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Entanglement accelerates quantum simulation
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Quantum entanglement is an essential feature of many-body systems that impacts both quantum
information processing and fundamental physics. The growth of entanglement is a major challenge
for classical simulation methods. In this work, we investigate the relationship between quantum
entanglement and quantum simulation, showing that product-formula approximations can perform
better for entangled systems. We establish a tighter upper bound for algorithmic error in terms
of entanglement entropy and develop an adaptive simulation algorithm incorporating measurement
gadgets to estimate the algorithmic error. This shows that entanglement is not only an obstacle to
classical simulation, but also a feature that can accelerate quantum algorithms.

INTRODUCTION

Quantum entanglement in many-body systems [1] is a pivotal topic with significant implications in quantum infor-
mation processing [2, 3] and the exploration of fundamental quantum physics [4, 5]. While the dynamics of weakly
entangled quantum systems can be efficiently simulated [6], the precise role of entanglement in quantum algorithms
remains unclear—for example, mixed-state computation appears to be capable of quantum speedup even when the
system never has much entanglement [7].

Understanding the entanglement dynamics stemming from an unentangled initial state is a fundamental concern
in many-body physics, which lies at the heart of quantum thermalization (or its failure) [8-11]. The widely studied
Eigenstate Thermalization Hypothesis (ETH) suggests that quantum states effectively thermalize under the evolution
of typical Hamiltonians even in a closed quantum system [8, 9], enabled by the linear growth of subsystem entanglement
entropy. However, recent advances demonstrate that there are instances where the ETH fails, such as in many-body
localized Hamiltonians [10] with strong disorder, which can slow the entanglement growth to a logarithmic trend over
time; and many-body scarred Hamiltonians, which fail to thermalize for some initial states [11].

Tractable simulation methods are needed to investigate these intriguing quantum many-body phenomena. Classical
simulation tools like tensor networks have been developed to explore both ground states and dynamics [12, 13].
However, the growth of quantum entanglement poses a challenge for these classical methods. For instance, one-
dimensional matrix product states (MPSs) [12] are typically suitable only for area-law-entangled states.

Engineered quantum platforms such as superconducting-qubit, trapped-ion, and cold-atom simulators offer op-
portunities to observe and analyze various quantum phases and dynamics [14]. In particular, digital Hamiltonian
simulation algorithms offer a robust and efficient means to simulate the dynamics of quantum systems [15]. Although
quantum advantage over classical simulation with a digital quantum simulator has yet to be demonstrated, numerous
algorithms have been proposed to approximate the time-evolution operator Up(t) := e~** [16-20], and more accu-
rate error analyses have been given, including commutator bounds for product-formula approximations [21-23] and
analyses that take advantage of particular input states [24-28]. Previous error analyses have not shown a role for the
amount of entanglement in the performance of these algorithms.

In this work, we explore the relationship between quantum entanglement and Hamiltonian simulation. We find that
entanglement entropy has a direct impact on the performance of Hamiltonian simulation algorithms, and in particular,
that it can accelerate the performance of product-formula simulations. We establish a tighter upper bound for the
algorithmic error in Hamiltonian simulation using the entanglement entropy of subsystems. Surprisingly, in contrast
to classical simulation, quantum simulation becomes more efficient for entangled states. As entanglement grows, the
Hamiltonian simulation error, or Trotter error, diminishes and converges to the average-case Trotter error [26], so

that simulations of sufficiently entangled states perform similarly to simulations with random inputs. In particular,
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this holds for states that are close to k-uniform [29] for sufficiently large k. As a result, entanglement implies more
efficient Hamiltonian simulation. Conversely, we also present examples showing that product states can exhibit the
worst-case performance of Hamiltonian simulation.

For this result to be useful, we should know that the state is sufficiently entangled. Typical states are highly
entangled; indeed, a randomly chosen state is almost surely close to maximally entangled [30]. However, understanding
when a particular state is entangled may be challenging. To address this issue and leverage the benefit of entanglement
in practice, we develop an adaptive simulation algorithm that incorporates measurement gadgets in the middle of the
simulation to estimate the upcoming Trotter error. This method can outperform standard Hamiltonian simulation
with only negligible measurement overhead.

Our analysis helps to reveal the potential of quantum entanglement in quantum information processing and funda-
mental quantum physics. We hope this sheds light on the intricate relationship between quantum resources, quantum
computing, and the development of quantum algorithms that can take advantage of features such as entanglement.

RESULTS
Entanglement entropy and Trotter error

Quantum simulation aims to realize the time-evolution operator Uy(t) := e~ *#! of a given Hamiltonian H. This
task is crucial for studying both dynamic and static properties of quantum systems. Two major classes of digital
Hamiltonian simulation algorithms are product formula (PF) methods [15, 31] and algorithms based on linear com-
binations of unitaries [16-20]. Here, we focus on the former, which are simpler and may perform better in practice,
at least for some tasks [22].

For a short evolution time 0t, the first-order product formula (PF1) algorithm for a Hamiltonian with decomposition
H= Zlel H; applies the unitary operation % (0t) := e~ *H10te=iH20t .. o—iHLot ﬁl e~ 9t Here the right arrow
indicates the product is in the order of increasing indices. This provides an effective simulation method when the
terms e 1% are easy to implement. Second-order product formulas (PF2) can be obtained by combining evolutions
in both increasing and decreasing orders of indices, with % (dt) := ﬁl e HLoL/2 ﬁl e~ Hot/2 More generally, Suzuki
constructed pth-order product formulas %), for even p, recursively from the second-order formula [31]. In general,
for a pth-order product formula method (PFp), we can quantify the algorithmic error in terms of the spectral norm
of the additive error, ||Uy — %,|| = max)y) [|Uo |¢)) — %, |9) ||, with || - || on the right-hand side denoting the vector I
norm. The spectral norm corresponds to the worst-case input state and thus represents the worst-case Trotter error.
However, this worst-case error can be unnecessarily pessimistic. In practice, we may only care about some specific
initial state [¢), for which the error ||Uy |) — %, |)|| may be smaller [24-26, 28].

To simulate the evolution for a long time, one can divide the duration into several segments, each of which is a
short-time evolution that can be simulated with small error. The total error is then upper bounded via the triangle
inequality as the sum of the Trotter errors for each segment. This analysis is generally reasonably tight (except for
PF1, which can exhibit destructive error interference [32, 33]). Thus, in the following, we first focus on a short-time
evolution 6t and relate the Trotter error in one segment to the entanglement entropy of the initial quantum state.

For a quantum evolution Uy = e~*#%  consider a PFp approximation %, with ||Uy —%,| < || > E;||6tPT + (| el
where E' =}, Ej; is the total leading-order error with local terms E; and [|&|| = O(8tP+2) is the contribution of the
higher-order remaining terms [23]. The support of an operator E;, denoted supp(E}), is the set of qubits on which it
acts nontrivially. Let w(E;) denote the number of qubits of supp(E;).

We consider the reduced density matrix (RDM) of the state |¢)) on supp(TE;Ej/), pj = Tr[N]\supp(E;Ej/)(|w> (1))
(with [N] the set of all qubits), with Hilbert space dimension d,, , := 2w(E; ;) For a d-dimensional operator A, let

||A]] denote the spectral norm and ||A||r := 4/Tr(AA%)/d the normalized Frobenius norm. The von Neumann entropy
is denoted by S. Then, we can bound the Trotter error via the following theorem.

Theorem 1. For a given pure quantum state |1b) and quantum evolution Uy = e~ *Ho

imation %, the error in a Trotter step of duration 6t has the upper bound

with pth-order Trotter approx-

1o = %) [0} || = O 671 > NEJEj | Trlpjy — 1/dy, | + 67 Bl ). (1)

3,3

We call this the distance-based error bound. One can further relate the Trotter error to the entanglement entropy of
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FIG. 1. Entanglement entropy and Trotter error in one segment. The Trotter error is ||(Uo(0t) — %, (8t)) [1(¢)) || for 6t = 0.1,
where [1(t)) = e~ |4(0)) is the ideal state at time t with H the QIMF model of N = 12 qubits. (a) and (b) show the
PF1 and PF2 methods, respectively, with the typical-case Hamiltonian parameter choice (hg, hy, J) = (0.8090,0.9045,1). The
entanglement entropies of various subsystems all increase with time to the corresponding maximal value, as indicated by the
right Y-axis. As the entanglement entropy increases, the empirical Trotter error (blue dotted curve) decreases and converges
to ||Uo — %,||F, the average-case error (blue dashed line). (¢) and (d) show analogous results for the atypical-case Hamiltonian
parameter choice (hz, hy, J) = (0,0.9045,1). In this case the entanglement entropy does not increase to its maximal value and
there is a clear gap between the empirical Trotter error and the average-case error.

subsystems with the bound

1Uo = 2) [0) | = O 67+ > IIE}EijI\/IOg(dpj,j,) = S(pjg) + " E|p |- (2)
3’

We call this the entanglement-based error bound.

We sketch the proof in the Methods section, and present a rigorous proof with an explicit analysis of the higher-
order terms in Section I of the Supplemental Material. If the entanglement entropy of each RDM p; ;- is small,
then the entanglement-based error bound in Theorem 1 is O(5tPT1 S ; |1 Ej]1), recovering the worst-case Trotter error
result [23]. On the other hand, if the entanglement entropies of subsystems supp(E;Ej/) satisfy S(pj; /) > w(E]TEjr) -
O((%f), the error is significantly reduced and scales as O(6tP™!| E|| ), recovering the average-case Trotter error

LR
bound [26].
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If the Hamiltonian is local, the Trotter error terms F; have low weights, and the subsystems supp(EjTEj/) are also
small. For example, consider the N-qubit one-dimensional quantum Ising spin model with mixed fields (QIMF). The
Hamiltonian is H = h, Z;V:1 X+ hy Ej\,:l Y, +J Z;V:_ll X; X411, with X;,Y;, Z; denoting Pauli operators on qubit

j. The dynamics e~ “#% can be approximated by %; = e "4%e=B% with A = h, Z;il X; + JZ;Y:_ll X; X1 and

B = h, Zj\;l Y;j. Then the leading term of the Trotter error is proportional to the commutator [4, B] = >, E;
with each error term E; = 2ihhyZ; + 2iJhy(Z;X;41 + X;Z;41) acting on two adjacent qubits, so the weight of
EJT-EJ-/ is at most 4 (it can be less if the error terms overlap). Since ||E||r = O(v/N) [26] and ||E| = O(N) [23], the
entanglement-based error bound is ||(Uy — 24) [¢) || = O(6t* N max; j(log d,, ,, — S(p; i)Y + O(6t2V/N).

The bound of Theorem 1 depends on the entanglement of the subsystems supp(E]TEj/). When the evolution satisfies
the ETH, such as for the QIMF model with the typical parameters (hy, by, J) = (0.8090,0.9045, 1) [34], the subsystem
entanglement entropy increases quickly and the entropies of the 4-qubit subsystems rapidly approach 4 (see Fig. 1(a)
and (b)). Correspondingly, the Trotter error is only O(6t>v/N), which is the scaling of the average-case Trotter
error [26]. This is a quadratic speedup with respect to the system size N, compared to the worst-case error O(5t2N).
We indeed observe this error reduction and convergence phenomenon empirically, as shown by the blue dotted curve
in Fig. 1(a) and (b). Moreover, we compare our theoretical entropy-based error bound on the Trotter error (assuming
the distance is known) with the average- and worst-case error bounds. Figure 4(a) and (b) illustrate this comparison
for both PF1 and PF?2 for a typical QIMF Hamiltonian with (hg, hy, J) = (0.8,0.9045, 1), for which the entanglement
grows rapidly. For atypical cases in which the entanglement grows slowly, the entanglement-based bound does not
provide improvement.

A special property of highly entangled many-body states is k-uniformity, which can be used in the construction of
quantum error-correcting codes [35] and quantum data masking protocols [29]. A pure state of N parties is called
k-uniform if all k-party RDMs are maximally mixed. More generally, we say [¢) is A-approximately k-uniform if
[ Trpay g () (0]) — I/2%])1 < A for any k-partite RDM. For a large system, typical states are close to (approximately)
k-uniform (for small k) and the entanglement entropy of any k-local RDM is close to k [30]. From Theorem 1, by
considering k-uniformity, we can obtain the following sufficient condition for the Trotter error to exhibit average-case
scaling.

Corollary 1. For a A-approzimately k-uniform pure quantum state |v) with VA < ||E|r/ > 1Bl and k >
2max; w(Ej), the Trotter error satisfies

1Uo — %) [} = O(| El| p6t7*). 3)

Note that for the PF1 simulation of the QIMF model, k& > 2max; w(E;) = 4 and A = O(1/N) is sufficient.
More generally, consider PF1 simulation of any m-local N-qubit Hamiltonian H =} g Hit i with each term
Hj, . ;. acting nontrivially on (at most) m qubits. If the input state is (approximately) k-uniform with k& > 4m — 2,
then the simulation cost reduces to the average case. The parameter k, which quantifies how mixed the RDMs are,
and thereby controls their entropy, typically increases linearly with the evolution time for a given error A [8, 9].
Since m is constant, the Hamiltonian evolution can make the underlying state (approximately) k-uniform in constant
time. For comparison, for a classical simulation using MPS [36], the simulation cost increases exponentially with the
entanglement, using O(2¥/N) bits to store the state and O(2¥/2N) operations to simulate each step by contracting
local tensors (see Section V of the Supplemental Material for more details). We illustrate this comparison in Fig. 2(a).

Theorem 1 and Corollary 1 show that for states with sufficient entanglement, the Trotter error can scale similarly
to the average case. On the other hand, simulations of unentangled states do not perform as well in general. In fact,
one can find product states that achieve the worst-case error, as the following result demonstrates.

Theorem 2. Consider a Trotter approximation of an N-qubit lattice Hamiltonian H. Let the leading term of the
Trotter error have Pauli decomposition EE = Zj a; P+, beQr with a; > 0 and by, < 0 (ignoring a global phase). If
>-;a;=0O(N) and 3, [by| = o(N), there exists a product state |¢) that achieves the worst-case error scaling,

(U0 — %) [¥) || = ©(Nat"*T). (4)

The condition of this theorem is not overly restrictive and can be satisfied in natural examples, such as the well-
studied QIMF model with the PF1 method. A detailed construction for this case is presented in the Methods section,
with further details in Section II of the Supplemental Material.

In addition to the product states identified by Theorem 2, states generated by non-ergodic Hamiltonian evolution
may be insufficiently entangled to enjoy average-case Trotter error scaling. For example, for the QIMF model in the
atypical case (hg,hy,J) = (0,0.9045,1), the Hamiltonian is integrable and can be transformed to free fermions via
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FIG. 2. (a) Comparison of the predicted simulation cost for the quantum and classical algorithms for k-uniform input states.
Here we consider simulating a general m-local lattice Hamiltonian for a short time ¢ = O(1). Larger values of k indicate more
mixed RDMs, and therefore greater entanglement. The parameter k generally increases linearly with the total evolution time.
Here we consider PF1 simulation and quantify the cost using the gate count. For k > 4m — 2, the cost decreases from worst-case
to average-case scaling [26], which is independent of k thereafter. However, for classical methods based on MPS, the simulation

cost is O(2¥/2N) to contract the local tensors (see Section V of the Supplemental Material for more details). (b) Illustration
of the light-cone structure.

the Jordan-Wigner transformation. Starting from the initial state |0>®N, the entanglement entropy does not reach its

maximal value, which leads to a clear gap between the empirical Trotter error and the average-case error, as shown
in Fig. 1(c) and (d).

Light-cone effect with geometrically local evolution

Figure 1(a) shows that the Trotter error decreases before the subsystems are close to 4-uniform. Instead, the error
converges to the average-case performance around the point where the RDMs of 1- and 2-qubit subsystems are highly
mixed. This is because, starting from a product state, after evolving for a short time with a geometrically local
Hamiltonian, distant subsystems are only weakly correlated [37], which simplifies the entanglement-based error bound
in Eq. (2). To see this, consider the joint entropy S(p; ;) = S(p;) + S(pj) — 1(4,5'), where I(j,5'), is the mutual
information for the distant subsystems on supp(E]T) and supp(E;). As shown in Fig. 2(b), only subsystems that lie
inside the light cone (e.g., E1 and Ej3 in the figure) can be significantly correlated. For two subsystems outside the light
cone (e.g., Fy and Eg), their joint RDM p; ;» = p; ® p; is a product state and I(j,j’), = 0. More concretely, consider a
pure state |1) generated by a D-dimensional geometrically local circuit of depth Cyepen acting on a product state. We

can refine the entanglement-based error bound in Theorem 1 by replacing 3 ., ||E;Ejr H\/log dp, ., — S(pj37) with

> \lE;Ej'II\/logdpj,jf — S+ >, HEJTEj'Il\/logdpj +logd,, — S(pj) — S(p;), (5)
(4.5 €L (4,3 ¢L

where £ denotes the pairs of subsystems at distance less than Cgepin (i-e., that are inside the light cone). If the
light cone size for each subsystem supp(E;) is much smaller than the system size N, then for a fixed E;/, there are
only o(N) terms E]T satisfying (j,7') € £. In this way, the second term of Eq. (5) dominates the Trotter error. We
formalize this as follows (see Section III of the Supplemental Material for the proof).



Corollary 2. For an N-qubit lattice Hamiltonian and a pure quantum input state 1) that is generated by a D-
dimensional geometrically local circuit of depth Cyepth = o(NY/P), the entanglement-based bound of Theorem 1 is

I(Wo = %) 1) = O™ N max(log d,,; - S(p))/*) + O(6t"HIVN). (6)

In particular, if |¢)) is generated by a shallow and geometrically local circuit, and satisfies geometric k-uniformity
with k > max; w(E}), the Trotter error ||(Up — %) |¢)|| will have the average-case error upper bound. This is a looser
requirement than the condition in Corollary 1, k > 2max; w(E;). In the above QIMF example, for shallow circuit
input states, entanglement entropy close to 2 suffices for the Trotter error to have the average-case upper bound,
which matches the empirical results in Fig. 1(a) very well.

Total error of long-time evolution

So far, we have discussed the error in a single Trotter step for a short time. For a long-time evolution, one can
divide the whole evolution into r segments, where in each step, the ideal evolution is approximated by the Trotter
formula. Then the total simulation error can be upper bounded via the triangle inequality as

U — %) |I<ZII’““U07 o) Uy [1(0 II—ZIIUOf )@ I, (7)

where |¢;) := %, |1(0)) denotes the evolved state under the Trotter approximation after i Trotter steps. In this
way, we can take the states |¢;) as the inputs for the above theorems and corollaries. For a long-time evolution,
the entanglement typically increases [8, 9], so intuitively, one can use the worst-case analysis for the first ¢ Trotter
steps, followed by the average-case analysis for the remaining r — ¢ steps, where ¢ is chosen so that the entangle-

ment entropy after time cdt satisfies S(p; ;) > w(E]TEj/) — O((Z”El\lg'l\ )4). Then the total error is approximately
PRIEZ]

O([c|El + (r — )| E||p]6tPT). When ¢ < r||E| r/||E||, the total error scales approximately as in the average case,
with O(r||E||F6tp+1) = O(||E||Ftp+1/rp) [26].

For a given order of product formula, the number of Trotter steps r quantifies the cost of the simulation, since
the total circuit complexity is proportional to r. In Fig. 3, we show the number of Trotter steps r that suffices
to ensure empirical error 107° for a long-time evolution of the QIMF model with time ¢ = N. For the typical
case, where the system becomes significantly entangled, the empirical performance is similar to the average-case
performance. In contrast, for an atypical case that does not produce high entanglement, there is a clear gap between
the empirical results and the average-case analysis. The extrapolated scaling of our theoretical bounds aligns well
with the theoretical average-case error bound, as depicted in Fig. 4(c).

Measurement-assisted adaptive Hamiltonian simulation

To apply the entanglement-based error bound of Theorem 1, we must understand how entangled the state is. If the
entanglement is not known in advance, we can estimate it during the simulation, and thereby adaptively enhance the
algorithm’s performance. Let [¢;) = % [¢(0)) denote the state of the algorithm after i Trotter steps. Using shadow
tomography [38, 39], we can estimate the local RDMs of |¢;) and their entanglement entropy, giving an estimate of
the Trotter error bound in Theorem 1. Let M denote the number of copies of the state used in the estimation. By
careful choice of measurements, we can show that M = O(N?) suffices, as discussed in Eq. (23) below. We describe
the measurement process in more detail in the Methods section.

Here we demonstrate the advantage of the adaptive simulation framework compared to a simulation with worst-case
error analysis. Consider the standard quantum simulation task: prepare the quantum state obtained by evolving with
a given Hamiltonian H for time ¢ within a small error ¢ = O(1). Suppose at some checkpoint time ¢., we insert
the measurement gadget to estimate the Trotter error for the upcoming simulation. Then the total gate cost of the
simulation is

g == Gl(tC)M + [Gl (tc) + GZ(t - tc)]Mm (8)

compared to G' = G'1(t) M,, without error estimation. Here Gi1(2) labels the gate count for simulation of the time before
(after) t., respectively. The parameters M and M, denote the number of copies of the states used at the checkpoint
time t. and at the final time ¢, respectively. For a simple final observable, such as a single Pauli operator, M, = O(1);
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FIG. 3. Number of Trotter steps determined with different error bounds for PF2 with t = N and € = 10™°. (a) and (b) show
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is a 1-design ensemble [26]. The empirical curve with the input |1(0)) = [0)*" corresponds to the minimal r such that

1Uo(t) = % (/) [(0)) || < e

but for a general measurement O = " O; (for instance, a Hamiltonian with O(NN) local terms and estimation accuracy
€s = O(1) [40]), the final measurement cost could be M, = O(N?), comparable with M. Note that here we assume
that the error estimation at checkpoint ¢, controls the error for the entire remaining time period of duration ¢ — ¢..
By Theorem 1, this is implied by the assumption that the local entanglement entropy is non-decreasing, which is the
typical case even for MBL systems [8, 10].

Here we use the first-order product formula algorithm to illustrate the underlying advantage. Suppose at time .,
we check that the error for subsequent simulation is close to the average case (that is, the RDMs are almost maximally
mixed) [26]. In this case, the gate counts are G (t,¢) = O(N?t2¢ 1) and Ga(t,e) = O(N*5t2¢1) for the worst and
average cases, respectively. Here t. = O(1) is typically independent of the system size. Denoting the simulation error
before t. by €., and assuming the error is proportional to the simulation time (i.e., €. = et./t) and M = M, = O(N?),
we find that G = O(N*t + N3-5¢2). This is better than the gate count G’ = O(N*t?) that would be obtained by
worst-case analysis, without using measurement to improve the Trotter error estimation.

Taking this idea further, we can develop an adaptive Trotter algorithm by inserting a few measurements in the
middle of the simulation, as summarized in Algorithm 1.

Algorithm 1 Measurement-assisted adaptive Trotter simulation

Input: Initial quantum state [¢)(0)), simulation time ¢, simulation error e, Hamiltonian H with the pth-order Trotter approx-
imation, and T' measurement checkpoints ¢1,t2,...,t7 with to =0 <t; <teo- - <tr <try1 =t.
Output: Final quantum state |$()) with simulation error at most € to e~"* |1(0)).
1: fori=1to T do
2: for j =1to M do
3: Prepare the state |¢(¢;)) from | (0)) using Trotter simulation with the previously determined Trotter steps {r(A;/)}
from ¢ =0toi— 1.

4: Perform random N-qubit Pauli measurements on ¢(t;) to collect a one-shot shadow snapshot ;).

5: end for

6: Estimate the single-segment Trotter error €(¢) in Eq. (23) using {/3(]-) }jle, with M = O(N?) for a lattice Hamiltonian.

7 Use €(7) to determine the Trotter step r(A;) for the next interval of duration A; = ¢;11 — t;, such that the simulation
error is at most €(A;) = eA;/t.

8: end for

9: Prepare the final state |¢(t)) from |¢(0)) using the Trotter algorithm with the previously determined Trotter steps {r(A;)}

fromi=0 to 7.




The total gate count, generalizing Eq. (8), is

T
g = Z } Gi(As, e(Aq))M, 9)

where we take M, = M and let G; denote the gate count for the ith period, which depends on the error estimation
at checkpoint ¢; in Algorithm 1.

We make several remarks. First, in Algorithm 1, we assume that the Trotter error in the period A; is controlled by
the state at the checkpoint ¢;. This assumption is reasonable since the local entanglement entropy tends to increase
[8, 10]. Second, the number of measurement points and their locations in time can be adjusted in real time. For
example, we can keep track of the simulation error to see whether it reaches nearly the average case, indicating
that the local RDMs have already thermalized. Once this occurs, further error estimation is unnecessary under
the assumption that the entanglement increases monotonically, though we could choose to verify this by checking
the entanglement after long periods of evolution. Third, the summation in Eq. (9) gives gate overhead due to the
measurement. However, if the quantum simulation task is to track the expectation value of some observable (O(t))
as a function of ¢ for several time points, the measurement-assisted simulation may not need to introduce additional
measurements. In particular, for a sufficiently complex operator O, such as a Hamiltonian with O(N) local terms,
one can reuse the randomized measurement data for estimating O to estimate the Trotter error at the checkpoints of
the simulation.

In Fig. 4(d), we show the number of Trotter steps r used by the adaptive PF2 protocol with various numbers of
uniformly spaced checkpoints. The adaptive protocol reduces the number r and thus enhances the performance of
the simulation with only a few checkpoints. See the Methods section and Section VII of the Supplemental Material
for more details.

DISCUSSION AND OUTLOOK

In this work, we showed that Hamiltonian simulation using product formulas can be more effective when the
simulated state is entangled. Our numerical results suggest that the number of Trotter steps to ensure an accurate
simulation scales similarly for sufficiently entangled states and for the average case, both empirically (Fig. 3) and for
the theoretical bounds (Fig. 4).

The acceleration arising from entanglement can be directly applied to other algorithms based on quantum simulation,
such as quantum adiabatic algorithms [41] and quantum phase estimation [42]. It is also worth exploring whether
a similar phenomenon can improve product formula-based quantum Monte Carlo algorithms [43, 44] and algorithms
based on imaginary time evolution [45].

In our numerical study of the adaptive quantum simulation algorithm, we chose uniformly spaced checkpoints.
However, an algorithm incorporating some other pattern of checkpoints might yield greater efficiency. In particular,
under the assumption that the entanglement tends to increase, we need not estimate the entanglement after it is
already determined to be nearly maximal. Future work might try to make this approach more precise and explore
the best way to adaptively estimate the entanglement.

Our results advance the understanding and application of quantum entanglement in quantum information process-
ing, and show how entanglement may prove advantageous for investigating fundamental quantum physics through
accelerated quantum simulations. This work sheds new light on the intricate relationship between quantum resources
and quantum algorithms, revealing that quantum resources can serve as a driving force for accelerating quantum sim-
ulation, and potentially for other quantum algorithms. Future work might explore whether other quantum resources,
such as magic [46] and coherence [47], can also help improve the performance of quantum simulation or other quan-
tum algorithms. It would also be beneficial to perform a systematic study of how our results can reduce the resource
requirements for specific practical simulations in areas such as chemistry, condensed matter, and nuclear/particle
physics.
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METHODS

Proof sketch of Theorem 1

For a given Hamiltonian ZZL:I H;, the first-order product formula applies the unitary operation %;(t) :=

eihte=ilat ... o=ilit — TT e~"! Here the right arrow indicates the product is in the order of increasing in-

dices. Suzuki’s high-order product formulas are defined recursively as

T —iHlt/2<_ —iHt/2
Us(t) = He He , (10)
1

1
Uok (t) := [Uak—2(pit)]* Uar—2((1 — Api)t) [k —2(pit))?,

where ﬁl denotes a product in decreasing order and py := m with & > 1 [31].
For a given input state |¢), the error of PFp satisfies ||(Uo(0t) — %,(6t)) [¥) || < | X2, Ej [¥) |6tPT + || &e|| with

[|6rell = O(6tP2) [23]. Here we focus on the leading term || 3=, E; [¢) || = \/Zj,j’ (] E;Ej/ [).

Lemma 1. Let E = Zj E; act on N qubits, where E; acts nontrivially on the subsystem with supp(E;). Then
[WIBEW) < 1B + S NBIE T 105 — Lt )/ s (11)
53"
where |E||% = Tr(ETE)/d is the square of the normalized Frobenius norm, and p; j = Tr[N]\Supp(Eng)(hm (W]) is
the RDM of |v) (1] on the subsystem on supp(E;E;-).

Proof. The term E;Ej/ in the expression for EYE only acts nontrivially on supp(EJTEj/). We denote its nontrivial

- : - T _ g1
part by Lj,j’ = Tr[N]\supp(EJE;)(EJTE]’) Since 2 N T‘I‘(EJEJ/) = dsupp(EJEj/) TI"(Lj,j’)7 we have

<w| E;Ej/ |1/)> = Tr(Lj7j/pj7j/) = Tr[Ljvj'(pjvj/ - Hsupp(EJTEj/)/dsupp(E;Ej/))] + Tr(Ljvj/)/dsupp(EJEj/)

— T N
- TI‘[Lj)j/(ij" - ]Isupp(E;Ej/)/dsupp(E}Ej/)ﬂ + ’I‘I‘(Ej EJ'>/2

(12)
S HLJ'J/ || Tr ‘pj,j’ - ]Isupp(E;Ej/)/dsupp(E;Ej/)| + Tr(EJTEJ/)/2N
= HE;Ej/ | T |pjj0 — Hsupp(Ej.Ej,)/dsupp(E;Ej,)‘ + Tr(E;Ej/)/2N?
and the result follows by summing the indices j, j'. O

Lemma 1 implies the distance-based error bound of Theorem 1. Moreover, the trace distance of p;; and

I can be bounded by the relative entropy as

supp(E} E;r) /dsupp(E; Ej;r)

T 1015 = Laup(s) 2,0y Bsspt2] 5,00 | < /2505 W1 5,01 ospo(1 1,0)) = /2108 i ) = 28(ps0), (13)

which leads to the entanglement-based bound. For the proof, see Section I of the Supplemental Material.

Product state with the worst-case error in Theorem 2

Here we show an example of a product state achieving the worst-case scaling error. We consider the QIMF model
introduced in the main text with the PF1 method. We find

N N—-1
E = [iAiB] = —i |2hahy > Zj+2Jhy > (Z;Xj11 + X;Zj41) |- (14)
j=1 j=1
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After ignoring the global phase —i, we have }; a; = ©(N) and ), |bk| = 0 which satisfies the condition in Theorem 2,

since there is no term with a negative coefficient. Thus we can choose |¢)) = |0>®N. Using the triangle inequality, we
can lower bound the overall error as

1T = 24) [} || = \JTe(EFE [9) (4]) = [|Gell = O(N)SH! — |G| = QN) ", (15)

since ||&. = O(NGtPT2). Combining this with the worst-case upper bound ||(Uy — 24) [¥) || = O(N§tP+L), we
conclude that ||(Ug—24) |¢) || = ©(Ndt?). For the general proof and more examples, see Section II of the Supplemental
Material.

Concrete error bounds for PF1 and PF2

Here we also describe the error bounds with concrete prefactors for a two-term Hamiltonian H = A + B with the
first- and second-order product formulas (PF1 and PF2).

Lemma 2. (First-order product formula, PF1) For a two-term Hamiltonian H = A + B, consider the first-order
product formula % (5t) = e~ *Ate™"Bt with initial state [1p). Let E :=[A, B] = >_; E;. Then the Trotter error is upper
bounded as

3 3
1(24(5t) — Uo(58)) [0) || < \/ 1A Bl + As@) + 14, (4, B + 2 8. (8, A1)

with Ap(v) =Y || Ey B Tr|p; ;0 — Lupp(51 2,/ Fsupp(s] 5|

3,3’

(16)

For sufficiently small t, the error is O(6t2\/|[[A, B]|% + Ag(¥)).

Lemma 3. (Second-order product formula, PFQ) For a two-term Hamiltonian H = A + B, consider the second-
order product formula U (5t) = e 1A/20te=1B0to=iA/20t wyith injtial state |¢). Let By := [B,[B,A]] = > B and
Ey:=[A,[A,B]| =3_; Bz j. Then the Trotter error is upper bounded as

JC(6)-Uo(650) 4 | < (5. 8, AN + B, (6) + | S 4 (A, B + B, ()

+ A B, B, AN + S 1B 1B, 18, AT + S 1B, (4, [4, BN + 14, 4,14, B,

| T (17)
U]Zth AEl (¢) = Z HEL]‘El,j’ H Tr |IO]7J/ - ]ISUPP(EI,J'ELJ")/dsupp(EI,jElij/) ‘7
J:3’ '
Ap,(¥) = Z HE;]'EQJ/ (| Tr |Pj,j’ - ]ISUPP(E2,3E2,]")/dsupp(E;jEzj/) B
3.3’
For sufficiently small 6t, the error is O(ét?’(\/H[B, B, AlllZ + Ag, (1¥) + VII[A, [A, BlJ|% + AE2(|1/)>)))
Proofs appear in Section IV of the Supplemental Material.
Numerical details
In the numerics, we consider the 1D quantum Ising spin system with mixed fields (QIMF) [48],
N N N—1
H=hy Y Xj+hy Y YVi+J Y X;Xj1, (18)
j=1 j=1 j=1

and take the initial state \0>®". For h, = 0, the Hamiltonian can be transformed to an integrable model by the Jordan-
Wigner transformation, leading to non-thermalizing dynamics. On the other hand, if h, # 0, the Hamiltonian is ex-
pected to be consistent with the ETH prediction [34]. Here we consider the parameters (hy, hy, J) = (0.8090,0.9045, 1)
(which have been explicitly shown to satisfy the ETH [34]) and (hg, hy,JJ) = (0,0.9045,1) as typical and atypical
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examples, respectively. For the typical example, the local density matrix thermalizes to the maximally mixed state.
For the product formula decomposition, we take

N N-1 N
A=hY» X;+J Y X;Xjp1, B=hy Y Y. (19)
j=1 j=1 j=1

The PF1 commutator is shown in Eq. (14). The corresponding PF2 commutators are

N N—-1 N N-—-1
[A,[A,B]] = 4h2hy > Vi +47%hy Y Y+ 4J%hy > Y+ 8Thohy > (VX4 + X;Yj4)
j=1 j=1 Jj=2 j=1
N-—-2
+87%hy Y (X;Yj41 X 42), (20)
j=1
N N-1
[B,[A, Bll = ~4hahiy Y Xj+8Jh5 Y (ZiZj1 — X; Xj1).
j=1 j=1

The empirical worst-case and average-case Trotter error curves in Fig. 1(a) and Fig. 3 are calculated using the
upper bounds from Ref. [23] by directly computing the norms ||%(5t) — Up(6t)|| and || % (5t) — Up(dt)|| r, respectively.
For concreteness, we compare the performance in various cases with N = 12 qubits. According to the previous
worst-case error analysis, the simulation should use r ~ 2.62 x 10 Trotter steps for the typical case shown in Fig. 3(a)
and r ~ 2.15 x 10* steps for the atypical case shown in Fig. 3(b). Notably, the typical Hamiltonian appears harder
to simulate than the atypical one. However, when considering the entanglement of the input state (as estimated
empirically), the typical case is actually easier to simulate than the atypical case. In the typical case, the empirical
number of Trotter steps r ~ 1.19 x 10* is very close to the average-case value r ~ 1.17 x 10%, because the evolved
state is highly entangled. On the other hand, in the atypical case shown in Figure 3(b), the empirical Trotter number
r ~ 1.65 x 10* is larger than the average-case Trotter number r ~ 1.24 x 10%.

For the theoretical worst- and average-case bounds in Fig. 3, we use Eq. (20) without evaluating their norms
numerically. Instead, we upper bound the norms by counting the number of Pauli operators, e.g., ||[4, B]|| < 2hzhy N+
4h, (N — 1). The concrete theoretical bounds are provided in the Supplemental Material.

We choose 6t = 1072 and apply Lemmas 2 and 3 for our entanglement-based theoretical bounds in Fig. 4(a) and
(b). To upper bound both spectral and Frobenius norms of operators, we count Pauli strings. To estimate Ag in
Eq. (16) and Eq. (17), we directly compute the trace distances between local density matrices and identity operators.
We do not faithfully estimate Ag and calculate the Trotter error for each step in our distance-based bounds. Since
the entanglement remains stable for some time, we use the estimated Ag for a few subsequent Trotter steps, reducing
the running time, especially for large systems. Details are given in Section VII of the Supplemental Material.

There is a significant constant-factor gap between our entanglement-based theoretical error bounds and average-case
error bounds, as illustrated in Fig. 4. This discrepancy presumably arises, at least in part, because our numerical
simulations only involve quantum systems with at most N = 12 qubits and our theory mainly deals with the leading-
order Trotter error terms E;. In principle, the theoretical analysis could be extended to include the effect of higher-
order error terms. However, such terms have larger weights and the analysis will work only when there is entanglement
in larger subsystems. Consequently, we anticipate that the gap between our entanglement-based theoretical error and
the average-case error will tend to decrease when simulating larger systems.

For the adaptive protocol in Fig. 4(d), we apply the concrete error bound in Eq. (17) from Lemma 3. According
to Eq. (23), we can measure the leading part of the Trotter error directly in experiments. Thus, we replace the

terms ||[B, [B, A]]||% + Ag, (¢:) and ||[A, [A, B]]||% + Ag,(¢i) with measured values of > (@il EijEl’j/ |¢;) and

> (ol E;)ngvj/ |¢;). We consider the Pauli decompositions of sub-leading contributions to Eq. (17) and use the
1-norms of their coefficients to upper bound their spectral norms. The total numbers of Trotter steps for the adaptive
approach with various checkpoints are obtained using this analysis.

Estimating Trotter error with shadow tomography

Here we develop a measurement gadget that uses shadow tomography [38, 39] to estimate the entanglement entropy
and the local RDMs. This technique can enable simulation that takes advantage of the error bounds in Theorem 1
even if the entanglement is not known in advance. The approximate state after i Trotter steps is |¢;) = ?/pi |1(0)),
where %, is the unitary operation implemented by a single Trotter step. Using the bound Tr |M| < dp||M || F, the
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distance-based error bound in Eq. (1) of Theorem 1 for the error after the (i + 1)st segment can be further bounded
by

1/2

(i) = (W0 = %) 60) | = O | |max 1Byl - \fdoupueyzyy (02,0 = 1| +IIENe 674 | (21)

Similarly, the entanglement-based error bound in Eq. (2) of Theorem 1 can also be related to the purity of RDMs,
by the fact that the von Neumann entropy can be upper bounded by the Rényi-2 entropy, S2(p; /) = —log, Tr(p] i)
We provide an explicit formula in Section VI of the Supplemental Material. As a result, for both error bounds, we
would like to estimate the purities Tr(p? j,) for all possible RDMs whose supports are determined by the related terms

in the commutator, namely supp(E]T E;).

In shadow estimation, one performs randomized measurements on p = |¢;) (¢;| by applying (local) random unitary
evolution U = ®;V:1 u; and projective measurement in the computational basis. Here the local unitary is sampled
independently and uniformly from the local Clifford group. This random measurement scheme is called Pauli mea-
surement, since it is equivalent to measuring each qubit in a randomly selected Pauli X, Y, or Z basis [39]. The
measurement result is denoted by b = (b1, ba,...,by). The shadow snapshot

N
p= 3u b;) (bj|u; —Ia), (22)
j=1

is an unbiased estimator, i.e., Ep = p. One can estimate a linear observable O as Tr(pO). The purity Tr(p%) of
some RDM pg is nonlinear, but can be estimated as Tr (p ® p' Sg ® Ijnj/s), where p and p’ are two distinct shadow
snapshots, and Sg is the swap operator on the 2-copy Hilbert space restricted to subsystem S. To reduce the estimation
uncertainty, one repeats this process M times to collect the shadow set {p;}}£,. For a collection of L observables
{O;}, the number of samples is M = O(log(L/§) max; [|O;||%,.40w/€2) [39], where the shadow norm is directly related
to the variance in a single-shot measurement.

Here, our target observables are purities of many RDMs as shown in Eq. (21), and the shadow norm of O = Sg®1 /g
satisfies ||O||shadow < 42/°1 [49]. In Eq. (21), for the lattice Hamiltonian one has max; | ;|| = O(1), | E|r = O(V'N),
and the summation includes O(N?) terms. Thus we should choose the shadow estimation error e, = O(N~2) to make
the estimation sufficiently accurate. The local systems comprise |supp(EJTEj/)| = O(1) qubits. As a result, the total
number of samples for an N-qubit system is M = O(N*log N), as ||O||shadow = O(1).

We can further reduce the cost of estimating the Trotter error by directly measuring certain local Pauli operators
instead of purities. In particular, one can give a more refined error bound beyond the distance- or entanglement-based
bound as follows (see Section VI of the Supplemental Material for details):

Z (6i| ELE; ) 67 | (23)

As a result, we can directly estimate the error by measuring the terms in the square root, ). (¢i| Oy |¢;) with
Oy = E;Ej/ + E},Ej for j # 7 and O, = E}Ej for j = ', which are each linear combinations of a constant number
of Pauli operators. The shadow estimation error of O = O, should be kept to e, = O(N) to make the estimation

accurate enough to be comparable with the average performance. Since this observable is a sum Pauli operators P
with || P||shadow < 35"PP(P), we find that M = O(N?) samples suffice to achieve the desired error [39, 40].
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SUPPLEMENTAL MATERIAL: ENTANGLEMENT ACCELERATES QUANTUM SIMULATION
I. PROOF OF THEOREM 1 AND COROLLARY 1

In this work, we mainly focus on product formula (PF) algorithms [15, 31]. For a short evolution time &t, the
first-order product formula (PF1) algorithm for a Hamiltonian Zlel H; applies the unitary operation

—
%1(6t) = e*l’Hl(;tef’L-HQ(;t . e*iHL(;t — H e*iHlét. (24)
l

Here the right arrow indicates the product is in the order of increasing indices (i.e, for { = 1,2,..., L). Second-order
product formulas (PF2) can be obtained by combining evolutions in both increasing and decreasing orders of indices,
with

Ua(0t) := [ [ e o [ [ e, (25)
l l

where the left arrow indicates the product in decreasing order (i.e., for [ = L, L —1,...,1).
More generally, Suzuki constructed pth-order product formulas (PFp for even p = 2k) recursively from the second-
order formula as [31]

Uo (5t) = [Uar—2(pr0t))* Uor—2((1 — Api)6) [Zar—2(pr6t)]?, (26)

where py 1= m and k > 1 [31]. Overall, we have S = 2 - 5¥~1 stages (operators of the form %; = ﬁl e it

e~Hi%t) and the evolution can be rewritten as

or its reverse ordering ﬁz

L
Ui (61) = [[ [T e, (27)

s=11=1

where each 7, is the identity permutation or reversal permutation and dtas is the simulation time for stage s.

To simulate the evolution of a quantum system for a long time, we divide the entire duration into many smaller
time segments. Each segment represents a short-time evolution that can be simulated with small error. The total
error can be upper bounded using the triangle inequality as the sum of the Trotter errors for each segment, which we
also refer to as Trotter steps.

In this section, we primarily focus on short-time evolution d¢ and establish a connection between the Trotter error in
a single segment and the entanglement entropy of the quantum state |1)) during the evolution. Considering the target
quantum evolution Uy = e~ % a pth-order Trotter approximation WU,, and a pure quantum state |¢), according to
Lemma 4, the Trotter error bound can be expressed as follows:

1(Uo = %) o) [ < | ZEJ‘ ) 167 + [ el (28)

Here E; are the leading-order local error terms and & is the sum of the higher-order remaining terms, with & =
O(6tP+2). For an operator E of dimension d, let ||E|| denote the spectral norm, and let |[E|r = 4/ %ET) be the

normalized Frobenius norm. Let S denote the von Neumann entropy.

Lemma 4. For the Hamiltonian H =), H; and an input pure state |1), the additive Trotter error of the pth-order
product formula can be represented as

1(Uo(6e) = % (80)) 1) 1| = 1Y By [) 57 + || e (29)
J
The spectral norm of the higher-order remaining term is || & = O(ap120tPT2), where
L
Apt2 1= Z |HH117[H127'-'7 [Hlp+17Hlp+2]H||' (30)

ll,‘“,llﬂ,g:l
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Proof. First define an order for pairs (s,[) of stage indices s € {1,...,5} and term indices I € {1,...,L}. Let
(s,1) < (¢/,1') when s < ¢’ or s = §',1 < I'. Furthermore, let (s,1) =< (s',1') when s < s’ or s = ¢',1 <I'. According to
Theorem 3 in Ref. [23], the additive error &(dt) can be expressed as

ot
E(5t) = Up (1) — % (6,) — /0 dry e G-y (1) N (1), (31)

where %, is the pth-order Trotter formula and
<_

f—
. JH . LH
7_1) _ j : H ezna,, Wsl(l/) (asHﬂ-s(l)) H e 1T1Aas ﬂsl(m

(s,0) (5’ 1)=<(s,) (s",1")=<(s,l)

_ H iTias H My H —iTras H /(l/)

(S’ l/ s/ l/

(32)

where A (11) = O(7). Here we define the vector ;p+1 = (J1,72s- - -+ Jp+1) with p+1 entries, j1, ja,...,Jp+1 € {(s,1) :
sef{l,...,S}le{l,...,L}}, and the corresponding nested commutators as

G = Hi [Hyy, oo [Hy Hy, )] (33)
According to Theorem 5 in Ref. [23], we can further write
N (1) = /OT1 dm Z Z (nn— Tz)q(5p+l)_1Tf7q(;p+1)cip+1F]jp+lN3p+1Ffp+1’ (34)
=127 . er,
where we use the following definitions. Let
Lye={(1,J2, - odpr1) 1 22 2 2 dpa ks

o ) C o 35)
Iy = {(]17]2, cee 7]p+1) 222 2D Jpr1 = (1alp+1)}~ (

The values ¢ ., are real coefficients that are functions of jp+1 and p, satisfying |C§'p+1| < 1. The function q(fp+1) is
the maximal number ¢ satisfying j; = j2» = --- = j,. The operators F;p+1 are unitary, constructed as products of
terms of the form e~*11™_ Plugging Eq. (34) into Eq. (31), we have

&(dt) / dry / O D S C I L i e T L L AN O Y TN L (36)

1= 12]p+1EF

Since Fjﬂ, . is a product of short-time evolutions, we can expand it as
D

FI N. F. =N: +R: (37)

Jp+1 Jp+l Jpt+1 Ip+1 JIp+1

where the nested commutator N~ o is the Oth-order term and R~ ., represents the remaining higher-order terms. To
realize this decomposition, we repeatedly apply the formula

Tl . .
elATl Be—’LATl - B +/ d7_2€1A(7'1—'r2)[147 B]e—’LA(Tl—TQ), (38)
0
satisfying

|47 Be=i4™ — B|| < ||[4, Bll|n, %

which accounts for the effect of a short-time evolution generated by A on B. For a product of short-time evolutions,
each time we apply it to the innermost layer, giving

||eiA1T1 . 6iAS,17—1€iAsrlBe—iAsn . e—iAS,lﬁe—iAln _ eiA]Tl . 6iAS’1TIBe_iAS’lTle_iAlTl H < H[As B]HTl (40)
— ) *
Iterating, we find

HeiAlTl L eiAsflTleiAsTlBe_iAsTl . e_iAsflTle_iAlTl _ B” é Z ||[14.'57 BH|7—1. (41)
S
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By replacing B with N3, we thus can control the remaining term as ||Rj~.erl | =00, I[Hi, N;erl]HTl).
Substituting F]T N; | F;  for Ny in &(6t) of Eq. (36), we define
p+1 pt+l pt+1

JIp+1

&t
£ (St / dTl/ dT2 Z Z T _Tz)Q(Jerl) 1 P ‘1(.71)+1) ]p+1 —t(55t TI)H% (Tl) j o (42)

1=1 2jp+1€r

The higher-order terms of the product-formula approximation are given by the difference of & and &*, which can be
bounded as follows:

1€ (6)]| = [|&°(5t) — &™ (68|

ot
_ . (Gps1)—1 p q(]p+l) i(66t—71)H T 2 3 .
- / dTl/ dTQ Z Z T 7-2 q ijr .]p+1 - 02/ (Tl)(F]p+1NJp+1FJp+1 ij+1>

= 12]p+1€r‘

5t
= / dﬁ/ dr Z Z (11 — )¢ 9(Gp1) =1 i aGri1) . ¢ ..€ et (r)R G

=127 Fpr1€Ty

ot
/ dTl/ dTZ E g T1 —7'2 q(]PJrl -1 P ‘I]p+1)|c |
Jp+1

i=1 2jp+1€F

— Q(Jp+1 -1 1" a(7p+1)
/ d7'1/ deE E (11 — 72) le; | R

1= 12jp+1€F

1(66t_T1)H%p(Tl)R‘-’

Ip+1

]p+1

=0 > llH, Ny 6t
Lipt1

L
= Z |[Hy,, [Hy, - . . [H,,,, Hyy, )| 66742

(43)
Here the first inequality uses the triangle inequality for the spectral norm and the fourth line uses the fact that
[[VA| = ||A] for any unitary V' and operator A.
Finally, we bound the leading term &*(dt) defined in Eq. (42) as follows:

167 (68) [) || = / dry / A 30 S ()t L) Oy (N )
1= 12Jp+1€F
ot T1 = -~ (v )
S/ dn / dry Z Z 7_1_7.2)Q(Jp+1)—17_{7 q(Jp+1 CEPHNEPH |,(/)>
0 0 i=1,27
Jp+1€l
ot
—. P N
7'/0 dn Z Jp+17_1 ij+1 [¥) (44)
=125 Jp+1€;
_ / p+1 -
- Z Z p_|_]_ jp«l»l N p+1 |¢>
12]p+1€F
=D E; )| otr T
J

Here the second line uses the triangle inequality. In particular, for a given 71, one can eliminate the unitary
et 0%=T)Hg (1)), since |[VAY)|| = ||A|¢)]| for unitary V. For the third line, denote the result of integrating

over Tz as F(T1,jp+1) = foﬁ dra(m — Tg)qGP*l)’le_q(j”“)c~ . It is straightforward to check that, for all pr,

jp+1
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F (7—17jp+1) = c; 7'1+ for some constant ¢~ . In the fourth line, we simply integrate 77'. In the last line, we

Jp+1

decompose 1 Z cj Nz -~ into local operators F;, completing the proof. O
+1

1

Lemma 5. (Lemma 1 in Methods) Let E = Zj E; act on N qubits, where E; acts nontrivially on the subsystem with
supp(E;). Then

[ ETE ) | < B+ S IELB T s = Lot )/ uup(st 5, (45)
73’

where |E||% := Tr(ETE)/d is the (square) of the normalized Frobenius norm, and p; j := Tr[N]\Supp(EjE;)(W} (]) is
the RDM of [b) (¢| on the subsystem of supp(FE;E"). '

Proof. The term E;Ej/ in the expression for ETE only acts nontrivially on supp(E]T-Ej/). We denote its nontrivial

part by L; j» := Tr[N]\Supp(EjEJI_)(E;Ej/). Since 27V Tr(EJTEj/) = d:upp(EfE ) Tr(L, ), we have

<w| E]TE]'/ |w> = Tr(Lj’j/p]'»]") = Tr[Lj’j,(p]-’j, - Hsupp(E}Ej/)/dsupp(E;Ej/))] + Tr(Ljvj/)/dsupp(E}Ej/)
= Tr[Ljvj/(pjvj/ - ]Isupp(E;Ej/)/dsupp(EJEj/))] + Tr(E;EJ/)/zN

(46)
N
< “Lj’j' || Tr ‘pj,j/ - HSUPP(E;E]»/)/dsupp(E;LEj/)| + T‘I(E]TEJ')/2
= HE]TE]/ || Tr |pj»j, - ]Isupp(E;Ej/)/dsupp(E;Ej/)‘ + Tr(E;[E]/)/QN’
and the result follows by summing the indices j, j'. O

Theorem 3. (Theorem 1 in the main text) For a given pure quantum state 1) and perfect quantum evolution
Uy = e *H9 with pth-order Trotter approzimation Uy, the error in a Trotter step of duration 6t has the upper bound

|(To — %) 1) | = © %Z VELE 1 T g — 1/dy, |68 4 | B 25t + bt |. (47)
33’

where a,12 s defined in Eq. (30). We call this the distance-based error bound. One can further relate the Trotter
error to the entanglement entropy of subsystems with the bound

|(To - %) [4) | = O 67+ ZHEE I\ lou(ds, ) = S(ps0) + S| Bl + apndt?™ | (48)

We call this the entanglement-based error bound.

Note that compared to the statement of Theorem 1 in the main text, here we also include an explicit upper bound
for the high-order terms &.

Proof. According to Lemma 4, the higher-order terms can be bounded by ||| = O(ay426tPT2). The leading term
has the bound

1o = %) 1) | < || D B 1) |67 + [l
J

= 5t Z (I ELEy 1) + |Gl

) WV VI 5 VBB T s ]+ 8

<6ttt IS NEIEy | Trlpjyr = 1/d, )|+ 67 Bllp + el

J»3’
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Here the third line uses Lemma 5 and the fourth line uses \/z1 + o2 < /Z1 + /T2. Since ||&.| = O(5tPF2), for a
sufficiently small d¢, we have

1o = %) [0) | = OGP+ > NEJEy || Trlp e —1/dy, | + 6P| Bl p + apyadt?t?), (50)

5.3’

which gives the distance-based error bound. Moreover, the trace distance of p; ;» and I/ dpj , can be bounded using
the relative entropy as

Trlpsgr =1y, | < /2800550 1/dp, ) = \/2108(d,, ) = 28 (pjz): (51)
which gives the entanglement-based bound. O

A pure state of N parties is called A-approximate k-uniform if all k-party reduced density matrices are close to
maximally mixed, i.e., || Trinp ) (J90) (9]) — 17281 < A.

Corollary 3. (Corollary 1 in the main text) For a A-approzimate k-uniform pure quantum state ) with VA <
IENF/>2; |1E;| and k > 2max; w(Ej), the Trotter error satisfies

1(To = 2,) [} | = O(IIE| rot?*?). (52)

Proof. According to the proof of Theorem 3, we have

|(@ — %) 1) || = O | 67+ [STIELE) || Trlpyr —1/d,, | + 67 Bl |. (53)

7.3

For a A-approximate k-uniform state, the trace distance part is bounded by

\/Z \E Byl T |y — 1/d,, | < \/Z IENNE 1A = S 1B VA < [1B]lp. (54)
3,3’ 3.3’ J

Thus, we have |[(Uy — %,) |¢) || = O(||E|| p6tPT1). 0

Similarly, one can show that when the entanglement entropy of the subsystem supp(E}Ej/) satisfies S(p; ;) >

w(E;E;) — (%)4, the error scales like O(5tPT!| E|| ), recovering the average-case Trotter error bound [26].

II. PRODUCT STATES WITH WORST-CASE ERROR SCALING
A. Proof of Theorem 2

We begin with a simple observation about the signs of the coefficients of nested commutators for product formulas.

Fact 1. For a pth-order product formula, the leading terms of the Trotter error can be written in the form

E=¢" Z a;jPj + Zkak ; (55)
] k

where 0 € {0,7/2,m,31/2}, P; and Qy are Pauli operators, and the coefficients aj, by, are real numbers satisfying
a; >0 and by <O0.

Proof. As shown in Eq. (44) in the proof of Lemma 4, the error term F is a linear combination of the (p + 1)st-order
nested commutators defined in Eq. (33) (ignoring the global phase i?*1). We prove by induction that each commutator
[H,,[H,,,...[H,,, Hi,,,]] is in the form of Eq. (55). Suppose that the p’th commutator N, = e ", aw is in this
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form (where ayw, the coefficient of the Pauli operator W, can be either positive or negative), and we add one more
layer with H; = "y, Sw/ W', where Sy is the coefficient of the Pauli operator W’. Then the new commutator is

Np/+1 = [Hl, Np/] = ew Z Z awﬁw/ [I/V/7 W} = €i9 Z Z Oéwﬂwl (:|:27;W”). (56)

w w’ w W’

For every pair of Pauli operators W, W’ in the sum with [WW’', W] # 0, we have {W', W} =0, so [W/, W] = £2i{W"
for some new Pauli operator W”. This introduces a phase 4i for each term, so we still extract an overall phase e*
with 6 = {0,7/2,7,3n/2} for Ny 1. It is easy to see that N,—; = H; satisfies Eq. (55), and thus the claim follows
by induction. O

Now we begin the proof of Theorem 2 from main text. Note that the global phase e? cancels out in EE for the
error analysis, so we neglect this phase in the following discussion.

Theorem 4. (Theorem 2 in the main text) Consider a Trotter approxzimation of an N-qubit lattice Hamiltonian H.
Let the leading term of the error have Pauli decomposition E = Zj a; P+, biQp with a; > 0 and by, < 0 (ignoring
a global phase). If 3 ;a; = ©O(N) and ), [bi| = o(N), there exists a product state |¢) that achieves the worst-case
error scaling,

(U0 — %) 1) || = ©(Nat"*T). (57)

Proof. We choose a maximal index set, denoted by Stab, such that for any j,j" € Stab, supp(P;) N supp(P;) = 0.
Because the weight w(P;) is constant, [Stab] = ©(N).

Consider each Pauli string P; =0, ® --- ® Tju(py) I the decomposition of E. Then we construct the state with a
density matrix

wel- Q 20Q 2t @ R (59)

jEStab ke{1,2,...,w(P;)} k' €[N]\Usupp(P;)

This is indeed a product state, and for any j € Stab, P; ) = [¢). Note that the union of the supp(F;) for j € Stab
is a proper subset of the whole system [N], and we take (I + Z)/2 for the remaining qubits. In addition, for any
Pauli string P, Tr(P |¢) (¢]) € {0,1}, which can be seen as follows. The state |¢) (1| is a linear combination of 2™ — 1
distinct non-identity Pauli operators, and Tr(P |¢) (¢|) = 1 if P is one of those Paulis. For any Pauli operator P that
does not appear in the sum, Tr(P |¢) (¢|) = 1 since Tr(PQ) = 0 for distinct Paulis P, Q. In this way, we write down
the leading term of the Trotter error as

Te(ETE ) (W]) = > ajaz Te(PjPyr ) (b)) + > brbr Tr(QuQu [¢) (¥])

33’ kK’

+ " asb Te(PyQr [v) () + Y brags Tr(QuPyr [4) (1)),

Jik k.5’

(59)

Here in the first summation, if both j,j° € Stab, we have Tr(P;P; |¢) (¢|) = 1 by construction. Therefore

2
> irestab 4@ Tr(Pi Py ) (Y[) = (szStab aj) = O(|Stabl?) = ©(N?).
It remains to consider the contributions of the other cases. For j € Stab and j’ ¢ Stab, we have

> 205 Te((BPy + Py Py) [0) (), (60)
j€EStab,j’¢Stab

whose individual terms are zero unless [P;, P;:] = 0. In that case, we obtain another Pauli operator P’ = P;P;, with a
possible minus sign. A minus occurs only if supp(P;) Nsupp(P;/) # 0. Otherwise, the contribution is positive or zero,
depending on whether P’ stabilizes |¢) (1| or not. As supp(P;) is a constant, the number of overlapping terms P;/
is O(1). As a result, the summation of Eq. (60) can reduce the whole summation in Eq. (59) by only O(N). Similar
arguments handle both the case j,j’ ¢ Stab, and also the second summation in Eq. (59), which both give at most a
O(N) reduction. For the last two summations in Eq. (59), since a;by and bia;s are negative, and the terms in such
summations are o(N?2) by the assumption that >_ja; =O(N) and >, [bk| = o(N), the reduction is o(N?). Overall,

this shows that Tr(ETE [¢) (¥|) = ©(N?).
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Using the triangle inequality, we can lower bound the overall error as

1(Uo = %) [} || = ) Te(ETE [¢) ($]) — [[ & 61)

= O(N)6tP*! — || &l = QN)5EPH.

The last line follows because ||&e| = O(N§tP+2) according to Lemma 4. Combining this with the worst-case upper
bound ||(Uy — %,) |¥) || = O(N&tPT1), we conclude that ||(Uy — %) [¢) || = O(N§PT). O

B. Ising models

The condition of this theorem is not particularly special and is satisfied by some well-studied models. For instance,
for the QIMF model that we consider in the main text and the PF1 method, we have

N N-1
E =[iA,iB] = —i |2hahy Y Z; +2Thy > (Z;Xj41 + X;Z;11) |- (62)
j=1

j=1

After ignoring the global phase —i, we have >, a; = ©(N) and >, |bx| = 0, since there is no term with a negative

coefficient. Thus we can choose P; = Z; for j = [N] as the Stab set, and choose [¢) = 0)®N,
Furthermore, we can find product states that achieve the worst-case error even in some cases that do not satisfy

the conditions of Theorem 4. For example, consider the PF2 approximation for the QIMF model. By the third line
of Eq. (90) and also Eq. (109), we have

o= [z fael)« [ o]

N N-1 N N—-1
=i [hihy SOV TPhy > Y5+ JPhy Y Y+ 2Thahy > (VX1 + X;Yi4) (63)
j=1 j=1 j=2 j=1
N-—-2 N N-1
+27%hy Y (XY Xjre) = 2hah Y X+ 4TH Y (22500 — X Xj) |-
j=1 j=1 j=1

Ignoring the global phase —i, the summation
N N-1
—2hghy Y X =42 Y XX (64)
j=1 j=1

has a negative sign, and in total the summation has O(N) terms. Thus the assumptions of Theorem 4 do not hold.
However, there is still a product state [1)) = [0)®" that achieves the worst-case error. The term in the third line
Z;V:_ll Z;Z;1 gives a positive contribution of order ©(N?) in ETE. For the other terms, according to the proof
of Theorem 4, now we only need to guarantee that the cross terms (between the terms with positive and negative

coefficients) can reduce the error by at most o(IN?). Indeed, such terms always generate Pauli operators P’ that have
Pauli X or Y operators on some qubits, so that Tr(P’ |¢) (¢]) = 0.

C. Heisenberg models

We can also consider the one-dimensional Heisenberg model with a random magnetic field h; € [—1, 1] at each site
j€{l,...,N}. The Hamiltonian shows

—1 N
H= (XjXj1+ YY1 + 2 Zj1) + Y _h;Z;. (65)
j=1

Jj=1
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For convenience, suppose N is even. The summands of this Hamiltonian can be partitioned into two groups in an
even-odd pattern [50], giving H = A 4+ B with

Mw\z

A= (Xoj_1Xoj + Yo, 1Yo; + Zoj 1225 + hoj_1Z25-1),
j=1
N_q (66)
2
B = (X2jXoj41 + Yo Vo1 + Z2j 22511 + hojZ2j) + hnZN.
j=1
For the PF1 method, the error term is
N—2
iE =ilid,iB] = ) (-1)(X;Yi1Zj12 = X;ZinYive = Y Zja X + ViXjn Zjo + Z; X1 Viee — ZjYj41 X 42)
j=1
N-1
+ i1 (Y X — X;Yj1a)). (67)
]:1

It is not hard to see that this commutator does not meet the conditions of Theorem 4. However, we can
still find a product state that gives the worst-case performance. We choose the Stab set containing X;Y; 1
for odd j. Then the corresponding product state is stabilized by {Xi,Ys, X3,Yy,..., Xn_1,Yn}, giving |¢>
[4) 1 [48)s [4+)5 [+i), -+ [+) vy |+4) - Now consider the contributions of various terms in Eq. (67) to Tr(ETE [4) (1)]).
Besides XY for odd j, the terms Y; X, for even j also stabilize |¢) (and of course the same holds for products
of such terms). Letting M = 3", 14 hj+1X;Yj41 + 3250 cyen Rir+1Yjr Xjr41, We have

2

Tr(MTM |¢) (¢]) = Z hjt1hgr = Z hjva ] - (68)
=1

J,k=1

If hj = h for all j, we have Tr(MTM [¢) (¢]) = (N — 1)2h2, which is ©(N?) for constant h. Then we just need to
check that the contributions of other terms are at most O(N). As mentioned in Eq. (60) in the proof of Theorem 4,
any pair of Pauli operators P, P’ in the expression for E in Eq. (55) can survive in ETE only when they commute.
Since supp(P) = O(1) and the number of P in F is O(N), the number of overlapping and also commuting Pauli pairs
is O(N). As a result, we only need to focus on Pauli pairs whose supports are disjoint (and of course commuting),
since there are O(N?) such cases. For all these disjoint Pauli pairs, if both P, P’ are in M and stabilize the state
|t) given by Eq. (68), the result is nonzero. Otherwise, if P, P’ are not both in M, then Tr(PP’|¢) ()|) = 0 since
PP’ does not stabilize |¢), so such terms do not contribute to Tr(ETE [¢) (¥|). For example, for P = X1 Z,Y3 and
P’ =YsXy, it is clear that Tr(PP’ |¢) (]) = 0.

Moreover, if the values h; are independent and identically distributed, with mean zero and variance o2, then the
previous main contribution term in Eq. (68) now becomes (N — 1)o2. As a result, for constant o, the contribution is
only ©(N) in this case. In summary, we show that for the Heisenberg model with a uniform magnetic field, we can
construct a product state to reach the worst-case error. However, this construction does not work for the random-field
case. We leave it as an open question to construct a product state that achieves worst-case scaling in this case, or to
show that no such state exists.

III. PROOF OF COROLLARY 2

Corollary 4. (Corollary 2 in the main text) For an N-qubit lattice Hamiltonian and a pure quantum input state |)
that is generated by a D-dimensional geometrically local circuit of depth o(N'/P), the entanglement-based bound of is

|(Wo = %) [4)]| = O™ N max(log d,; - S(ps))'*) + Ot IVN). (69)

Proof. According to the entanglement-based error bound in Theorem 3, we need to calculate S(p; ;) for each j and
P
7" with

S(pjg) = S(p;) + S(pjr) = 1(5,5")p, ;1 (70)
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where I(j,7"), is the mutual information for the subsystems on supp(E;) and supp(E;:). Consider a geometrically
local quantum circuit where the locality of the interactions is represented by a graph whose vertices are qubits and
whose edges represent the available interactions. For two distinct qubits v and v, the distance between two qubits
u and v is the length of the shortest path between them in G. For two sets of qubits, .7 and %%, their distance is
defined as

Dist(.71, %) = e;’piney’ Dist(u, v). (71)
u 1,V 2

Here we define the light-cone region £ according to the distance of the supports as follows:

L ={(j,7') | Dist{supp(F};),supp(E;/)} < 2depth}. (72)

For a given E;, there are only a limited number of E;: that are close to supp(E;). We denote the maximal number
of terms £/ in the light cone as

L= mjax{#{j’} | (3.5") € L} (73)

For a given E;, there are at most O(depth”) = o( ) qubits in the light cone. Because the evolved Hamiltonian H is
a lattice model, each E; in the Trotter error commutators only has constant weight. A fixed qubit could overlap at
most a constant number of E;. As a result, we have L = o(N).

When (j,7') ¢ L, i.e., the two subsystems on supp(Z;) and supp(£?) lie outside the light cone and the RDM
pjj = pi @ p; is a tensor product with I(j,j"), = 0. In this way, we can refine the first term in the entanglement-
based error bound in Theorem 3 as

> Byl log dy, = S(ps)
73"

= > BByl logd,, , — S(oi) + D By \flogds, +logdy,, — S(p;) = (o),
(d"ec (") gL (74)
= O(LN) + O(N(N — L)) max(logd,, — S(p;))"/*)
J

= O(N? mjax(log dp;, — S(p)?).

For a lattice Hamiltonian, || E||r = O(v/N). Substituting these results in Theorem 3, the corollary follows. O

IV. CONCRETE UPPER BOUNDS FOR PF1 AND PF2

Lemma 6. Let M,U € C*™? with U unitary. Then
| Te(UMMT)| < | Te(MM?)] (75)

Proof. The Cauchy-Schwarz inequality gives | Tr(MN)| < /Tr(MMT),/Tr(NNT). Using this inequality, we have

| Tr(UMMT)| < \/Tr(UMMTUT)\/Tr(MMT) = | Te(M M), (76)
because U is unitary. O

Lemma 7. (PF1, Lemma 2 in Methods) For a two-term Hamiltonian H = A+ B, consider the first-order product
formula %, (6t) = e~ A% =B with initial state |¢)). Let E = [A,B] = >, Ej. Then the Trotter error is upper
bounded as

5t ) 6t? 6t3
1(2.(6) = Uo(dt) [} | < £/ =~ (1A, Blllz + Ap(®) + ==Il[A, [4, Bl + —-[l1B, [B, A]]ll (77)
with
AE(w) = Z ||E]'E]|| Tr |pj,j' - Hsupp(EjEj/)/dsupp(EjEj/)|' (78)
5,3’

For sufficiently small 6t, the error is O(6t2\/||[A, B]|% + Ap(v)).
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Proof. By Ref. [23], the additive error &(0t) = %1 (5t) — Up(t) is
71H(6t ‘rl) —iAT1 77,37'1 ( iBT1 eiAn Z-BefiAn efiB‘rl - ZB)
dr e —iH (6t— 7'1)6 zA‘rle iBT1 [’LA ’LB]
(79)

ot 1
/ dT1 / de e—lH((St—n)e—zATle—zBﬁ ezB(ﬁ—Tg) [ZB7 [ZA, ,L'B]]e—zB(Tl—Tz)Tl
0 0

ot T
+ / dTl / d7_2 e—zH((St—n)e—'LAne—zBﬁ eZBT] elA(Tl—TQ)[Z'A’ [’LA, iBHe—ZA(Tl—TQ)e—ZBTl o
0 0
= (gal + éorm

where & = foét dry e HOt=71)e=iAT o =iBT1[; A i B]7; and &, is the sum of the other integrals. Here the second line
is due to the equation

. . . . . . Tl . . . .
ezBTl ezATliBe—zATle—zBTl —iB + eZBTl [ZA, iB]Tle—zB'rl + / dTQGlBTl ezA(Tl —T72) [ZA7 [ZA, ,L'B]]Tze—zA(Tl—Tz)e—zBTl )
0
Tl . .
=iB + [iA,iB]m + / droeB=m) (B [iA,iB)le B =) ny
0

Tl - . . .
+ / dreiBTieiA(Ti—T2) [iA,[i A, iBHTQeﬂA(Tl*TQ)eﬂBTl.
0

(80)
By the triangle inequality, we have
1€68) [9) | < 16188 1) + (1o (88) [)] < A/ (1 & &1 1) + (|6l (81)
The second term can be bounded as
B B
16iell < G IEA, [iA, iB]J| + = [|[iB, [, iB]]| (82)
For the first term, we have
st st
w1161 )| = ‘ | an [ ari i A Ui, iAoy m
0 0
st st
< / dry [ drl el || B, AT UnliB, iA]|)]
0 0 (83)

ot ot
< / dry [ dr] mrl| (@] [iB,iA) [iB,iA] |4)|
0 0

= i ia2 ),

where U,, = e!BT1¢iAT ¢iH (3t=71) o —iH (5t=71) g=iBT1 o —iAT1  For the second line, we use Lemma 6 with M = [iB,iA] |¢))
and U = U,,, giving

(I [iB,iA] U [iB,iA] [)| = | Te(UniB, iA][) (| [iB, iA]D)|

< | Tre([iB,iA] [v) (| [iB,iA]1))| (84)
= |(y|[iB, iA]'[iB,iA] ).

According to Lemma 5 with E = [A, B], we find

(| [iB,iA][iB,iA] [) = (| [A, B* |) < |[A, Bl3 + > |1 B} Byl Tr|psy = 1/d,, |- (85)

53"
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Substituting this result in Eq. (83), we have

ot
(W& & 1) < - 1A BRIE + ) IESE; || Trlojyr —1/dy, | |- (86)
5.3’
Finally, using Egs. (82) and (86) in Eq. (81), the result follows. O

Lemma 8. (PF2, Lemma 3 in Methods) For a two-term Hamiltonian H = A+ B, consider the second-order product
formula %, (5t) = e~ '4/20te= 1B =i wjith initial state |¢)). Let By = [B,[B, A]] = 32, E1; and Ey = [A,[A, B]] =
Zj Es ;. Then the Trotter error is upper bounded as

I (0) - <>>|w>|_¢144||[ BL[B,AJl% + B, (0) + ﬁmn[ AT, Bl + Ar (4)

+ 2., (8. A + 2 (5. 18 1B, A )
+ 2B, 4 (4. + O i A4, (4, B,
with
B W) = S IELFu g I T 150 — T, 5,0 oot 0 (59
7.3’
Ap, () = Z HE;,J‘EZ,j/” Tr1pj,50 — Lsupp(B2, 3 Bs 1)/ supp(Ba ; B, ) |- (89)
7.3’

For sufficiently small 6t, the error is (’)(51&3(\/” B, Alll|Z + Ag, (1¥) + VA, [A, BlJ|% + AE2(|¢>)))
Proof. According to Appendix L of Ref. [23],
E(6t) = Uy (5t) — e HI!

6t T1 T2
_ / d7'1 / dTQ / dTg e—z(ét—ﬁ)He—ZﬁA/Qe—m—l Be—zrlA/2eleA/QezrlB
0 0

. (eiTgB |:_ZB, |:—7,B7 _11;:|:|€ZT3B + e’iTgA/z |:Z‘;4’ |:Z§7ZB:|:|6’LT3A/2) e*'iTlBe*iTlA/2

ot T1 T2 . . . . A A A
:/ dﬁ/ dTQ/ dTge—W—ﬁ>He—”1A/Qe—”lBe—"1A/2([—iB, {—137—2'2” + [i27 [iz,z’B” + Ry +R2>
0 0 0

=6&,1 + Er 2 + Erel + Ere1s

(90)
where
Rl — eiTlA/QeinBe—irgB |:—iB, |:—iB, _i‘g]]eiTgBe—iTlBe—iTlA/Q o |:—iB7 |:—7;B, —Z;l:|:|,
(91)
RQ — eiTlA/2eiTlBeiT3A/2 Zé, Zé,'LB 67iT3A/267iTlBefiT1A/2 _ Zé, Zé,ZB ,
2 2 2 2
and
ot ) ] ] ) A
_ / dTl/ de/ drs e—l(6t—T1)H6—ZT1A/26—ZTlBe—leA/2 |:—’LB, |:_Z»B7 —i:|:|,
0 0 0 2
ot
= dﬁ/ de/ dry e (Ot gmimA/2pminB e —inA/2 [z‘; [ig,z‘BH,
0 0 0 (92)

—z(ét—ﬁ)He—ZﬁA/Qe—Zﬁ Be_“—lA/le,

ot
/ d7'1/ d
0
ot
re7 / dTl/ d
0 0

dTge

[}

—1(61‘,—7’1)He—leA/Qe—z'rlBe—znA/QRz.

| N
Nc\

;l.

&

®



We have
) . . A . ) . A
Rl _ e’LTlA/Qe’LTlBef’LTgB |:—ZB, |:_ZB7 _12:| :| engBef’LTlBef’LTlA/Q _ |:_ZB, |:_ZB7 _Z2i|:|
= i A/2gin B [—z‘B, [—iB,—i?”e_mBe_mA/z - [—z'B, —iB, —i;l”
N /7-3 dry eiT1A/2¢im1 B —i(Ta—T4)B [—iB, |:—Z'B, [—ZB —ig ]]ei(7—3—7—4)Be—i7—lBe—i7—1A/2
0 i
. A . Al
= ¢in4/2 {iB, [iB, iZHemA/? - [iB, {z‘B, iy
+ / " dry @Al B [iB, —iB, [—iB, —z‘A} } } ei(n-m2)BeminA/2
0 L 2
N /7‘3 7 einA/QeinBe—i(m—m)B |:—iB, |:—’L'B7 |:—iB, _Z'g :Hei(73—7—4)Be_iTlBe_i7—1A/2
0 i
_ /7'1 dT{ ei(Tl—T{)A/Q |:ZA7 |:_ZB, _ZB7 _ZA:| :| :| e—i(Tl—T{)A/Q
0 2 i 2
N /7'1 dT{ eirlA/2ei(Tlf‘r{)B |:le —'LB, |:—ZB, _ZA:| :| :| efi(TlfT{)BefiT1A/2
0 L 2
N /7'3 7 einA/QeinBe*i(Tg*m)B [—iB, |:—iB, [—iB, _Z‘;l:| :| :| 6i(7’3774)3671'713677;71,4/2.
0
Therefore

[Ri]l <7

ig e i H +nt ) |i8 | -im. |-im. -5 ||
ott ot

16e1]l < 5 1A, [B, [B, Alllll + -5 1B, [B, [B, Al]]|l

)

which implies

Similarly, we have
Ry = eiTlA/QeiTlBeiTgA/Z |:Z‘247 |:ZJ;1, ’LB:| :| e—iTgA/2e—irlBe—i7-1A/2 _ |:ZA, |:Z‘247 ZB:|:|

2
4 . AT A ) ) Al A
_ iT1A/2 im B |, . . —im B _—im A/2 _ |0 SR
e e |:Z2,|:22,’LB:|:|6 e [12,[22,23”

N /‘ra d7‘4 eiﬂA/QeinBei(Tsf‘m)A/Q Zé Zé Zé iB 671’(7’3774),4/2671'71Befi'rlA/2
0 i 9 | 9|9
= ¢imA/2 [z;l, |:Z;4,ZB:|:| e A2 _ i;, i?, B”
+/ d / 1,T1A/2 1(7—1 T1)B iB, é Zé ‘B e—i(ﬁ—T{)Be—iTlA/Q
; 2"
/ lTlA/2 iT1 B 1(7'3 T4)A/2 é A ZA i B e—i(7'3—7'4)A/2e—iTlBe—iTlA/2
; N

dT/ el(n ‘rl)A/Z A —i(r1—71)A/2
0 2 ,
/ leA/Z z('rl 'rl)B |:ZB |: A |: A -B:|:|:|€z(7'1 Tl)B —iT1 A/2
27127

+ / dry eiTIA/2 i1 B (T3 —Ta) A/2 |:ZA |:’L;4, |:7,A Z’B:|:”e—i(T3—74)A/2e—iTlBe_i7—1A/Q’
0

5[5 [#]]])

SO

[Rall < (11 + 73)

4

27
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which implies

||(gre2||§§||[ 1A [A,B]]]H+%H[A,[A,[A,B]]]II- (98)

By the triangle inequality,

[€008) [o)| < 1162,1(08) [0} + (1 62,2(58) [Y)] + [ Ere,1[| + [[Ere.2l

(99)
= W1 1601 1)+ (1 B2 10) + | rell + el
Similarly to the proof of Lemma 7, we can apply Lemma 6 to give
+ (51‘5 2
(0181601 1) | < O (0B, 1B, A 9 (100)
5t°
{01 &2 1) | < oo (A, [A, B ) (101)
According to Lemma 5, taking By = [B, [B, A]] = }_, E1; and By = [A, [A4, B]] = }_, E» j, we have
5tb 5 5t° )
016560 [0} | < i (118,18 AIP ) < 2 (113,18, A3+ Ar (4)). (102)
6t
(0165282 10) | < S (01 (A, 14, B 19) < 20 (114,14, B} + A, (). (103
Substituting the upper bounds of Egs. (95), (98), (102) and (103) into Eq. (99), the proof follows. O
V. CLASSICAL SIMULATION WITH MPS
Coh o B L xo=0)
— 0 04— ;.4
1 | | | I I
| | | | 1 |
H evolution ; — : i : ks
....... BT VT NEA

S O o |
I B ;L”‘J;J

FIG. 5. Classical simulation with MPS. The blue box labeled A; represents an elementary tensor, each of which has bond
dimension x4 = 2%/# for a k-uniform state. The short-time evolution can be mapped to an MPO [36] whose elementary tensors
are represented by the orange circles labeled O;. To get the updated state after the evolution, we contract the local tensors A;
and O; together in the dot-dashed blue boxes.

As discussed in the main text around Fig. 3(a), the cost of quantum simulation reduces to the average case if the
underlying state is k-uniform with &k at least some constant. On the other hand, the cost of classical simulation with
matrix-product states (MPS) scales exponentially with k. We illustrate this as follows. As the underlying state is
k-uniform—that is, the k-body RDM is the maximally mixed state—the bond dimension of the MPS should be around
x4 = 284 as illustrated in Fig. 5. For a short-time evolution, we can use the matrix-product operator (MPO), shown
in orange in Fig. 5 [36]. The evolved state is obtained by contracting the local tensors A; and O; in each block to get
the evolved state. The computational cost of this process is 4X?4X20N = 0(2k/2).
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VI. MODIFIED BOUNDS FOR (SINGLE-SEGMENT) TROTTER ERROR

In this section, we give modified versions of the distance- and entanglement-based error bounds in terms of more
readily determined quantities. Both of these bounds relate to the purities of the local RDMs. In addition, we give a
refined bound at the end of this section that reduces the measurement budget further.

Trace distance is hard to measure, but one can use the (normalized) Frobenius norm to bound it, since Tr|M| <
dy||M||F for an operator M of dimension djs. In this way, the leading-order of the distance-based error bound in
Theorem 3 can be further bounded by

1/2
1B Ej || Tr |psg0 = T/dy, | + 1Bl | 5t7*!
g 1P, 50 1280 F
J#3’
1/2
< max 1Bl 3 \/dy, , Telpsgr —1/dy, )2+ 1Ele |67 (104)
J#3’
r 1/2
< [max |51 { 3 \fdy, Tr(o2 )~ 1)+ |B]e |67
J#3’

Similarly, the von Neumann entanglement entropy is hard to measure, but we can lower bound it by the Rényi-2
entropy, Sa(pj; i) = —logsy Tr( ). This gives the following modification of the entanglement-based error bound in
Theorem 3:

1/2
S IE Byl log(dy, ) = S(ps) |+ IIEe | 567!
J#3’
(105)

<0 m?XHEjll > o A/nig = Sa(pig) + | Bl | 67,

where n; ;; = |supp(E;Ejr)| is the number of qubits in the corresponding subsystem. Observe that both modified

bounds depend on the purities Tr(p3 ;,) of the RDMs of the subsystems supp(E;Ej/).
Finally, we show a more refined bound for the single-segment Trotter error. According to Eq. (49) in the proof of
Theorem 3, the leading term of the Trotter error is directly related to > ;B Specifically, we have

S_E w5ttt =6t S () By )
r T (106)
= ottt [>T W(EIE) +he) [v) + ) (| ETE; [v).
j

J<j’

Unlike the previous bounds, which depend on purities, this bound directly estimates the functions O =3, (¢;| Oy 1)
with O, = E;-[Ejr + h.c. for j < j' and O, = E;Ej for j = j', which are linear combinations of a few local Pauli
operators. Compared to the purity estimation in the previous bounds, the refined bound in Eq. (106) reduces the
measurement complexity for estimating the Trotter error to M = O(N?) for a lattice Hamiltonian, as shown in
Methods section of main text. The refined bound is then used in the measurement-assisted adaptive Hamiltonian
simulation, and the numerical result is shown in Fig. 4(d) in the main text.

VII. NUMERICAL RESULTS

To demonstrate that highly entangled states are typical, we choose 10* pure quantum states uniformly from a
12-qubit Hilbert space and calculate the entropy of a 4-qubit subsystem for each instance as shown in Fig. 6. Most
of the states have large entanglement entropy, close to the largest possible value of 4.
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Entanglement Entropy Distribution
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FIG. 6. Entanglement entropy of 4-qubit RDMs from uniformly random 12-qubit states.

To numerically assess the performance of product-formula simulations as a function of entanglement, we consider
the 1D quantum Ising spin system with mixed fields (QIMF) [48],

N N N-1
H=hy Y Xj+hy Y YVi+J Y X;Xj1, (107)
j=1 j=1 j=1
with the initial state [0)*". We consider the parameters (hy, hy, J) = (0.8090,0.9045, 1) and (h, h,, J) = (0,0.9045, 1)

as typical (i.e., satisfying ETH) [34] and atypical examples, respectively.
To apply product-formula simulation, we use an X-Y pattern, with

N N-1 N
A=h Y X;+J Y X;Xju, B=h,y Y (108)
j=1 j=1 j=1
The corresponding PF1 and PF2 commutators are
N N-1
(A, B] = 2ih,hy Y Z;+ 2iThy > (Z;Xj41 + X;Zj41),
j=1 =1
N N-1 N
[A,[A, B]) = 4h2hy > Y; +41%hy Y Y+ 4%k, Y Y
= = = (109)
N-1 N-2
+8Jhshy ) (Y;Xjp1+ X;Yigr) + 8%y Y (XY Xj4o),
j=1 j=1
N N-1
[B,[A, Bl = —4hahiy Y Xj+8Jh5 Y (ZiZj1 — X;Xjia).
j=1 j=1

For the theoretical worst- and average-case error bounds, we use the upper bounds for PF1 and PF2 in Refs. [23, 26].
which we briefly summarrize as follows. For PF1, the worst- and average-case error bounds are

5t?
1%1.(6t) = Uo(80)]| < —-I[4, B, (110)
5t?
1%1.(6t) = Uo(6t)l|r < —-[I14, Bl - (111)
For the PF2, the worst- and average-case error bounds are
6t? 5t?
1%2(6t) = Uo(d0)|| < 5 lILB, [B, Allll + 5114, [A, Bl (112)

3 3
[%(51) ~ Un(o0)ll < 211, B, Al + S 1A, 14, Bl (113)
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To bound the spectral norms || - || and the Frobenius norms || - || in these expressions, we count the number of Pauli
operators in Eq. (109) rather than evaluating their norms numerically. Concretely, we have
I[A, B]|| < 2hghyN + 4hyJ(N — 1),
1A, [A, Bl]|| < 4h2hyN + 8J%hy(N — 1) + 16Jhyhy (N — 1) + 8J%hy (N — 2), (114)
I[B,[A, B]]|| < 4hyh N + 16Jh%(N — 1)

and
1A, B3 < 4h2R2N + 8, J(N — 1),
I[A, [A, B3 < 16(h2 + 2J%)*h. N + 1282 k5 J*(N — 1) + 128J%h2 (N — 2), (115)
I[B,[A, B]|||7 < 16h2hyN + 128J°h%(N — 1).
To apply Lemma 8, we also need some more complicated nested commutators, namely ||[4, [4, [4, B]]l|l, I[B.[4, [A4, B]]]|l

A, [B, [A, B]]]|l, and ||[B, [B,[A, B]]]||. We use the following upper bound:
ITA, [A, [A, BJJIl < 2[[A[l [I[A, [A, Bl (116)

For the other nested commutators |[[B,[A4,[4, B]]lll, |[[4,[B,[4, B]]]ll, and ||[B,[B,[A, B]]]ll, we apply the same
method. We use ||A]| < heN + J(N —1) and ||BJ| < hyN.
To apply our distance-based theoretical bounds forr a long-time evolution, we use the triangle inequality and obtain

1%(8) [¥) = Uo (@) [) ]| < Z [%(t/7) |b5) — Uo(t/7) 45, (117)

7=0

where [¢;) = Uy(tj/r) [tbo). For each short-time evolution, we apply Lemmas 7 and 8, taking [¢;) as the input state.
For all spectral and Frobenius norms of operators in Lemmas 7 and 8, we use the counting bounds presented in
Egs. (114) and (115). To estimate Ag, we assume that we can obtain the distance Tr |p; ;7 — Lsupp(E; B, )/ Asupp(E; ,,)|
for different F; ;. This property can be estimated numerically as discussed in Section VI. In this part, we only
want to demonstrate the validity of our new theoretical bounds, so we do not consider a procedure for estimating the
distance.

To determine the minimum number of Trotter steps r that suffice to ensure error at most ¢ = 1075, as shown in
Fig. 5(c) of main text, we need to keep track of the error for each segment. This would involve many calculations of
the trace distance of the evolved state, which would be computationally intensive. Thus, rather than estimating Ag
and calculating the Trotter error for each step, we assume that the entanglement remains stable for some time, so that
we can use the estimated Ag for a few subsequent Trotter steps. Specifically, we divide the total time duration ¢ into
C slices and make the algorithmic error in each slice at most €/C. We use the distance information for the evolved
state | (t.)) for each ¢ € {0,1,...,C —1}, with t. = c¢t/C, and denote the corresponding distance-based upper bound
of Lemma 8 by || % (t/re) [(te)) — Uo(t/re) |t0(te)) ||*. We calculate the minimum 7. for the cth slice such that

rel|%(t/re) [d(te)) = Uo(t/re) [¢(te)) |” < e/C. (118)

Then the total number of Trotter steps is r* = _re.

This compromise results in a value of r* greater than the real theoretically predicted r that would result by consid-
ering the state in each segment under the assumption that local entanglement entropy is non-decreasing. However,
the difference is not significant, especially for a large C. We increase C until the value r* changes by less than 1%
and use this as our estimate of r. In our numerics, r* converges before C' = 20.
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