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Setting

Given is a quantum channel N and a QKD protocol that uses it n times:
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Non-asymptotic private capacity: Maximum rate of ε-close secret key
achievable using channel n times and NS mean photons per channel use:

P̂↔N (n,NS , ε) ≡ sup {P : (n,P,NS , ε) is achievable for N using ↔} .

If no photon number constraint, then consider

P̂↔N (n, ε) = sup
NS≥0

P̂↔N (n,NS , ε).
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Main question

Practical question: How to characterize P̂↔N (n,NS , ε) for all n ≥ 1,
NS ≥ 0, and ε ∈ (0, 1)?

How to characterize P̂↔N (n, ε) for all n ≥ 1 and ε ∈ (0, 1)?

The answers give the fundamental limitations of QKD.

Upper bounds on P̂↔N (n,NS , ε) and P̂↔N (n, ε) can be used as
benchmarks for quantum repeaters [TGW14].

This talk discusses the tightest known upper bound on P̂↔N (n, ε) for
channels of practical interest and thus represents the best known
benchmark for quantum repeaters [WTB16].
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What was known before?

Begin by reviewing what is known

Let’s leap back to QCrypt 2014:

Takeoka presented results of [TGW14].
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[TGW14] bound with energy constraint

Most interested in the photon loss channel:

Lη : b̂ =
√
ηâ +

√
1− ηê

where transmissivity η ∈ [0, 1] and environment in vacuum state.

Practical question is tough, so consider limiting cases. . .

[TGW14] bound: Consider the limit as n→∞ and then ε→ 0:

lim
ε→0

lim
n→∞

P̂↔Lη(n,NS , ε) ≤ g((1 + η)NS/2)− g((1− η)NS/2)

where g(x) ≡ (x + 1) log2(x + 1)− x log2 x

is entropy of bosonic thermal state with mean photon number x .

Based on the squashed entanglement measure [CW04].
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[TGW14] bound without energy constraint

Optimizing over energy gives the unconstrained [TGW14] bound:

lim
ε→0

lim
n→∞

P̂↔Lη(n, ε) ≤ log2

(
1 + η

1− η

)
.

essentially because supNS≥0 g((1 + η)NS/2)− g((1− η)NS/2) = log2

(
1+η
1−η

)
.

[TGW14] established existence of a fundamental rate-loss trade-off for
any possible QKD protocol that uses a photon-loss channel.

Bound is finite for all η ∈ [0, 1) and depends only on η.

Main drawback is that it is an asymptotic statement and thus has
limited applicability in practice.

(Original proof didn’t address issue with unbounded shield systems — now fixed

in [W16])
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Fundamental rate-loss trade-off from [TGW14]
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[PLOB15] bound

By a different method, [PLOB15] established the upper bound:

lim
ε→0

lim
n→∞

P̂↔Lη(n, ε) ≤ log2

(
1

1− η

)
. (?)

In fact, with an infinite number of channel uses, infinite energy, and
perfect quantum computers for Alice and Bob, the bound is tight:

lim
ε→0

lim
n→∞

P̂↔Lη(n, ε) = log2

(
1

1− η

)
.

Drawbacks are the same: An asymptotic statement, and thus says
little for practical protocols (called a weak converse bound)

Method used in [PLOB15] does not give any improved bound for
protocols using finite energy (Finite-energy SE can be tighter [GEW16])

(Proof of (?) in [PLOB15, Supp. Mat., Sec. III] does not address issue of

unbounded shield systems, & thus their proof gives trivial upper bound of ∞ for

LHS of (?) — this issue is addressed and fixed in [WTB16])
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Upper bound for non-asymptotic private capacity [WTB16]

Bound on Non-Asymptotic Private Capacity

One consequence of the meta-converse approach in [WTB16]:

P̂↔Lη(n, ε) ≤ log2

(
1

1− η

)
+

C (ε)

n
,

where C (ε) ≡ log2 6 + 2 log2

(
1+ε
1−ε

)
(other choices possible).

Can be used to assess the performance of any practical quantum
repeater which uses a loss channel n times for desired security ε.

Other variations of this bound are possible if η is not the same for
each channel use, if η is chosen adversarially, etc.

Remaining technical questions: Improve C (ε) to log2

(
1

1−ε

)
?

Finite-energy bound?
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Meta-converse approach from [WTB16]

Building on [Bla74, BDSW96, BK98, HW01, HHHO05, Che05,
DJKR06, HHHO09, CKR09, PPV10, BD11, Li14, TH13, TT15,
MLDS+13, WWY14, TWW14, DPR15, TBR15, PLOB15]

Meta-converse approach starts by using hypothesis testing relative
entropy to compare the actual state resulting from the protocol to a
separable state, the latter being useless for private comm.

The approach extracts the relevant parameters of the protocol (n,
rate P, and ε) and relates them via an information-like quantity.

The meta-converse leads to various other bounds, including
Renyi-entropic strong converse bounds and others in terms of relative
entropy and relative entropy variance.

Result: We get the tightest known upper bounds for non-asymptotic
private capacity of many channels of practical interest.
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Information measures

Hypothesis testing relative entropy defined for a state ρ, positive
semi-definite operator σ, and ε ∈ [0, 1] as

Dε
H(ρ‖σ) ≡ − log [min{Tr{Λσ} : 0 ≤ Λ ≤ I ∧ Tr{Λρ} ≥ 1− ε}] .

Has a second-order expansion for i.i.d. states:

Dε
H(ρ⊗n‖σ⊗n) = nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε) + O(log n).

where D(ρ‖σ) ≡ Tr{ρ[log ρ− log σ]},
V (ρ‖σ) ≡ Tr{ρ[log ρ− log σ − D(ρ‖σ)]2}

Φ(a) ≡ 1√
2π

∫ a

−∞
dx exp

(
−x2/2

)
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Example: Dephasing channel [TBR15, WTB16]

For the qubit dephasing channel

Zγ : ρ 7→ (1− γ) ρ+ γZρZ ,

with γ ∈ (0, 1), the non-asymptotic private capacity P̂↔(n, ε) satisfies

P̂↔(n, ε) = 1− h(γ) +

√
v(γ)

n
Φ−1(ε) +

log n

2n
+ O

(
1

n

)
,

where Φ is the cumulative standard Gaussian distribution, h(γ) denotes
the binary entropy and v(γ) the corresponding variance, defined as

h(γ) ≡ −γ log γ − (1− γ) log(1− γ),

v(γ) ≡ γ(log γ + h(γ))2 + (1− γ)(log(1− γ) + h(γ))2.
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Example: Dephasing channel [TBR15, WTB16]

(γ = 0.1, plot taken from [TBR15])
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Example: Erasure channel [TBR15, WTB16]

For the qubit erasure channel

EpA′→B : ρA′ 7→ (1− p)ρB + p|e〉〈e|B

with p ∈ (0, 1), the non-asymptotic private capacity P̂↔Ep (n, ε) satisfies

ε =
n∑

l=n−k+1

(
n

l

)
pl(1− p)n−l

(
1− 2n(1−P̂↔Ep (n,ε))−l

)
.

Moreover, the following expansion holds

P̂↔Ep (n, ε) = 1− p +

√
p(1− p)

n
Φ−1(ε) + O

(
1

n

)
.

Mark M. Wilde (LSU), Marco Tomamichel (Univ. Sydney),and Mario Berta (Caltech) (LSU) 14 / 43



Example: Erasure channel [TBR15, WTB16]

(p = 0.25, plot taken from [TBR15])
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Second-order expansions of converse bounds [WTB16]

Theorem

If a finite-dim. quantum channel NA′→B is covariant, then

P̂↔N (n, ε) ≤ ER(A;B)ρ +

√
V ε
ER

(A;B)ρ
n

Φ−1(ε) + O

(
log n

n

)
,

where ρAB = NA′→B(ΦAA′), ER(A;B)ρ is the relative entropy of
entanglement,

and V ε
ER

(A;B)ρ ≡
{

maxσAB′∈ΠS V (ρAB‖σAB) for ε < 1/2
minσAB∈ΠS V (ρAB‖σAB) for ε ≥ 1/2

,

with ΠS ⊆ S(A :B) the set of states achieving minimum in ER(A;B)ρ
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Application: Quantum Gaussian channels [WTB16]

Definitions of quantum Gaussian channels

Thermal channel Lη,NB
: b̂ =

√
ηâ +

√
1− ηê,

Amplifier channel AG ,NB
: b̂ =

√
Gâ +

√
G − 1ê†,

Additive-noise channel Wξ : b̂ = â + (x + ip) /
√

2,

Thermal channel has transmissivity η ∈ [0, 1] and environment
prepared in thermal state of mean photon number NB .

Amplifier channel has gain G ∈ [1,∞) and environment prepared in
thermal state of mean photon number NB .

If NB = 0, then channels are quantum-limited.

Additive noise channel has x and p be zero-mean Gaussian random
variables with variance ξ ≥ 0.
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Unconstrained rel. entropies of entanglement [PLOB15]

For the thermal channel Lη,NB
, ER evaluates to

− log2

(
(1− η) ηNB

)
− g(NB).

For the amplifier channel AG ,NB
, ER evaluates to

log2

(
GNB+1

G − 1

)
− g(NB).

For the additive noise channel Wξ, ER evaluates to

ξ − 1

ln 2
− log2 ξ.
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Unconstrained relative entropy variances [WTB16]

Let VLη,NB , VAG ,NB
, and VWξ

be the unconstrained relative entropy
variances of the thermalizing, amplifier, and additive-noise channels,
respectively:

VLη,NB ≡ NB(NB + 1) log2
2(η [NB + 1] /NB),

VAG ,NB
≡ NB(NB + 1) log2

2(G−1 [NB + 1] /NB),

VWξ
≡ (1− ξ)2 / ln2 2.

Can compute these from a general formula for relative entropy variance of
two Gaussian states [WTLB16].
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Strong converse bounds for Gaussian channels [WTB16]

Theorem

The following strong converse bounds hold for ε ∈ (0, 1):

P̂↔Lη,NB
(n, ε) ≤ − log2

(
(1− η) ηNB

)
− g(NB) +

√
2VLη,NB
n(1− ε)

+ C (ε)/n,

P̂↔AG ,NB
(n, ε) ≤ log2

(
GNB+1

G − 1

)
− g(NB) +

√
2VAG ,NB

n(1− ε)
+ C (ε)/n,

P̂↔Wξ
(n, ε) ≤ ξ − 1

ln 2
− log2 ξ +

√
2VWξ

n(1− ε)
+ C (ε)/n.
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Strong converse for quantum-limited channels [WTB16]

Corollary

For the pure-loss channel Lη and quantum-limited amplifier channel AG ,
the following bounds hold

P̂↔Lη(n, ε) ≤ log2

(
1

1− η

)
+

C (ε)

n
,

P̂↔AG
(n, ε) ≤ log

(
1

1− 1/G

)
+

C (ε)

n
.
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Summary

We have established bounds for QKD protocols conducted over
quantum channels that are unassisted by quantum repeaters.

Meta-converse has several applications, including strong converse
bounds and second-order characterizations of private communication

The bounds are related to the relative entropy of entanglement and
sharpen known upper bounds on rates of QKD protocols

We establish the strong converse property for the two-way assisted
private capacity of the pure-loss and quantum-limited amplifier
channels. We also get strong converse rates for other quantum
Gaussian channels.

We have generalized these results to broadcast channels with a single
sender and multiple receivers [TSW16]

Squashed entanglement technique applied more generally in [GEW16]
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Methods

As said before, we build on a variety of techniques and approaches
given in previous literature:

Meta-converse approach for hypothesis testing [Li14, TH13, DPR15],
classical communication [TT15], and quantum communication
[TWW14, TBR15]

Private states [HHHO05, HHHO09], a privacy test
[HHH+08b, HHH+08a], and relative entropy of entanglement as an
upper bound on distillable key [HHHO05, HHHO09]

Gaussian states and channels [HW01] and formulas for relative
entropy for Gaussian states [Che05, PLOB15]

ε-relative entropy of entanglement [BD11] and sandwiched Renyi
relative entropy [MLDS+13, WWY14]

Reduction of adaptive protocols to non-adaptive ones via simulation
of channels by teleportation [BDSW96, PLOB15]
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Private states

Tripartite key state

A tripartite key state γABE contains logK bits of secret key if there exists
a state σE and measurement channels MA and MB such that

(MA ⊗MB)(γABE ) =
1

K

∑
i

|i〉〈i |A ⊗ |i〉〈i |B ⊗ σE .

Bipartite private state

A bipartite private state γABA′B′ has the following form:

γABA′B′ = UABA′B′(ΦAB ⊗ θA′B′)U†ABA′B′ ,

where UABA′B′ is a “twisting” unitary of the form
UABA′B′ =

∑
i ,j |i〉〈i |A ⊗ |j〉〈j |B ⊗ U ij

A′B′ , with each U ij
A′B′ a unitary, and

θA′B′ a state.
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Private states

The systems A′ and B ′ are called the “shield” systems because they,
along with the twisting unitary, can help to protect the key in systems
AB from any party possessing a purification of γABA′B′ .

Such bipartite private states are in one-to-one correspondence with
tripartite key states. That is, for every tripartite key state γABE , we
can find a bipartite private state and vice versa.

This correspondence takes on a more physical form: any tripartite
protocol whose aim it is to extract tripartite key states is in 1-to-1
correspondence with a bipartite protocol whose aim it is to extract
bipartite private states.
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Private communication protocols

Unassisted private communication

Given is a quantum channel NA′→B . Let UNA′→BE be an isometric
extension of NA′→B .

A secret-key generation protocol for n channel uses consists of a triple
{|K | , E ,D}, where |K | is the size of the secret key to be generated,
EK ′→A′n is the encoder, and DBn→K̂ is the decoder.
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Private communication protocols

Unassisted private communication

A triple (n,P, ε) consists of the number n of channel uses, the rate P
of secret-key generation, and the error ε ∈ [0, 1].

Such a triple is achievable on NA′→B if there exists a secret-key
generation protocol {|K | , E ,D} and some state ωEn such that
1
n log |K | ≥ P and

F (ΦKK̂ ⊗ ωEn , ρKK̂En) ≥ 1− ε,

where ρKK̂En ≡ (DBn→K̂ ◦ (UNA′→BE )⊗n ◦ EK ′→A′n)(ΦKK ′) and

ΦKK ′ ≡
1

|K |

|K |−1∑
i=0

|i〉〈i |K ⊗ |i〉〈i |K ′ .
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Equivalent bipartite protocol

Can reformulate such a protocol in the bipartite picture: perform every
step coherently, with the goal to produce a bipartite private state

K’

A’

A’

A’

B

B

B

Alice Bob

DUEU
N

N

N
K
M

A’’

B’’

K

Due to equivalence between tripartite and bipartite pictures

F (γKAKBSASB , ρKK̂MA′′B′′) ≥ 1− ε,

for some private state γKAKBSASB , where we identify KA ≡ K , KB ≡ K̂ ,
SA ≡ MA′′, and SB ≡ B ′′, and

ρKK̂MA′′B′′ ≡ (UD
Bn→K̂B′′

◦ (UNA′→BE )⊗n ◦ UEK ′→A′nA′′)(ΦGHZ
KK ′M).
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Non-asymptotic achievable region

Non-asymptotic fundamental limit

Boundary of the achievable region:

P̂N (n, ε) ≡ max {P : (n,P, ε) is achievable for N} , .

Interpretation

Boundary P̂N (n, ε) identifies how rate can change as a function of n
for fixed error ε, and 2nd-order coding rates can characterize it
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LOCC-assisted private communication protocols

LOCC-assisted protocols are defined similarly, but allow for rounds of
LOCC between channel uses (like in QKD)

B2’’

B2A’2

LOCC

N
A2’’

B1’’

B1A’1

LOCCLOCC

N
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B’’

BA’

LOCC

N
A’’LOCC

n
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n

n AK

BK

Define boundary of non-asymptotic achievable region similarly as

P̂↔N (n, ε) ≡ max {P : (n,P, ε) is achievable for N using ↔} .
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Information measures

Can use hypothesis testing relative entropy to define the ε-relative
entropy of entanglement:

E εR(A;B)ρ ≡ inf
σAB∈S(A:B)

Dε
H(ρAB‖σAB).

where S(A :B) is the set of separable states

Can also define a channel’s ε-relative entropy of entanglement:

E εR(N ) ≡ sup
|ψ〉AA′∈HAA′

E εR(A;B)ρ,

where ρAB ≡ NA′→B(ψAA′)

Standard relative entropies of entanglement defined by replacing Dε
H

with quantum relative entropy D
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Privacy test

Can test whether a given state is a γ-private state by “untwisting”
and projecting onto the maximally entangled state:

{ΠABA′B′ , IABA′B′ − ΠABA′B′} ,

where ΠABA′B′ ≡ UABA′B′ (ΦAB ⊗ IA′B′)U
†
ABA′B′ .

Let ε ∈ [0, 1] and let ρABA′B′ be an ε-approximate γ-private state.
The probability for ρABA′B′ to pass the γ-privacy test satisfies

Tr{ΠABA′B′ρABA′B′} ≥ 1− ε,

For a separable state σABA′B′ ∈ S(AA′ :BB ′), the probability of
passing any γ-privacy test is never larger than 1/K :

Tr{ΠABA′B′σABA′B′} ≤
1

K
,

where K is the number of values that the secret key can take.
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Meta-converse bound for private communication

Theorem

For any fixed ε ∈ (0, 1), the achievable region satisfies

P̂N (1, ε) ≤ E εR(N ).

“One-shot ε-private capacity ≤ channel’s ε-relative entropy of
entanglement.”
The same bound holds when allowing for a round of LOCC before and
after the channel use.

Proof idea: use monotonicity of E εR with respect to LOCC and use the
bounds on the previous slide.
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Meta-converse bound for private communication

Corollary

The following bound holds for n channel uses:

P̂N (n, ε) ≤ 1

n
E εR(N⊗n).

The same bound holds when allowing for rounds of LOCC before and after
all n channel uses. The same bound holds for P̂↔N (n, ε) if the channel N is
teleportation simulable.

The previous theorem and this corollary then imply all of our previous
results, with some extra work needed to establish a formula for the relative
entropy variance of Gaussian states.
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Application: Second-order expansions of converse bounds

Theorem

If a quantum channel NA′→B is teleportation-simulable with associated
state ωAB , then

P̂↔N (n, ε) ≤ ER(A;B)ω +

√
V ε
ER

(A;B)ω
n

Φ−1(ε) + O

(
log n

n

)
.

where V ε
ER

(A;B)ρ ≡
{

maxσAB′∈ΠS V (ρAB‖σAB) for ε < 1/2
minσAB∈ΠS V (ρAB‖σAB) for ε ≥ 1/2

,

with ΠS ⊆ S(A :B) the set of states achieving minimum in ER(A;B)ρ
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Tool: Relative entropy variance for Gaussian states

Writing zero-mean Gaussian states in exponential form as

ρ = Z−1/2
ρ exp

{
−1

2
x̂TGρx̂

}
, σ = Z−1/2

σ exp

{
−1

2
x̂TGσ x̂

}
,

where

Zρ ≡ det(V ρ + iΩ/2), Zσ ≡ det(V σ + iΩ/2),

Gρ ≡ 2iΩ arcoth(2V ρiΩ), Gσ ≡ 2iΩ arcoth(2V σ iΩ),

and V ρ and V σ are Wigner function covariance matrices for ρ and σ.

Theorem

For zero-mean Gaussian states ρ and σ, the relative entropy variance is

V (ρ‖σ) =
1

2
Tr{∆V ρ∆V ρ}+

1

8
Tr{∆Ω∆Ω},

where ∆ ≡ Gρ − Gσ.
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