classical bound

Best known classical protocol: $32\sqrt{n}$ Classical theoretical limit*: $\frac{\sqrt{n}}{20}$

- Optimize the coefficients
- Improve the bound by one order of magnitude

$$C_{\text{limit}} = (1 - 2\sqrt{\epsilon})\sqrt{\frac{n}{2\ln 2}} - 1.$$

*L. Babai, P. G. Kimmel, Proceedings of the 12th Annual IEEE Conference on Computational Complexity, 239–246 (1997)

SNSPD with integrated filter

- A multilayer film bandpass filter to suppress the dark counts
- High transmittance over 88%

X. Yang, et al. Opt. Express 22, 16267 (2014)

SNSPD

- Dark count: 0.11 cps
- Quantum efficiency: 45.6%

Experimental setup: Sagnac interferometer

- Automatic compensation of the phase differences between the two pulses
- High interference visibility > 96% over 20 km fiber
- Stable interference up to 24 hours

Comparison between P&P and Sagnac

Counts on the 'different' detector

- Red: same message
- Blue: different message (code-word distance 0.22)
- Green: pre-determined threshold
- Mean photon per pulse=10^-7

Results

- 2 orders of magnitude lower than best classical protocol
- Beat the classical limit by 84% (19%) at 0 (20) km

Fingerprint two real videos

TABLE 4: Quantum fingerprinting results for two real videos.

Raw message length (n)	2×10^9
Encoded message length (m)	8.34×10^9
Communication time (s)	333.6
μ_a	656.6 ± 52.5
μ_b	645.7 ± 51.7
Q (both Alice and Bob)	32690.2 ± 2615.22
γ (limitation)	1.14 ± 0.091
γ (best algorithm)	43.8 ± 3.5
$D_{1,th}$	35.9
D_1 when using same video	8.8 ± 3.3
\mathcal{D}_1 when using different video	153.5 ± 12.9
ϵ	1.34×10^{-16}

- Beat the classical limit by 14% over 20 km fiber
- Use ~1300 photons only to encode 2 Gbits message!

Discussion

- Limitations
 - Transmit exponentially less information, but at a cost of using quadratically more optical pulses
 - Two-way system: redundant channel uses
 - Local synchronization
- Improvements
 - Multiplexing: WDM
 - Independent lasers + phase locking
 - Distributed synchronization

Summary: Alice and Bob have their quantum fingerprints checked

physicsworld.com

(Mar 23, 2016)

- Demonstrate a quantum fingerprinting system that for the first time beats the ultimate classical limit to transmitted information.
- Our experiment <u>opens the door</u> to other potentially more useful applications, such as better large-scale integrated circuits and more energy-efficient communication.

Feihu Xu: <u>fhxu@mit.edu</u>

F. Xu *et al.* Nature Commun. **5**, *8735* (2015) J. Guan, F. Xu *et al.* Phys. Rev. Lett. **116**, 240502 (2016)