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Given is a quantum channel N and a QKD protocol that uses it n times:

A . B A . B A, . B K
: l : ; eee I . -
LOCC A LOCC Az LOCC [ XX LOCC A LOCC
B,” B,” B,

(XX K

Non-asymptotic private capacity: Maximum rate of e-close secret key
achievable using channel n times and N mean photons per channel use:

Pi¢(n, Ns,e) = sup {P : (n, P, Ns, ) is achievable for " using <} .

If no photon number constraint, then consider

Pi(n,e) = sup P{}(n, Ns,e).
Ns>0
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@ Practical question: How to characterize ﬁﬁ(n, Ns,e) for all n > 1,
Ns >0, and ¢ € (0,1)?

@ How to characterize ﬁﬁ(n,s) forall n>1and e € (0,1)?
@ The answers give the fundamental limitations of QKD.

@ Upper bounds on FA’ﬁ(n, Ns,¢€) and Iﬁﬁ(n,s) can be used as
benchmarks for quantum repeaters [TGW14].

@ This talk discusses the tightest known upper bound on Isﬁ(n, e) for
channels of practical interest and thus represents the best known
benchmark for quantum repeaters [WTB16].
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What was known before?

@ Begin by reviewing what is known

o Let's leap back to QCrypt 2014:

Grypt 2014
|
)

o Takeoka presented results of [TGW14].
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[TGW14] bound with energy constraint

@ Most interested in the photon loss channel:
Ly,: b=\ma+/1-né
where transmissivity 7 € [0, 1] and environment in vacuum state.
@ Practical question is tough, so consider limiting cases. ..

e [TGW14] bound: Consider the limit as n — oo and then € — 0:

lim lim Pf (n,Ns,e) < g((1+n)Ns/2) — g((1 — n)Ns/2)

e—0 n—o0 n

where g(x) = (x + 1) logy(x + 1) — x logy x

is entropy of bosonic thermal state with mean photon number x.
@ Based on the squashed entanglement measure [CWO04].
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[TGW14] bound without energy constraint

Optimizing over energy gives the unconstrained [TGW14| bound:

e—0 n—o0

1
lim lim P£ (n,e) < log, (1—“7> .
n

essentially because supy o g((1 +7)Ns/2) — g((1 — n)Ns/2) = log, ( 1+n) .

@ [TGW14] established existence of a fundamental rate-loss trade-off for
any possible QKD protocol that uses a photon-loss channel.

@ Bound is finite for all n € [0,1) and depends only on 7.

@ Main drawback is that it is an asymptotic statement and thus has
limited applicability in practice.

@ (Original proof didn't address issue with unbounded shield systems — now fixed
in [W16])
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[PLOB1

e By a different method, [PLOB15] established the upper bound:

A 1
C o
lim lim Pp (n,e) < |0g2<177> . (%)

e—0 n—oo

@ In fact, with an infinite number of channel uses, infinite energy, and
perfect quantum computers for Alice and Bob, the bound is tight:

A 1
L
lim, lim Pr,(n.€) = log, (1_n> '

@ Drawbacks are the same: An asymptotic statement, and thus says
little for practical protocols (called a weak converse bound)

@ Method used in [PLOB15] does not give any improved bound for
protocols using finite energy (Finite-energy SE can be tighter [GEW16])

@ (Proof of (x) in [PLOB15, Supp. Mat., Sec. IlI] does not address issue of
unbounded shield systems, & thus their proof gives trivial upper bound of oo for
LHS of (x) — this issue is addressed and fixed in [WTB16])
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Upper bound for non-asymptotic private capacity [WTB16]

Bound on Non-Asymptotic Private Capacity

One consequence of the meta-converse approach in [WTB16]:

" 1 C
Pa(n,g) < |og2<1 _77> + ﬁ’

n

where C(e) = log, 6 + 2log, (1+5) (other choices possible).

@ Can be used to assess the performance of any practical quantum
repeater which uses a loss channel n times for desired security ¢.

@ Otbher variations of this bound are possible if 7 is not the same for
each channel use, if 1 is chosen adversarially, etc.

@ Remaining technical questions: Improve C(¢) to log, (i)'?
Finite-energy bound?
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Meta-converse approach from [WTB16]

e Building on [Bla74, BDSW96, BK98, HWO01, HHHOO05, Che05,
DJKR06, HHHO09, CKR09, PPV10, BD11, Lil4, TH13, TT15,
MLDS*13, WWY14, TWW14, DPR15, TBR15, PLOB15]

@ Meta-converse approach starts by using hypothesis testing relative
entropy to compare the actual state resulting from the protocol to a
separable state, the latter being useless for private comm.

@ The approach extracts the relevant parameters of the protocol (n,
rate P, and ¢) and relates them via an information-like quantity.

@ The meta-converse leads to various other bounds, including
Renyi-entropic strong converse bounds and others in terms of relative
entropy and relative entropy variance.

@ Result: We get the tightest known upper bounds for non-asymptotic
private capacity of many channels of practical interest.
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Information measures

@ Hypothesis testing relative entropy defined for a state p, positive
semi-definite operator o, and ¢ € [0,1] as

Dy (pllo) = —log [min{Tr{Ac} : 0 < A< I ATr{Ap} >1—¢}].
@ Has a second-order expansion for i.i.d. states:

D5 (p®"|®") = nD(pl|or) + v/nV(p]lo)®~(¢) + O(log n).

where  D(p|lo) = Tr{p[log p — log 7]},
V(pllo) = Tr{pllog p — log o — D(p|l0)]*}

d(a) = \/12? /_a dx exp (—x2/2)
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Example: Dephasing channel [TBR15, WTB16]

For the qubit dephasing channel
ZV:ip= (L=7)p+vZpZ,

with v € (0,1), the non-asymptotic private capacity IﬁH(n,a) satisfies

P<(n,e)=1—h(y)+ V(’?) o 1(e) + IOZ% + O(i) ,

where ® is the cumulative standard Gaussian distribution, h(vy) denotes
the binary entropy and v() the corresponding variance, defined as

h(v) = —vylogy — (1 — ) log(1 — ),
v(7) = y(logy + h(7))* + (1 — 7)(log(1 — ) + h(7))*.
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Example: Dephasing channel [TBR15, WTB16]
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(c¢) Comparison of strict bounds with third order
approximation for € = 5%.

(v = 0.1, plot taken from [TBR15])
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Example: Erasure channel [TBR15, WTB16]

For the qubit erasure channel
Ep g pa = (L= p)pg + ple){els

with p € (0,1), the non-asymptotic private capacity Isg‘_’p(n,e) satisfies

e — zn: (’;) p'(1— p)m! <1 _ 2n(1_ﬁg,(n,e))_/> .

I=n—k+1

Moreover, the following expansion holds

Pii(ne)=1-p+ p(1n—p)¢1(€) + O(i) .
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Example: Erasure channel [TBR15, WTB16]
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(p = 0.25, plot taken from [TBR15])
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Second-order expansions of converse bounds [WTB16]

Theorem

If a finite-dim. quantum channel N/ g is covariant, then

N VE (A B
Pi(n.c) < Er(A:B), + @W(s) + o("’f”) ,

where pag = Na—.g(Panr), ER(A; B), is the relative entropy of
entanglement,

c ) maxe,ens V(paglloag) fore <1/2
2 VER(A' B)p - { ming zens V(paglloag) fore>1/2

with Ms C S(A: B) the set of states achieving minimum in ER(A; B),,
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Application: Quantum Gaussian channels [WTB16]

Definitions of quantum Gaussian channels

Vi +/1—-n8é,
VGa+ /G —16é,
A+ (x+ip) /V2,

@ Thermal channel has transmissivity 1 € [0, 1] and environment
prepared in thermal state of mean photon number Ng.

Thermal channel £, n, : b

Amoplifier channel Ag n, : b

Additive-noise channel W : b

o Amplifier channel has gain G € [1,00) and environment prepared in
thermal state of mean photon number Np.

e If Ng =0, then channels are quantum-limited.

@ Additive noise channel has x and p be zero-mean Gaussian random
variables with variance £ > 0.
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Unconstrained rel. entropies of entanglement [PLOB15]

@ For the thermal channel £, y,, Er evaluates to

~log, (1= m)n) — g(Ne).

@ For the amplifier channel Ag n,, Er evaluates to
GNB+1
I —g(Ng).
on2( G ) - elte)
@ For the additive noise channel W, Er evaluates to

£E—-1
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Unconstrained relative entropy variances [WTB16]

Let Vi, .. Vg n,. and Viy, be the unconstrained relative entropy
variances of the thermalizing, amplifier, and additive-noise channels,
respectively:
Ve, w, = Na(Ng + 1)log(n [Ng + 1] /Na),
Vi, = Na(Ng +1)log5(G~* [Ng + 1] /Na),
Vive = (1 —€)*/In?2.

Can compute these from a general formula for relative entropy variance of
two Gaussian states [WTLB16].

Mark M. Wilde (LSU), Marco Tomamichel (L 19 / 43



Strong converse bounds for Gaussian channels [WTB16]

Theorem

The following strong converse bounds hold for ¢ € (0,1):

2V,
P2 g (:6) < —logy (1= m) 1) — g(Ng) + | =22 + C(e) /.

(1-¢)
A GNe+1 2Vy
PXG,NB(nag)SIOgZ(G_]_) _g(NB)+ n(leB) (8)//7
~ -1 2V
Py (n,e) < §In2 —log, & + ‘= + C(e)/n

n(l—c¢)
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Strong converse for quantum-limited channels [WTB16]

Corollary

For the pure-loss channel L, and quantum-limited amplifier channel Ag,

the following bounds hold

e () < o 12 ) + <
(o)

. 1
i <
P (n,e) < |Og<1_ 1/G> +
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@ We have established bounds for QKD protocols conducted over
quantum channels that are unassisted by quantum repeaters.

@ Meta-converse has several applications, including strong converse
bounds and second-order characterizations of private communication

@ The bounds are related to the relative entropy of entanglement and
sharpen known upper bounds on rates of QKD protocols

@ We establish the strong converse property for the two-way assisted
private capacity of the pure-loss and quantum-limited amplifier
channels. We also get strong converse rates for other quantum
Gaussian channels.

@ We have generalized these results to broadcast channels with a single
sender and multiple receivers [TSW16]

@ Squashed entanglement technique applied more generally in [GEW16]
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@ As said before, we build on a variety of techniques and approaches
given in previous literature:

@ Meta-converse approach for hypothesis testing [Lil4, TH13, DPR15],
classical communication [TT15], and quantum communication
[TWW14, TBR15]

@ Private states [HHHO05, HHHOQ9], a privacy test
[HHHT08b, HHH'08a], and relative entropy of entanglement as an
upper bound on distillable key [HHHO05, HHHOOQ9]

o Gaussian states and channels [HWO01] and formulas for relative
entropy for Gaussian states [Che05, PLOB15]

@ c-relative entropy of entanglement [BD11] and sandwiched Renyi
relative entropy [MLDS"13, WWY14]

@ Reduction of adaptive protocols to non-adaptive ones via simulation
of channels by teleportation [BDSW96, PLOB15]
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Private states

Tripartite key state

A tripartite key state yage contains log K bits of secret key if there exists
a state o and measurement channels M4 and Mg such that

(Ma ® Mp)(vaBE) KZ‘ ila® [i){ilg ® oE.

Bipartite private state

A bipartite private state yagarp’ has the following form:

vasas = Ungae (Pas @ Oae ) Ulga g
where Uagapr is a “twisting” unitary of the form

Uasasr = 32 1ila®1i)(jls ® UY, 5, with each UY,, a unitary, and
GA’B’ a state.

Mark M. Wilde (LSU), Marco Tomamichel (L 24 / 43



Private states

@ The systems A’ and B’ are called the “shield” systems because they,
along with the twisting unitary, can help to protect the key in systems
AB from any party possessing a purification of yapa/s'.

@ Such bipartite private states are in one-to-one correspondence with
tripartite key states. That is, for every tripartite key state yagge, we
can find a bipartite private state and vice versa.

@ This correspondence takes on a more physical form: any tripartite
protocol whose aim it is to extract tripartite key states is in 1-to-1
correspondence with a bipartite protocol whose aim it is to extract
bipartite private states.
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Private communication protocols

Unassisted private communication

o Given is a quantum channel Ny _ 5. Let UA,[_>BE be an isometric
extension of Ny _,pB.

@ A secret-key generation protocol for n channel uses consists of a triple
{|K]|,E, D}, where |K| is the size of the secret key to be generated,

Ek'—am is the encoder, and Dg, _, ;- is the decoder.

K

AliceQ
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Private communication protocols

Unassisted private communication

@ A triple (n, P,¢) consists of the number n of channel uses, the rate P
of secret-key generation, and the error € € [0, 1].

@ Such a triple is achievable on Ny _, g if there exists a secret-key
generation protocol {|K|,E, D} and some state wgn such that
Llog|K| > P and

F(®pp ®wen, ppen) = 1—¢

where g,z = (Dp,  p o (U/{\\,/HBE)®n 0 Ekr_am)(Pkk) and

IK|-1
¢KK':|K| Z\ Wil @ [ {ilkr.
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Equivalent bipartite protocol

Can reformulate such a protocol in the bipartite picture: perform every
step coherently, with the goal to produce a bipartite private state

Alice | Bob
M A B
K I
; .im._a_B K
Q ug E | . Z/{D e
) =2 | »
A B | B”

Due to equivalence between tripartite and bipartite pictures

F('YKAKBSASBa pKf(MA”B”) >1-—c¢,

for some private state yx,k5,55. Where we identify Kg = K, Kg = R,
Sa= MA", and Sg = B”, and
_ (7D N ® £ GHZ
PrkRMmAr B! = (uBn%RBH o (Un_ge)”" oUkr_ amar(PrK M)
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Non-asymptotic achievable region

Non-asymptotic fundamental limit

Boundary of the achievable region:

Pxnr(n,e) = max{P: (n, P,e) is achievable for N’} , .

Interpretation

e Boundary ﬁ’N(n,s) identifies how rate can change as a function of n
for fixed error £, and 2nd-order coding rates can characterize it
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LOCC-assisted private communication protocols

LOCC-assisted protocols are defined similarly, but allow for rounds of
LOCC between channel uses (like in QKD)

A . B A . B A, B, K,

1 N 1 2 N 2 vee A

LOCC Ax rocc b4z LOCC eee |rocC A2 LOCC
B, B, B

eee K3

Define boundary of non-asymptotic achievable region similarly as

Pit(n,e) = max{P : (n, P,¢) is achievable for V" using <} .
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Information measures

@ Can use hypothesis testing relative entropy to define the e-relative
entropy of entanglement:

E5(A; B), = inf Df .
r( )p UABE'Q(A:B) H(paglloas)

where S(A: B) is the set of separable states

@ Can also define a channel's e-relative entropy of entanglement:

ER(N) = sup  Eg(A; B),,
V) aar EH an

where pag = Na—g(1aar)

@ Standard relative entropies of entanglement defined by replacing Dy,
with quantum relative entropy D
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Privacy test

@ Can test whether a given state is a y-private state by “untwisting”
and projecting onto the maximally entangled state:

{Nagas, lapas — Napar}

where Maga = Ungas (P48 © lap) Ul pr g
o Let £ € [0,1] and let pagars’ be an e-approximate -private state.
The probability for pagarg to pass the y-privacy test satisfies

Tr{Napa s papas} > 1 —¢,

@ For a separable state oagag € S(AA : BB'), the probability of
passing any y-privacy test is never larger than 1/K:

1
Tr{NapaB oasas } < ra
where K is the number of values that the secret key can take.
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Meta-converse bound for private communication

For any fixed € € (0,1), the achievable region satisfies
Pn(1,€) < ER(N).

“One-shot e-private capacity < channel’s e-relative entropy of
entanglement.”

The same bound holds when allowing for a round of LOCC before and
after the channel use.

Proof idea: use monotonicity of E; with respect to LOCC and use the
bounds on the previous slide.
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Meta-converse bound for private communication

Corollary
The following bound holds for n channel uses:

A 1
Py (n,e) < ;Eﬁ,(./\/'@").
The same bound holds when allowing for rounds of LOCC before and after

all n channel uses. The same bound holds for Iﬁj\(‘}(n, g) if the channel N is
teleportation simulable.

v

The previous theorem and this corollary then imply all of our previous
results, with some extra work needed to establish a formula for the relative
entropy variance of Gaussian states.
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Application: Second-order expansions of converse bounds

Theorem

If a quantum channel Ny _,g is teleportation-simulable with associated
state wag, then

. VE (A B),
Pt (n.€) < Er(A; B),, + #qﬂ(a) + o<'°§”) .

c ) _ MaXg , i€l V(,OAB”O'AB) fore < 1/2
Where VER(A' B)p - { mino-ABerlS V(pABHO.AB) f‘or e 2 1/2 9

with Ms C S(A: B) the set of states achieving minimum in ER(A; B),
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Tool: Relative entropy variance for Gaussian states

Writing zero-mean Gaussian states in exponential form as

p= zp—l/%xp{—;ﬂcpy}, o=2Z;1? exp{—if%TGa)?},
where
Z, =det(V* +iQ/2), Z, =det(V° +iQ/2),
G, = 2iQ2arcoth(2V*iQ), Gy = 2iQarcoth(2V7iQ),

and V* and V7 are Wigner function covariance matrices for p and o.

Theorem

For zero-mean Gaussian states p and o, the relative entropy variance is

V(p|lo) = % THAVPAVP) + % TH{AQAQ},

where A = G, — G,.
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