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Abstract

Sampling from Gibbs states — states corresponding to system in thermal equilibrium — has recently been shown
to be a task for which quantum computers are expected to achieve super-polynomial speed-up compared to classical
computers, provided the locality of the Hamiltonian increases with the system size [BCL24]. We extend these results to
show that this quantum advantage still occurs for Gibbs states of Hamiltonians with 𝑂 (1)-local interactions at constant
temperature by showing classical hardness-of-sampling and demonstrating such Gibbs states can be prepared efficiently
using a quantum computer. In particular, we show hardness-of-sampling is maintained even for 5-local Hamiltonians
on a 3D lattice. We additionally show that the hardness-of-sampling is robust when we are only able to make imperfect
measurements.

1 Introduction

G
ibbs states are fundamental objects of interest in many-body physics and chemistry, where they correspond
to the state a system equilibrates to at a fixed temperature, and play an important role in semidefinite program
solving and machine learning. One of the key uses cases for quantum computers has been to simulate many-
body quantum systems, and with this in mind, a variety of quantum algorithms for Gibbs state preparation and

sampling have been proposed1, including a recent promising quantum generalisation of Metropolis-Hastings algorithm
[CKG23; Gil+24].

At a given inverse temperature 𝛽 and Hamiltonian 𝐻, we define the Gibbs state as:

𝜌(𝐻, 𝛽) = 𝑒−𝛽𝐻

tr
[
𝑒−𝛽𝐻

] .
Despite their importance, the computational complexity of calculating quantum Gibbs state properties, and whether
there is a quantum advantage, has remained poorly understood — particularly at temperature independent of system
size 𝛽 = Θ(1). For Gibbs states of both classical and quantum Hamiltonians, efficient algorithms are known to exist
above certain critical temperatures [Fra17; HMS20; MH21; YL23; RFA24; Bak+24], and at sufficiently low 𝑂 (1)
temperatures Gibbs state properties of classical Hamiltonians are known to be NP-hard and even MA-complete to
compute [Sly10; CBB10; SS12]. At even lower temperatures, 𝛽 = Ω(log(𝑛)), the Gibbs state has high overlap with the
system’s ground state, and so for quantum Hamiltonians we can argue that cooling to these temperatures must be at least
QMA-hard. For quantum Hamiltonians at 𝛽 = Ω(poly(𝑛)), computing expectation values of local observables measured
on Gibbs states has been shown to be hard for a class QXC, “Quantum Approximate Counting” [Bra+22; Bra+24]. But

1[Tem+11; BK19; Mou19; Mot+20; ML20; CB21; WT23; SM21; ZBC23; Che+23; JI24; Che+24]. See table 1 of [Che+23] for a discussion of
Gibbs state algorithms and their limitations.
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exactly how this class relates to other classical and quantum complexity classes, and whether we expect similar hardness
results for 𝛽 = Θ(1), remains poorly understood. Gibbs sampling is also related to other important problems which
have shown quantum speed-up including sampling log-concave distributions and volume estimation [Chi+22; Cha+23].

Recent work by Bergamaschi et al. consider the task of sampling bitstrings from quantum Gibbs states [BCL24].
That is, sampling from a distribution close in total variation distance to

𝑃(𝑥) = ⟨𝑥 | 𝑒−𝛽𝐻 |𝑥⟩
tr

[
𝑒−𝛽𝐻

]
for a bitstring 𝑥 ∈ {0, 1}𝑛. Bergamaschi et al. demonstrate that sampling bitstrings from families of Gibbs states of
quantum Hamiltonians with 𝑂 (log log(𝑛))-local terms at temperature 𝛽 = Θ(1) is classically intractable unless the
polynomial hierarchy collapses to the third level [BCL24]. They further demonstrate that such Gibbs states can be
prepared in polynomial time using a quantum computer, and hence the task of Gibbs sampling can be done efficiently
with the aid of a quantum computer. Not only does this demonstrate a quantum advantage in Gibbs state preparation
over classical computers — and thus may be a good test of so-called quantum supremacy — but it is arguably the
first convincing demonstration that Gibbs states retain non-trivial quantum computational properties at 𝛽 = Θ(1)
temperatures.

In this work we build upon the work in Bergamaschi et al. and demonstrate there exist families of 5-local and 6-local
Hamiltonians such that sampling from Gibbs states at 𝛽 = Θ(1) temperatures remains classically intractable unless the
polynomial hierarchy collapses to the third level.

Theorem 1 ((Informal) Classically Intractable Gibbs Sampling). There exist two families F1, F2 of efficiently con-
structable Hamiltonians such that sampling from a probability distribution 𝑄(𝑥) satisfying:𝑄(𝑥) − ⟨𝑥 | 𝑒−𝛽𝐻 |𝑥⟩

tr
[
𝑒−𝛽𝐻

] 
1

≤ 𝜖,

is not possible for randomised classical algorithms unless the polynomial hierarchy collapses, for the following
parameter regimes:

F1: the Hamiltonians are 5-local, nearest-neighbour Hamiltonians on a 3D cubic lattice, where each qubit is involved
in at most 4 Hamiltonian terms, and 𝜖 = 𝑂 (exp(−𝑛)). Furthermore, we allow each single-qubit measurement
outcome to be incorrect with an 𝑂 (1) probability.

F2: the Hamiltonians are 6-local, and 𝜖 = 𝑂 (1).

Sampling from a 𝑄(𝑥) close to either of these distributions can be done efficiently using a quantum computer.

We prove our results by combining results from the hardness of sampling IQP circuits with results from measurement-
based quantum computation and error-detection protocols. In particular, we utilise work on the hardness of sampling from
IQP circuits developed by Fujii and Tamate [FT16] and Bremner et al. [BMS17] to construct families of Hamiltonians
whose corresponding Gibbs states inherent this hardness of sampling. We anticipate that the families of Hamiltonians in
F1, F2 are easier to realise experimentally than those presented in previous works.

Beyond showing hardness of Gibbs sampling for Hamiltonians with more restrictive physical properties, we seek
to put bounds on the temperature regions where “dequantization” algorithms such those in [Bak+24] can effectively
sample from Gibbs states. We find that our hardness results asymptotically complement easiness results from [Bak+24],
but with a small gap in parameter scaling. In particular, we construct 6-local Hamiltonians with max degree Δ, for
which sampling is classically intractable for inverse temperatures 𝛽 = Ω(1/

√
Δ). We compare this to Bakshi et al.

[Bak+24, Theorem 1.6] who show that one can efficiently sample from Gibbs states for 𝑂 (1)-local Hamiltonians at
inverse temperatures 𝛽 = 𝑂 (1/Δ) using a polynomial-time classical algorithm. While previous hardness results are
known, e.g. Ref. [SS12], which show hardness for 𝛽 = Ω(1/Δ), our result is due to purely quantum effects and the
hardness does not require non-uniqueness of the Gibbs measure. Moreover, we show that sampling is outside the
polynomial hierarchy, while previous results show NP-hardness. We show how our results compare to existing work on
the complexity of sampling from Gibbs States in Table 1.
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Paper Outline In Section 2 we give the preliminaries and notation. Section 3 contains an overview of the proof
techniques, as well as our main results: Section 3.2 proves hardness of sampling Gibbs states of 5-local Hamiltonians
on a 3D lattice and Section 3.3 proves hardness for 6-local Hamiltonians. In Section 4, we show how these hardness
results can be made robust to errors in measurement. In Section 5 we show that by increasing the maximum degree of
Hamiltonians (i.e. the maximum number of terms which act on a single particle), we can increase the temperatures for
which sampling remains classically hard. In Section 6 we suggest a heuristic method of demonstrating that we have
prepared the desired Gibbs state. Finally, we discuss this work and open questions in Section 7.

Hardness, Sec. 3.3 and [BCL24]2 Hardness, Sec. 3.2 Easiness, [Bak+24]
Locality (ℓ) 6 5 𝑂 (1)

Max. Degree (Δ) 𝑂 (log(𝑛)) 5 𝑂 (1)
Interaction Geometry None 3D Cubic Lattice Any
Sampling Precision (𝜖) 1/poly(𝑛) 1/exp(𝑛) 1/exp(𝑛)

Table 1: Comparison of results about the complexity of sampling Gibbs states at constant temperature. Here the “Easiness” result of
[Bak+24] gives efficient algorithms for Gibbs sampling. The maximum degree refers to the number of Hamiltonian terms that each
qubit is involved in. The “Interaction Geometry” row denotes which geometries the hardness/easiness results hold for. We also
remark that the hardness of sampling shown in Sec. 3.2 has the added bonus of being robust to measurement error on the output bits

2 Preliminaries
2.1 Notation
Consider a set of 𝑛 particles, each with local Hilbert space C𝑑 , then the full Hilbert space is (C𝑑)⊗𝑛. For a Hilbert space
H we denote the set of bounded linear operators as B(H). A Hamiltonian acting on 𝑛 qudits is a Hermitian operator
𝐻 ∈ B((C𝑑)⊗𝑛). For the rest of this work will we consider the case 𝑑 = 2, i.e. the Hamiltonian acts on qubits. ∥·∥ will
denote the operator norm, ∥·∥1 will denote the Schatten 1-norm when acting on operators, and if acting on probability
distributions is the standard 𝐿1 distance between probability distributions.

Hamiltonian Parameters. The Hamiltonian is called a 𝑘-local Hamiltonian if we can write it as:

𝐻 =
∑︁
𝑖

ℎ𝑖

if each ℎ𝑖 acts on at most 𝑘 many qubits. Given a local Hamiltonian, we can define a interaction (hyper)graph, where
the vertices are given by the qubits and the (hyper)edges are given by the qubits ℎ𝑖 acts non-trivially on. We denote the
maximum degree of the interaction graph as Δ. We assume that ∥ℎ𝑖 ∥ = 𝑂 (1) for all local terms in the Hamiltonian.

Thermal Physics. Given a temperature 𝑇 ∈ R+, we will work with the inverse temperature 𝛽 = 1/𝑇 . For a given
Hamiltonian 𝐻 with eigenvalues {𝜆𝑖}𝑖 , and a given inverse temperature 𝛽, the partition function is define as:

𝑍 = tr
[
𝑒−𝛽𝐻

]
=

∑︁
𝑖

𝑒−𝛽𝜆𝑖 ,

and the associated Gibbs state is:

𝜌(𝐻, 𝛽) = 1
𝑍
𝑒−𝛽𝐻 .

2We note that since the release of this work, the results of Ref. [BCL24] have been updated from 𝑂 (log log(𝑛) )-locality to 𝑂 (1)-locality, and
thus match the locality given in this work.
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Noisy Circuits. We will often discuss circuits by directly referring to their unitary matrix 𝐶, with the convention that
𝐶 |0⟩⊗𝑛 is the output state after applying 𝐶 on |0⟩⊗𝑛. We will be interested in bit-flip noise in our circuit, and define the
single-qubit channel:

D𝑝 (𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑋𝜌𝑋

We use the following notation to refer to the output distribution of a circuit with noise on the input state:

Definition 2 (Circuit Sampling Distributions). For any circuit 𝐶 we will use 𝑃𝐶 to denote the output distribution of
sampled bitstrings from 𝐶,

𝑃𝐶 (𝑥) = | ⟨𝑥 |𝐶 |0𝑛⟩ |2,

and 𝑃𝐶,𝑞 to denote the output distribution of sampled bitstrings from 𝐶 with independent single-qubit bit-flips applied
on every input qubit with probability 𝑞:

𝑃𝐶,𝑞 (𝑥) = tr
[
|𝑥⟩ ⟨𝑥 | · 𝐶 (D⊗𝑛

𝑞 ( |0⟩ ⟨0|⊗𝑛))𝐶†] .
2.2 Parent Hamiltonian Construction for Quantum Circuits
Initially consider a non-interacting Hamiltonian on 𝑛 qubits:

𝐻NI =

𝑛∑︁
𝑖=1

1
2
(1 − 𝑍𝑖).

It can be seen that the eigenstates of this Hamiltonian correspond to bitstrings |𝑥⟩ for 𝑥 ∈ {0, 1}𝑛, where the energy of
eigenstate |𝑥⟩ is 𝜆𝑥 = HW(𝑥), where HW denotes the Hamming weight of a string 𝑥. The zero-energy ground state is
|0⟩⊗𝑛. The corresponding Gibbs state of the Hamiltonian is:

1
𝑍
𝑒−𝛽𝐻 =

1
𝑍
𝑒−𝛽

∑
𝑥∈{0,1}𝑛 𝜆𝑥 |𝑥⟩⟨𝑥 |

and 𝑍 =
∑

𝑥∈{0,1}𝑛 𝑒
−𝛽𝜆𝑥 . We see that 𝑍 is the partition function for 𝑛 non-interacting spins, and hence 𝑍 = (1 + 𝑒−𝛽)𝑛.

Now, given a circuit 𝐶 on 𝑛 qubits, we can define a parent Hamiltonian:

𝐻𝐶 = 𝐶𝐻NI𝐶
†.

2.3 Gibbs States of Parent Hamiltonians
We use the following two lemmas in our work. The first (implicitly used in [BCL24]) shows that for the set of parent
Hamiltonians formed using quantum circuits, their Gibbs states are equivalent to the circuit with bit-flip noise acting on
the input. Here the input noise strength is related to the temperature of the Gibbs state. We provide an explicit proof in
Appendix B for completeness. Here the temperature of the Gibbs state corresponds to the strength of the bit-flip noise.

Lemma 3. For any circuit 𝐶 constructed from 𝑘-local gates of depth 𝑑, there exists a 𝑂 (𝑘𝑑)-local parent Hamiltonian
𝐻𝐶 , such that:

1
𝑍
𝑒−𝛽𝐻𝐶 = 𝐶 (D⊗𝑛

𝑞 ( |0⟩ ⟨0|))𝐶†

for 𝑞 = 𝑒−𝛽

1+𝑒−𝛽 .

The second lemma, which is a large portion of the technical work in [BCL24], shows that a quantum computer can
efficiently prepare the Gibbs States of these parent Hamiltonians.

Lemma 4 (Efficient Gibbs State Preparation for Parent Hamiltonians, Lemma 1.2 of [BCL24]). Fix 𝛽 > 0, and let 𝐻𝐶

be the parent Hamiltonian of a quantum circuit 𝐶 on 𝑛 qubits, of depth 𝑑 and locality ℓ. Then, there exists a quantum
algorithm which can prepare the Gibbs state of 𝐻 at inverse-temperature 𝛽 up to an error 𝜖 in trace distance in time
𝑂 (24ℓ2𝑑𝑒𝛽𝑛 poly(log 𝑛

𝜖
, ℓ, 𝛽)).
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3 Hardness of Sampling Gibbs States with O(1)-Local Hamiltonians
3.1 Overview of Techniques
We wish to prove hardness of classically sampling the from Gibbs states of a Hamiltonian. To do so, we turn to Lemma 3:
our goal is to find a family of circuits 𝐶 with corresponding parent Hamiltonians whose Gibbs states are hard to sample
from with a classical computer but efficiently sampleable with a quantum computer. 𝐶 must satisfy the following
requirements,

1. For some noise strength 𝑞 = 𝑂 (1), 𝑃𝐶,𝑞 must be hard to sample from with either inverse exponential or additive
error.

2. 𝐻𝐶 must be 𝑂 (1)-local.

3. 𝐶 must have 𝑂 (log 𝑛) depth.

In this work, we will choose 𝐶 to be from the family of IQP circuits with the aim of maintaining classical hardness-of-
sampling while ensuring the associated parent Hamiltonian remains 𝑂 (1)-local. The main reason for choosing these
circuits is that there are known constant depth IQP circuits which are hard to sample from Refs. [FT16; Han+18], and
the shallowness of the circuit is useful to obtain 𝑂 (1)-locality of the parent Hamiltonian. In particular, we need to
choose a family of IQP circuits whose hardness of sampling is robust to bit-flip noise on the input. This is non-trivial
since in many cases the presence of noise may make the IQP circuit classically easy to sample [BMS16; RWL24].

To prove our results, we use two separate error mitigation techniques. First, we use a result from Fujii and Tamate
[FT16]. Fujii and Tamate make use of topologically protected circuits to ensure that, provided the circuit noise is
below a certain threshold, exact sampling from the circuit remains difficult. Modifying this proof allows us to obtain
hardness of sampling with inverse exponential error, and this allows us to arrive at F1 of Theorem 1, a family of 5-local
Hamiltonians with degree 5, which are hard to sample from with inverse exponential error.

Second, we implement an error-detection strategy inspired by the techniques of Refs. [BMS17; BCL24], where
parts of the circuit are repeated and we simultaneously introduce flag qubits which flip to show where an error may have
occurred. This allows us to arrive at hardness of sampling from with additive error for F2, a family of Hamiltonians
with 𝑂 (1) locality. Our hardness-of-sampling proof follows the similar outline as Ref. [BCL24], but here we prove
hardness for different sets of circuits which allows us to obtain hardness for families of Hamiltonians with 𝑂 (1)-locality
rather than 𝑂 (log log(𝑛))-locality. We also note similar work on thermal states of measurement-based thermal states in
[Fuj15].

Finally, by combining these two techniques, we obtain a family of 6-local Hamiltonians with max degree Δ, such
that their Gibbs states are hard to sample from with inverse exponential error when 𝛽 = 𝑂 (1/

√
Δ), which complements

easiness results from [Bak+24].

3.2 Hardness of Sampling Gibbs States on 3D Lattices
Fujii and Tamate demonstrate a family of constant-depth, geometrically local IQP circuits which are hard to exactly
sample from in the presence of noise of constant strength [FT16]. At a high level, Fujii and Tamate give a protocol in
which a cluster state is constructed using a depth 4 IQP circuit. If the noise level is sufficiently smaller than the threshold
value for topologically protected MBQC, then the output distribution of the circuit cannot be exactly sampled from.
Provided the noise is restricted to bit-flip noise and kept below a threshold strength of ∼ 0.134, then T-gate synthesis is
still possible in the circuit, and postselecting on error-free outcomes allows one to decide PostBQP-complete problems.
Since PostBQP = PP and it is believed that PostBQP ⊈ PostBPP unless the polynomial hierarchy collapses to the
third level, then sampling from the noisy circuit is still hard [Aar05].

By taking this set of topologically protect circuits from Fujii and Tamate we prove the following lemma in
Appendix A.

Lemma 5. There exists a family of IQP circuits C, constructed on a 3D cubic lattice, consisting of a single layer of
𝑒𝑖𝑍 𝜋/8 gates and 4 layers of nearest-neighbour 𝑒𝑖𝑍𝑍 𝜋/4 gates, such that sampling from any probability distribution 𝑄

over bitstrings which satisfies ∥𝑃𝐶,𝑞 −𝑄∥1 < (1 − 𝑞)𝑛2−6𝑛−4/5 is not possible with a classical polynomial algorithm,
unless the polynomial hierarchy collapses to the third level, when 𝑞 < 0.134.
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We now want to use this family of classically hard-to-sample circuits to generate hard-to-sample Gibbs states. In
particular, we combine this hard-to-sample from family of IQP circuits with the fact that the Gibbs states of IQP parent
Hamiltonians look like the output of noisy IQP circuits, as per Lemma 3, and we get the following.

Theorem 6 (Classical Hardness of Gibbs Sampling). One can efficiently construct a family of 5-local Hamiltonians on
a 3D cubic lattice of qubits, {𝐻𝐶 }𝐶 , whose Gibbs states at 𝛽 = 𝑂 (1) are hard to classically sample from with 1-error
(1 − 𝑞)𝑛2−6𝑛−4/5, unless the polynomial hierarchy collapses to the 3rd level.

Proof. We choose a hard-to-sample IQP circuit 𝐶 from Lemma 5 and specify the new Hamiltonian as 𝐻𝐶 = 𝐶𝐻NI𝐶
†.

By Lemma 3, the output distribution of the Gibbs states of 𝐻𝐶 is exactly 𝑃𝐶,𝑞 Choosing:

𝑞 =
𝑒−𝛽

1 + 𝑒−𝛽
≤ 0.134 (1)

and we see that the output distribution must be hard to sample from, as per Lemma 5. Thus we see that for
𝛽 ≳ 1.87 = 𝑂 (1), it is hard to sample this distribution.

To see that the locality of 𝐻𝐶 is 5, we note that for each qubit 𝑖, there are at most 4 gates acting on qubit 𝑖 in 𝐶, each
of which introduces interaction with at most 4 other qubits. Thus, when conjugating the 𝑍𝑖 term of 𝐻𝑁𝐼 with the gates
of 𝐶, it becomes an at most 5-local term. □

Notably, in order to prove hardness of sampling with inverse exponential error from a noisy IQP circuit, a postselection
argument suffices, rather than a full fault-tolerant encoding. Thus, there is no added overhead needed to give hardness
of sampling, which ensures that the locality of the parent Hamiltonian is purely determined by the logical IQP circuit
structure, which has low depth and locality. This is not true for the circuits and parent Hamiltonians in the next section,
or in Ref. [BCL24] where additional elements need to be added to the circuit to allow for error detection.

3.3 Hardness of Gibbs Sampling to O(1/poly(N)) Error
While the hardness of sampling from noiseless IQP circuits with inverse exponential error can be obtained through a
postselection argument, proving hardness of sampling with additive error typically requires a few more ingredients
(e.g. anticoncentration, average-to-worst case reduction). Here, we use existing results from Hangleiter et al. [Han+18]
which construct a family of constant-depth IQP circuits that exhibit such hardness (up to some complexity-theoretic
conjectures).

Lemma 7. (Corollary 12 of [Han+18]) There exists a family of constant depth IQP circuits {𝐶𝑛}𝑛 ≥ 1 on a 2D square
lattice of 𝑛 qubits, such that no randomised classical polynomial-time algorithm can sample from the output distribution
of 𝐶𝑛 up to additive 1 error of 𝛿 = 1/192, assuming the average-case hardness of computing a fixed family of partition
functions, and the non-collapse of the polynomial hierarchy.

Now we would like to show that the hardness of sampling from this circuit is robust to input noise, and without
postselection (as this would make it more difficult to show hardness of additive error sampling). This task has been
explored in Refs. [BMS17; BCL24] for IQP circuits, and they each provide a method of encoding an arbitrary IQP circuit
into a larger, noise-robust circuit. Here, we describe an encoding method that is heavily inspired by these techniques.

Our construction is as follows. Suppose the initial circuit acts on 𝑛 qubits. Fix some positive integer 𝑟. For each
‘logical’ qubit 𝑖 in the circuit of Lemma 7 (initialised in the |0⟩ state), initialise a block of 𝑟 ‘physical’ qubits in the |0⟩
state, and label them 𝑖1, . . . , 𝑖𝑟 . For each block 𝑖, apply 𝑟 − 1 CNOT gates which are all controlled on 𝑖1, and targeting a
qubit in 𝑖2, . . . , 𝑖𝑟 . Let the unitary corresponding to this CNOT network be 𝐵. Then, apply the logical circuit (from
Lemma 7) amongst the first qubits of each block (qubits labelled 11, 21, . . . , 𝑛1). Finally, measure all qubits in the
computational basis. See Fig. 1 for an example of such a circuit with 𝑟 = 2.

We see that if the initial logical qubit is flipped by noise at the start of the circuit, the CNOT network associated with
that qubit should flip all the associated ancillary qubits to the |1⟩ state, thus flagging the error which can be corrected
in postprocessing. We require 𝑟 auxiliary qubits to flag the error as the auxiliary qubits themselves may have noise
incident on them, and so the multiple copies acts a repetition code to suppress this case.

We show in Appendix C that with classical post-processing, one can recover the logical output distribution with an
error rate that is exponentially suppressed in 𝑟 . Crucially, we only require 𝑟 = 𝑂 (1) which means the parent Hamiltonian
remains 𝑂 (1)-local. Our proof works by examining the propagation of Pauli’s through the CNOT network.
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Figure 1: The encoding of the IQP circuit 𝐶 with 𝑟 = 3. For clarity, only two input qubits are shown explicitly, but the procedure
applies to all qubits present.

Lemma 8. Let 𝐶 be an arbitrary IQP circuit constructed with 2-qubit gates of depth 𝑑 on 𝑛 qubits. Then, for any
integer parameter 𝑟 ≥ 1, there is an encoded IQP circuit 𝐶∗ constructed with 2-qubit gates of depth 𝑑 + 𝑟 on 𝑛𝑟 qubits,
and a decoding algorithm 𝐴∗ such that,

𝐴∗ (𝑃𝐶∗ ,𝑞) = 𝑃𝐶,𝑝fail (2)

where 𝑝fail ≤ (4𝑞(1−𝑞))𝑟/2. Furthermore, the parent Hamiltonian of𝐶∗ has locality 𝑘 ≤ 𝑑 +2 and degree Δ ≤ 𝑟 (𝑑 +1)

Thus, given an initial circuit 𝐶, obtain a new circuit composed of an initial set of CNOT layers, followed by an IQP
circuit. The output of the error-free circuit can be extracted from classical post-processing. We can put this all together
to obtain the following theorem.

Theorem 9. One can efficiently construct a family of 6-local Hamiltonians, {𝐻𝐶 }𝐶 , whose Gibbs states at 𝛽 = 𝑂 (1)
are hard to classically sample from with constant 1-error up to 1/192, unless the polynomial hierarchy collapses to the
3rd level.

Proof. We choose a hard-to-sample IQP circuit 𝐶 from Lemma 7. Then, we encode 𝐶 into 𝐶∗ as in Lemma 8 (with
parameter 𝑟 to be set later), and specify the new Hamiltonian as 𝐻𝐶∗ = 𝐶∗𝐻NI𝐶

∗†. By Lemma 3, the output distribution
of the Gibbs states of 𝐻𝐶∗ at constant temperature is exactly 𝑃𝐶∗ ,𝑞 . Using 𝐴∗, we can postprocess this to obtain 𝑃𝐶,𝑝fail

where 𝑝fail ≤ (4𝑞(1 − 𝑞))𝑟/2. Therefore, it suffices to choose 𝑟 = 𝑂 (log 𝑛) in order to set the probability of an error
happening on any qubit to be 𝑂 (1/𝑛). By increasing 𝑟 , we can set the approximation error arbitrarily lower than 1/192.
Thus, it is hard to sample from the Gibbs states of 𝐻𝐶∗ with constant 1 error up to 𝛿 = 1/192. □

Additionally, in Appendix C we show that the output distributions of this work and previous noise-robust IQP
encodings (specifically those presented in here and in Refs. [BMS17; BCL24]) are equivalent, up to reversible classical
postprocessing. This highlights the fact that improvements in Hamiltonian locality have not been obtained by considering
very different output distributions, but rather, different Hamiltonian constructions.

3.4 Quantum Advantage from Gibbs Sampling of O(1)-Local Hamiltonians
So far we have proven hardness of sampling from Gibbs states for the families of parent Hamiltonians in Section 3.2 and
Section 3.3. Here we employ the Gibbs state preparation algorithm of Ref. [Che+23] in conjunction with Lemma 4.
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Theorem 10 (Quantum Advantage with 𝑂 (1)-Local Hamiltonians). The Gibbs states associated with the families of
parent Hamiltonians in Theorem 6 and Theorem 9 can be sampled from efficiently using a quantum computer in the
same parameter regimes for which they are classically hard.
Proof. For both of the families of Hamiltonians in Theorem 6 and Theorem 9 the Hamiltonians are 𝑂 (1)-local, hence
the runtime of the Gibbs state preparation algorithm in Lemma 4 with 𝛽 = Θ(1), ℓ = 𝑂 (1) and 𝜖 = 1

9 (1 + 𝑒−𝛽)−𝑛2−6𝑛−4

gives a total runtime of 𝑂 (24ℓ2𝑑𝑒𝛽𝑛 poly(log 𝑛
𝜖
, ℓ, 𝛽)) = 𝑂 (poly(𝑛)). Thus sampling from these distributions can be

done in polynomial time for a quantum computer.
On the other hand, as shown in Theorem 6 and Theorem 9, sampling from these Gibbs states in this parameter

regime is classically intractable unless the polynomial hierarchy collapses to the third level. □

4 Measurement Errors in Gibbs State Sampling
When trying to show a quantum advantage in Gibbs state sampling, there are two sources of error: (a) we can only
approximately prepare the true Gibbs state, and (b) when sampling, we expect our measurements to have an error
associated with them. Here we show that, even with these two sources of error, we are sampling from a probability
distribution that we do not expect to be able to sample from classically.
Theorem 11. Consider a family of IQP circuits C, the associated parent Hamiltonians {𝐻𝐶 }𝐶∈C and an inverse
temperature 𝛽 = Θ(1). There are a family of efficiently preparable states { �̃�𝐶 }𝐶∈C in time poly(𝑛) on a quantum
computer, such that for 𝜖 = 1

9 (1 + 𝑒−𝛽)−𝑛2−6𝑛−4,

∥ �̃�𝐶 − 𝜌(𝐻𝐶 , 𝛽)∥1 ≤ 𝜖

and sampling from D⊗𝑛
𝑞 ( �̃�𝐶 ) (i.e. with imperfect measurements with single qubit measurement error 𝑞 = Θ(1)) is not

possible using a randomised classical algorithm unless the polynomial hierarchy collapses to the 3rd level.
Proof. From Lemma 4, we see that preparing �̃�𝐶 to this precision is possible in 𝑂 (poly(𝑛)) time using a quantum
computer. The distribution we are sampling corresponding to faulty measurements with probability 𝑞 on the prepared
state �̃� approximating 𝜌(𝐻𝐶 , 𝛽) is:

�̃�(𝑥) = tr
[
|𝑥⟩ ⟨𝑥 | · D⊗𝑛

𝑞 ( �̃�𝐶 )
]
.

We using Hölder’s inequality:�̃�(𝑥) − tr
[
|𝑥⟩ ⟨𝑥 | D⊗𝑛

𝑞 (𝜌(𝐻𝐶 , 𝛽))
]

1 ≤
D⊗𝑛

𝑞 ( �̃�𝐶 ) − D⊗𝑛
𝑞 (𝜌(𝐻𝐶 , 𝛽))


1 .

Since ∥ �̃�𝐶 − 𝜌(𝐻𝐶 , 𝛽)∥1 ≤ 𝜖 , then we see:D⊗𝑛
𝑞 ( �̃�𝐶 − 𝜌(𝐻𝐶 , 𝛽))


1 ≤ ∥ �̃�𝐶 − 𝜌(𝐻𝐶 , 𝛽)∥1

≤ 𝜖,

where we have used that D⊗𝑛 (·) is a CPTP map. Thus we see that sampling from �̃�(𝑥) approximates sampling from the
Gibbs state D⊗𝑛 (𝜌(𝐻𝐶 , 𝛽)) with imperfect measurements.

Now, we show that D⊗𝑛 (𝜌(𝐻𝐶 , 𝛽)) is also hard to classically sample from. We know from Lemma 3 that we can
write Gibbs states of parent Hamiltonians as equivalent to the output of a noisy IQP circuit:

D⊗𝑛
𝑞

(
𝑒−𝛽𝐻𝐶

𝑍

)
= D⊗𝑛

𝑞 D⊗𝑛
𝑒−𝛽

1+𝑒−𝛽
(𝐶 |0⟩ ⟨0|⊗𝑛 𝐶†)

= D⊗𝑛
𝑞′ (𝐶 |0⟩ ⟨0|⊗𝑛 𝐶†)

=
𝑒−𝛽

′𝐻𝐶

𝑍

where we have defined 𝑞′ = ( 𝑒−𝛽

1+𝑒−𝛽 ) (1 − 𝑞) + 𝑞(1 − 𝑒−𝛽

1+𝑒−𝛽 ) and 𝑞′ = 𝑒−𝛽
′

1+𝑒−𝛽′ .
Provided we keep 𝛽′ sufficiently small (but still Θ(1)), we see that sampling from 𝜌(𝐻𝐶 , 𝛽

′) is classically intractable
from Theorem 6, hence D⊗𝑛

𝑞 (𝜌(𝐻𝐶 , 𝛽)) is classically hard to sample too. In particular, we can choose values of
𝛽, 𝑞 = Θ(1) simultaneously. □
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5 Sampling Hardness at Higher Temperatures with Increased Degree
An natural question to ask is “for what Hamiltonian parameters does Gibbs sampling retain its quantum advantage?”
Recent work by Bakshi et al. demonstrates that at sufficiently high temperatures there is classical algorithm, followed by
a step of single-qubit gates, which prepares Gibbs states [Bak+24]. In particular, the temperature above which this
algorithm works scales as 𝛽 = 𝑂 (1/Δ), where Δ the maximum degree of the Hamiltonian. Although this bound is known
to be tight, due to work from Ref. [SS12] showing that sampling from Δ-regular graphs is NP-hard, this NP-hardness
occurs when in the non-unique regime. Here we find a lower bound on where efficient Gibbs state algorithm can exist as
a function of Δ depending only on quantum effects, and where the thermal physics of the system appears to be trivial i.e.
there are no zeros of the partition function near the real axis, no diverging correlation lengths etc.

If we start with the topologically protected circuit family from Lemma 5 and apply the repetition code from Lemma 8,
we will only be able to prove hardness of inverse exponential error. However, the CNOT encoding will allow us to
arbitrarily suppress the logical error. Specifically, we have the following result.

Theorem 12. One can efficiently construct a family of 6-local Hamiltonians, {𝐻𝐶∗ }𝐶∗ , with maximum degree Δ, whose
Gibbs states at inverse temperature 𝛽 = Ω(1/

√
Δ) are hard to classically sample from with constant 1-error up to 1/192,

unless the polynomial hierarchy collapses to the 3rd level.

Proof. We start with an 𝑛-qubit circuit from the family defined in Lemma 5 𝐶 and apply the CNOT encoding from
Lemma 8 to obtain a new circuit 𝐶∗, where we set 𝑟 = Δ/5. Since 𝐶 was composed of 4 layers of 2-qubit gates, this
implies the associated parent Hamiltonian 𝐻𝐶∗ has max degree Δ. By Lemma 3, sampling from the Gibbs states of 𝐻𝐶∗

at inverse temperature 𝛽, is equivalent to sampling from 𝑃
𝐶∗ , 𝑒−𝛽

1+𝑒−𝛽
. By Lemma 8 we can decode samples from this

distribution using decoder 𝐴∗ to obtain 𝑃𝐶,𝑝fail where

𝑝fail ≤
(
4

𝑒−𝛽

1 + 𝑒−𝛽

(
1 − 𝑒−𝛽

1 + 𝑒−𝛽

))𝑟/2
(3)

≤
(
4

𝑒−𝛽

(1 + 𝑒−𝛽)2

)Δ/10

≤ (cosh(𝛽/2))−Δ/5

≤ 𝑒−𝛽
2Δ/100

where we have used that cosh(𝑥) ≥ 𝑒𝑥
2/20 for |𝛽 | < 2.6. Therefore, when 𝑒−𝛽

2Δ/40 < 0.134 we have obtained a
hard-to-sample distribution from the Gibbs state of 𝐻𝐶∗ . This condition is satisfied when 𝛽 = Ω(1/

√
Δ). □

6 Heuristic Verification Procedure
One the of the major limitations with many quantum supremacy experiments is that verifying that the desired experiment
has actually been implemented — and not ruined by noise or an adversary — is not trivial [Han+19]. For example,
in the case of Random Circuit Sampling and IQP sampling, cross-entropy benchmarking is often used as a proxy for
measuring fidelity between the actual state and the ideal state [Boi+18; Han+24]. However, although cross-entropy
benchmarking only requires a polynomial number of samples, it requires computing samples of the ideal distribution
which is exponentially expensive, and it appears to be spoofable for many classes of circuits. Thus verifying that one is
sampling from a distribution close one taken from random circuits is highly non-trivial.

A Heuristic Verification Protocol Suppose we wish to implement the Gibbs sampling procedure using the Hamiltonians
in this work as a quantum supremacy test, then we have a similar problem — how do we verify that we are sampling
from the correct distribution? Here we suggest a heuristic test for correctness — we ask to verify that the Gibbs state we
are sampling from has the correct Hamiltonian. That is, suppose for part of our sampling routine, we wish to sample

9



from the state 𝜌(𝐻𝑃 , 𝛽), where 𝐻𝑃 is a Hamiltonian formed from a sum of Pauli operators and can be written as:

𝐻𝑃 =

𝑚∑︁
𝑖=1

𝜇𝑖𝑃𝑖

where each 𝑃𝑖 is a 𝑘-local Pauli string. To verify that we are correctly preparing Gibbs states, we take 𝑁 copies of the
Gibbs state 𝜌(𝐻𝑃 , 𝛽). We then use the Hamiltonian learning algorithm proposed in [Bak+23, Theorem 6.1] to learn
the coefficients of the Hamiltonian. In particular, if we want to learn the parameters to precision ( �̃�𝑖 − 𝜇𝑖)2 ≤ 𝜖 with
probability > 1 − 𝛿, we need a number of sample 𝑁:

𝑁 = 𝑂

(
𝑚6

𝜖𝑐
+ 𝑐

𝛽2𝜖2 log
(𝑚
𝛿

))
,

for a constant 𝑐 which depends on the locality and maximum degree of the interaction graph. Then we check closeness
for all parameters 𝜇𝑖 which appear in our Hamiltonians. We can then use the following lemma to argue that if the
measured Hamiltonians are close, then the sampled states are close:

Lemma 13 (Lemma 16 of [BS17]). Let 𝐻, 𝐻′ be Hermitian matrices. Then: 𝑒−𝐻1

tr
[
𝑒−𝐻1

] − 𝑒−𝐻2

tr
[
𝑒−𝐻2

] 
1

≤ 2(𝑒 ∥𝐻1−𝐻2 ∥∞ − 1). (4)

In particular, if 𝛽∥𝐻1 − 𝐻2∥ ≤ 𝜖 ≪ 1, then ∥𝜌(𝐻1, 𝛽) − 𝜌(𝐻2, 𝛽)∥1 ≤ 𝑂 (𝜖).
In particular, if we wish to verify that the actual observed Hamiltonian is close to the ideal Hamiltonian on all

𝑘-local terms, then this reduces to learning a Hamiltonian with 4𝑘
(𝑛
𝑘

)
= 𝑂 (poly(𝑛))-many terms. This can be done

efficiently using the algorithms of [Bak+23].

Limitations of the Protocol However, our measurement approach is limited in the sense that the state prepared may
not have been the Gibbs state of the desired form, but some other state 𝜌. We can always write 𝜌 = 1

𝑍

∑
𝑖 𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 | =

1
𝑍

∑
𝑖 𝑒

−𝛽𝜆𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 | where we have written 𝑝𝑖 =
𝑒−𝛽𝜆𝑖
𝑍

for some “false” energies 𝜆𝑖 . This gives and effective Hamiltonian
𝐻eff =

∑
𝑖 𝜆𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 | =

∑
𝑗 𝜇

′
𝑗
𝑃 𝑗 . Thus if the state is incorrect, and not close to the Gibbs state, then when we apply

our learning algorithm we will learn the parameters of 𝐻eff. Although the 𝜇′
𝑖

associated with 𝐻eff may be close to 𝐻𝑃

on all the parameters 𝜇𝑖 , there may be some 𝜇′
𝑖

which are non-zero (and large) when 𝜇𝑖 is zero. Thus 𝐻eff will look
close to 𝐻𝑃 for the Pauli coefficients that we have measured. In general, to distinguish 𝐻eff and 𝐻𝑃 , we may have to
make 4𝑛 many measurements.

Despite this, it remains an open question whether Hamiltonian structure learning can be done efficiently for quantum
Gibbs states. That is, can we not only estimate the values of the parameters 𝜇𝑖 , but determine the entire Hamiltonian
structure? Classically, this can be done efficiently [Vuf+16; KM17].

Finally, we note that although the above Hamiltonian learning procedure may be spoofed if the measurements are
performed by an untrustworthy source, they may be useful for verification in a laboratory setting where measurements
are trusted.

Gibbs Sampling as a Test for Quantum Advantage We briefly note here that the algorithms considered in this work
for Gibbs state preparation are well beyond the power of NISQ devices, and likely require a full quantum computer to
implement. We suggest that, for the specific case of IQP parent Hamiltonians, there may be much simpler algorithms
which guarantee convergence to the Gibbs state. Furthermore, because Gibbs states are fixed points of Lindbladians, we
might expect a certain level of robustness to external noise. For example, one might hope that Trotterizing a parent
Hamiltonian and running its time-evolution on a weakly-noisy device may result in the state converging to the Gibbs
state.
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7 Discussion and Future Work
In this paper we have constructed two families of 𝑂 (1)-local Hamiltonians for which their corresponding Gibbs states
are classically hard to sample at 𝑂 (1) temperatures. Furthermore, these Gibbs states can be efficiently prepared and
sampled from using a quantum computer. By showing that our hardness-of-sampling results hold for 𝛽 = Ω(1/

√
Δ), we

have placed bounds on where classical sampling algorithms can be efficient. Finally, we have suggested some heuristic
routes for verifying quantum advantage via Gibbs sampling.

Beyond the work studied here, there exist many potential future routes for improvement.

1. Although the Hamiltonians here have constant locality, they do not necessarily correspond to Hamiltonians seen
in nature, or to distributions we are interested in sampling from in computer science. A natural question to ask it
whether sampling from Gibbs states of geometrically local Hamiltonians is still hard at constant temperature, even
considering hardness with additional constraints such as translationally invariant terms or certain symmetries or
restricted families of interaction terms. Remarkably, in the case of ground states, predicting local observables
is known to be hard on 2D lattice and 1D translationally invariant chains [GI09; GPY20; WBG23]. While the
properties of Gibbs states in 1D are well understood to be easy-to-sample, for 2D and beyond is not.

2. We also note that the parent Hamiltonian here has same partition function as a non-interacting Hamiltonian. Since
non-interacting Hamiltonians do not undergo thermally-driven phase transitions, the parent Hamiltonian here
does not either. Yet there is an apparent transition in temperature where the system moves from easy-to-sample to
hard-to-sample. It would be interesting to understand if this transition coincides with other physical changes
in the system, or if there is some way of characterising the change in sampleability in terms of other physics
properties such as entanglement, entropies, etc.

3. The bounds on efficient sampling of Gibbs states by a classical computer leaves a gap open relative to the boundary
showing classical easiness of sampling in Bakshi et al. [Bak+24]. There is future work to be done to understand
where exactly this boundary lies.

4. Recently there has been much discussion of learning Hamiltonians with sample access to Gibbs states [Ans+21b;
Ans+21a; HKT22; Alh23; Ono+23; RF24; Gar+24; Bak+24]. Universally, the sample complexity of these
algorithms increases as the temperature drops. However, it is notable that some of these algorithms are only
efficient in the high temperature regime, and their costs blows up exponentially past some critical threshold. It
would be desirable to understand how these thresholds relate the onset of sampling complexity (if there is any
relation at all).

5. As far as we are aware, classical hardness-of-sampling results for noisy IQP circuits from Ref. [FT16] are only
known for sampling to exponentially high precision in total variation distance (i.e. multiplicative error). It
remains an open question whether the output distributions of these noisy circuits can be shown to anti-concentrate.
If they do anti-concentrate, then this would imply hardness of classical sampling to 1/poly(𝑛) error in total
variation distance, which then implies hardness of sampling Gibbs states with 𝑂 (1/poly(𝑛)) error for the circuits
in Section 3.2.
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Appendix

A Hardness of Noisy IQP Sampling to Inverse Exponential Approximation
We make modifications to the proof from Ref. [FT16] to show that noisy IQP circuits are hard to sample with, even with
inverse exponential error. First, we introduce the following lemma (derived in a different form in Ref. [FT16]) which
allows us to bound the probability that postselected probabilities are close.

Lemma 14. Let 𝑃 and 𝑃′ be any two probability distributions over bitstrings of length 𝑛. Suppose further that the
bitstrings start with a decision bit 𝑥, and are followed by a ‘postselection’ register 𝑦 of 𝑛 − 1 bits. For any 0 < 𝛿 < 1/2,
if ∥𝑃′ − 𝑃∥1 < 𝛿

2+𝛿 𝑃(𝑦 = 0), then

|𝑃′ (𝑥 |𝑦 = 0) − 𝑃(𝑥 |𝑦 = 0) | < 𝛿 (5)

Proof. We can lower bound 𝑃′ (𝑦 = 0) as

𝑃′ (𝑦 = 0) > 𝑃(𝑦 = 0) − ∥𝑃′ − 𝑃∥1 > 𝑃(𝑦 = 0) 2
2 + 𝛿

(6)

Then, we have

|𝑃′ (𝑥 |𝑦 = 0) − 𝑃(𝑥 |𝑦 = 0) | =
����𝑃′ (𝑥, 𝑦 = 0)
𝑃′ (𝑦 = 0) − 𝑃(𝑥, 𝑦 = 0)

𝑃(𝑦 = 0)

���� (7)

≤
����𝑃′ (𝑥, 𝑦 = 0)
𝑃′ (𝑦 = 0) − 𝑃(𝑥, 𝑦 = 0)

𝑃′ (𝑦 = 0)

���� + ����𝑃(𝑥, 𝑦 = 0)
𝑃′ (𝑦 = 0) − 𝑃(𝑥, 𝑦 = 0)

𝑃(𝑦 = 0)

���� (8)

≤ 1
𝑃′ (𝑦 = 0) |𝑃

′ (𝑥, 𝑦 = 0) − 𝑃(𝑥, 𝑦 = 0) | + 𝑃(𝑥, 𝑦 = 0)
���� 1
𝑃′ (𝑦 = 0) −

1
𝑃(𝑦 = 0)

���� (9)

≤ ∥𝑃′ − 𝑃∥1
𝑃′ (𝑦 = 0) + 𝑃(𝑥, 𝑦 = 0)

����𝑃(𝑦 = 0) − 𝑃′ (𝑦 = 0)
𝑃′ (𝑦 = 0)𝑃(𝑦 = 0)

���� (10)

≤ ∥𝑃′ − 𝑃∥1
𝑃′ (𝑦 = 0)

(
1 + 𝑃(𝑥, 𝑦 = 0)

𝑃(𝑦 = 0)

)
(11)

≤ 2∥𝑃′ − 𝑃∥1
𝑃′ (𝑦 = 0) (12)

≤ 2𝛿
(2 + 𝛿)

𝑃(𝑦 = 0)
𝑃′ (𝑦 = 0) (13)

< 𝛿 (14)

Where we have used the fact that 𝑃(𝑥, 𝑦 = 0) ≤ 𝑃(𝑦 = 0), and substituted expressions for ∥𝑃′ − 𝑃∥1 and 𝑃′ (𝑦 = 0) in
terms of 𝑃(𝑦 = 0) in the final steps. □

Definition 15. (PostBQP) A language 𝐿 is in the class PostBQP iff there exists a uniform family of postselected circuits
{𝐶𝑤} with a decision port 𝑥 and a postselection port 𝑦, and

if 𝑤 ∈ 𝐿, 𝑃𝐶𝑤
(𝑥 = 1|𝑦 = 0) ≥ 1/2 + 𝛿 (15)

if 𝑤 ∉ 𝐿, 𝑃𝐶𝑤
(𝑥 = 1|𝑦 = 0) ≤ 1/2 − 𝛿 (16)

where 𝛿 can be chosen arbitrary such that 0 < 𝛿 < 1/2. Further, the class PostBQP∗ is defined with the added restriction
that 𝑃𝐶𝑤

(𝑦 = 0) > 2−6𝑚−4, where 𝑚 is the number of qubits, and [FT16] show that PostBQP∗ = PostBQP = PP.

Lemma 16. (Restatement of Lemma 5) There exists a family of IQP circuits C, constructed on a 3D cubic lattice,
consisting of a single layer of 𝑒𝑖𝑍 𝜋/8 gates and 4 layers of nearest-neighbour 𝑒𝑖𝑍𝑍 𝜋/4 gates, such that sampling from
any probability distribution 𝑄 over bitstrings which satisfies ∥𝑃𝐶,𝑞 −𝑄∥1 < (1 − 𝑞)𝑛2−6𝑛−4/5 is not possible with a
classical polynomial algorithm, unless the polynomial hierarchy collapses to the third level, when 𝑞 < 0.134.
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Proof. First, we will outline the proof in [FT16] for review, then we will make our modifications. As in [FT16],
by topologically protected MBQC, any quantum circuit can be encoded into a fault-tolerant IQP circuit of the form
mentioned in Lemma 16, such that postselection recovers the original output distribution. Explicitly, for any quantum
circuit 𝐶𝑤 on 𝑚 qubits and error parameter 𝜖 , one can construct 𝐶 on 𝑛 = poly(𝑚, log(1/𝜖)) qubits, such that

∥𝑃𝐶,𝑞 |𝑦′=0 − 𝑃𝐶𝑤
∥1 ≤ 𝜖 (17)

where 𝑦′ is an error-detection register. This is essentially a variant of the threshold theorem, for the case of postselected
error detection, rather than error correction (instead of doing fault-tolerant MBQC which requires adaptive measurement,
we post-select on outcomes corresponding to ‘no error-detected’).

Suppose we choose some uniform family of quantum circuits 𝐶𝑤 which decide some PP-complete language 𝐿 with
confidence gap 0 < 𝛿 < 1/2, with decision port 𝑥 and postselection port 𝑦 where 𝑃𝐶𝑤

(𝑦 = 0) > 2−6𝑚−4. For some
0 < 𝛿′ < 𝛿, suppose we encode this circuit into an IQP circuit 𝐶 using the fault-tolerance construction mentioned above
with polynomial overhead, where 𝜖 = 2−6𝑚−4 𝛿′

2+𝛿′ . By Lemma 14 and using the fact that 𝑃𝐶𝑤
(𝑦 = 0) > 2−6𝑚−4, this

means that |𝑃𝐶,𝑞 (𝑥 |𝑦 = 0, 𝑦′ = 0) − 𝑃𝐶𝑤
(𝑥 |𝑦 = 0) | < 𝛿′. Clearly, post-selection on JW: 𝑦, 𝑦′ registers for 𝑃𝐶,𝑞 can

also decide 𝐿, with confidence gap 𝛿 − 𝛿′. There are standard complexity-theoretic reductions to show hardness of
exactly sampling from probability distributions that decide 𝑃𝑃-complete problems under postselection (see [HE23] for
review). This concludes the outline of the proof from [FT16].

Now, note that 𝑃𝐶,𝑞 (𝑦′ = 0) ≥ (1 − 𝑞)𝑛 because 𝑦′ = 0 in 𝑃𝐶,𝑞 when no bit-flip error occurs. This means that

𝑃𝐶,𝑞 (𝑦 = 0, 𝑦′ = 0) = 𝑃𝐶,𝑞 (𝑦 = 0|𝑦′ = 0)𝑃𝐶,𝑞 (𝑦′ = 0) (18)
≥ 𝑃𝐶,𝑞 (𝑦 = 0|𝑦′ = 0) (1 − 𝑞)𝑛 (19)
≥ (𝑃𝐶𝑤

(𝑦 = 0) − 𝜖) (1 − 𝑞)𝑛 (20)

> 2−6𝑚−4
(
1 − 𝛿′

2 + 𝛿′

)
(1 − 𝑞)𝑛 (21)

> 2−6𝑚−4 2
2 + 𝛿′

(1 − 𝑞)𝑛 (22)

For some 0 < 𝛿′′ < 𝛿′, suppose we consider some distribution 𝑄 such that ∥𝑃𝐶,𝑞 −𝑄∥1 ≤ (1 − 𝑞)𝑛2−6𝑚−4 2
2+𝛿′

𝛿′′

2+𝛿′′ .
Using the triangle inequality and two applications of Lemma 14, we have that

|𝑄(𝑥 |𝑦 = 0, 𝑦′ = 0) − 𝑃𝐶𝑤
(𝑥 |𝑦 = 0) | ≤ |𝑄(𝑥 |𝑦 = 0, 𝑦′ = 0) − 𝑃𝐶,𝑞 (𝑥 |𝑦 = 0, 𝑦′ = 0) | (23)

+ |𝑃𝐶,𝑞 (𝑥 |𝑦 = 0, 𝑦′ = 0) − 𝑃𝐶𝑤
(𝑥 |𝑦 = 0) | (24)

< 𝛿′′ + 𝛿′ (25)

Thus, choosing 𝛿′′ to be close to 1/2 and 𝛿′ to be close to 0, one can solve PP-complete problems by postselecting on 𝑄

whenever ∥𝑃𝐶,𝑞 −𝑄∥1 ≤ (1 − 𝑞)𝑛2−6𝑛−4/5, which implies that sampling from 𝑄 is hard (assuming 𝑃𝐻) □

B Equivalence of Gibbs States and Circuits with Input Noise
Here we provide a proof of Lemma 3 in the main text.

Lemma 17. For any circuit 𝐶 constructed from 𝑘-local gates of depth 𝑑, there exists a 𝑂 (𝑘𝑑)-local parent Hamiltonian
𝐻𝐶 , such that:

1
𝑍
𝑒−𝛽𝐻𝐶 = 𝐶 (D⊗𝑛

𝑞 ( |0⟩ ⟨0|))𝐶†

for 𝑞 = 𝑒−𝛽

1+𝑒−𝛽 .
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Proof. Let 𝐶 denote an arbitrary quantum circuit. Define a corresponding parent Hamiltonian 𝐻𝐶 = 𝐶𝐻NI𝐶
† with

corresponding Gibbs state:

1
𝑍
𝑒−𝛽𝐻𝐶 =

1
𝑍
𝑒−𝛽

∑
𝑥 𝜆𝑥𝐶 |𝑥⟩⟨𝑥 |𝐶†

(26)

=
1
𝑍

∑︁
𝑥∈{0,1}𝑛

𝑒−𝛽 HW(𝑥 )𝐶 |𝑥⟩ ⟨𝑥 |𝐶† (27)

Note that because unitary transformations preserve the spectrum, the partition functions of 𝐻NI and 𝐻𝐶 are the same.
Let |𝑥 | be hamming weight of bitstring 𝑥 ∈ {0, 1}𝑛. We can then compare this to the output state of 𝐶 with a single set
of bit-flip noise of strength 𝑞 occurring on the input.

𝐶 (D⊗𝑛
𝑞 ( |0⟩ ⟨0|))𝐶† = 𝐶

©«
∑︁

𝑥∈{0,1}𝑛
𝑞HW(𝑥 ) (1 − 𝑞)𝑛−HW(𝑥 ) |𝑥⟩ ⟨𝑥 |⊗𝑛ª®¬𝐶† (28)

=
∑︁

𝑥∈{0,1}𝑛

(
𝑞

1 − 𝑞

)HW(𝑥 )
(1 − 𝑞)𝑛𝐶 |𝑥⟩ ⟨𝑥 |⊗𝑛 𝐶† (29)

Comparing Eq. (27) to Eq. (29), and noting that 𝑍 = (1 + 𝑒−𝛽)𝑛, we can see that if we set 𝑞

1−𝑞 = 𝑒−𝛽 and
𝑍 = (1 + 𝑒−𝛽)𝑛 = (1 + 𝑞

1−𝑞 )
𝑛 = 1/(1 − 𝑞)𝑛, then these two states are the same. From here it is straightforward to see

that the distribution 𝑃(𝑠) B ⟨𝑠 | 𝑒−𝛽𝐻𝐶

𝑍
|𝑠⟩ satisfies:

𝑃(𝑠) = 𝑃𝐶,𝑞 (𝑠)

for 𝑞 = 𝑒−𝛽

1+𝑒−𝛽 . □

C CNOT Encoding
We use a result from Bremner et al. [BMS17] which shows that IQP circuits can be made robust to bit-flip noise on the
input distribution, at the cost of non-locality in the gate set. The fundamental idea is to encode a repetition code into a
given hard-to-sample IQP circuit, and then decode with high probability.

We provide a brief explanation of the encoding as follows. Suppose we wish to encode some logical IQP circuit 𝐶
into a physical circuit 𝐶𝑟 . For each qubit 𝑖 involved in 𝐶 (and initialised in the |0⟩ state), prepare a block of 𝑟 qubits
labelled 𝑖1, . . . , 𝑖𝑟 in 𝐶𝑟 , which are initialised to the |0⟩ state. Now, every 2-qubit diagonal gate between qubits 𝑖 and
𝑗 in 𝐶 can be written in the form 𝐷 = 𝑒𝑖 𝜃1𝑍𝑖+𝜃2𝑍 𝑗+𝜃3𝑍𝑖𝑍 𝑗 (modulo global phase), for some 𝜃1, 𝜃2, 𝜃3. This notation is
known as an ‘X-program’ [SB09; She10a; She10b; BMS17; GH23]. The encoded circuit 𝐶𝑟 then involves the following
transformation for each 2-qubit diagonal gate

𝐷 = 𝑒𝑖 𝜃1𝑍𝑖+𝜃2𝑍 𝑗+𝜃3𝑍𝑖𝑍 𝑗 → 𝐷𝑒𝑛𝑐 = 𝑒𝑖 𝜃1𝑍𝑖1 𝑍𝑖2 ...𝑍𝑖𝑟 +𝜃2𝑍 𝑗1 𝑍 𝑗2 ...𝑍 𝑗𝑟 +𝜃3𝑍𝑖1 𝑍 𝑗1 𝑍𝑖2 𝑍 𝑗2 ...𝑍𝑖𝑟 𝑍 𝑗𝑟 (30)

In Bremner et al., it is shown that this construction essentially encodes each logical output bit into 𝑟 physical output bits,
each with an independent probability 𝑞 of being incorrect. Therefore, the logical output distribution can be recovered by
taking a majority vote. This is captured in the following lemma.

Lemma 18. (From [BMS17]) Let 𝐶 be an arbitrary IQP circuit constructed with 2-qubit gates of depth 𝑑 on 𝑛 qubits.
Then, for any integer parameter 𝑟 ≥ 1, there is an encoded IQP circuit 𝐶𝑒𝑛𝑐 constructed with 2𝑟-local gates of depth 𝑑

on 𝑛𝑟 qubits, and a decoding algorithm 𝐴 such that,

𝐴(𝑃𝐶𝑒𝑛𝑐 ,𝑞) = 𝑃𝐶,𝑝fail (31)

where 𝑝fail ≤ (4𝑞(1 − 𝑞))𝑟/2.
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It can be seen that the parent Hamiltonian of the above construction 𝐻𝐶𝑒𝑛𝑐
will be 𝑂 (𝑟)-local. Now, we show that

this encoding can be achieved without non-local gates by using a networks of 𝐶𝑁𝑂𝑇s

Lemma 19. Suppose IQP circuit 𝐶 on 𝑛 qubits is encoded into an encoded circuit 𝐶𝑒𝑛𝑐 on 𝑛𝑟 qubits as per Lemma 18.
For each logical qubit 𝑖 of 𝐶, let the block of 𝑟 physical qubits be labelled 𝑖1, . . . , 𝑖𝑟 . Let 𝐶1 denote the circuit 𝐶 applied
transversally3 to the first qubits of each block (11, 21, . . . , 𝑛1). Let the unitary 𝐵 be composed of the following CNOT
network,

𝐵 =
∏

𝑖∈1,...,𝑛

∏
𝑗∈2,...,𝑟

𝐶𝑁𝑂𝑇𝑖1 ,𝑖 𝑗 (32)

where 𝐶𝑁𝑂𝑇𝑥,𝑦 is a CNOT controlled on qubit 𝑥 and targeting qubit 𝑦. Then,

𝐵†𝐶1𝐵 = 𝐶𝑒𝑛𝑐 (33)

Proof. Suppose 𝐶 is given by the diagonal gates 𝐷1, . . . , 𝐷𝑚, so that 𝐶 = 𝐻⊗𝑛𝑟 ∏
𝑙∈1,...,𝑚 𝐷𝑙𝐻

⊗𝑛𝑟 . Suppose 𝐶𝑒𝑛𝑐 is
given by the diagonal gates 𝐷′

1, . . . , 𝐷
′
𝑚, so that the unitary produced by 𝐶𝑟 is 𝐶𝑒𝑛𝑐 = 𝐻⊗𝑛𝑟 ∏

𝑙∈1,...,𝑚 𝐷′
𝑙
𝐻⊗𝑛𝑟 .

Define 𝐵𝐻 = 𝐻⊗𝑛𝐵𝐻⊗𝑛. By a circuit identity, conjugating a CNOT with Hadamards on either qubit reverses the
target and the control (i.e. (𝐻𝑥 ⊗ 𝐻𝑦)𝐶𝑁𝑂𝑇𝑥,𝑦 (𝐻𝑥 ⊗ 𝐻𝑦) = 𝐶𝑁𝑂𝑇𝑦,𝑥). Therefore,

𝐵𝐻 =
∏

𝑖∈1,...,𝑛

∏
𝑗∈2,...,𝑟

𝐶𝑁𝑂𝑇𝑖 𝑗 ,𝑖1 (34)

Due to another circuit identity that 𝐶𝑁𝑂𝑇𝑥,𝑦 (1𝑥 ⊗ 𝑍𝑦)𝐶𝑁𝑂𝑇𝑥,𝑦 = 𝑍𝑥 ⊗ 𝑍𝑦 , we can establish that 𝐵𝐻 has the
following property,

𝐵
†
𝐻
𝑍𝑖1𝐵𝐻 =

∏
𝑗=1,...,𝑏

𝑍𝑖 𝑗 (35)

Suppose we use 𝐷𝑙,1 to denote gate 𝐷𝑙 applied transversely to the first qubits of each block (11, 21, . . . , 𝑛𝑟1). By
examining Eq. (30) and comparing it the above, one can see that

𝐵
†
𝐻
𝐷𝑙,1𝐵𝐻 = 𝐷′

1 (36)

Therefore, we have,

𝐵†𝐶1𝐵 = 𝐵†
⊗

𝑖∈1,...,𝑛
𝐻𝑖1

∏
𝑙∈1,...,𝑚

𝐷𝑙,1
⊗

𝑖∈1,...,𝑛
𝐻𝑖1𝐵 (37)

= 𝐵†𝐻⊗𝑛𝑟
∏

𝑙∈1,...,𝑚
𝐷𝑙,1𝐻

⊗𝑛𝑟𝐵 (38)

= 𝐻⊗𝑛𝑟𝐵†
𝐻

∏
𝑙∈1,...,𝑚

𝐷𝑙,1𝐵𝐻𝐻⊗𝑛𝑟 (39)

= 𝐻⊗𝑛𝑟

( ∏
𝑙∈1,...,𝑚

𝐵
†
𝐻
𝐷𝑙,1𝐵𝐻

)
𝐻⊗𝑛𝑟 (40)

= 𝐻⊗𝑛𝑟𝐷′
𝑙𝐻

⊗𝑛𝑟 (41)
= 𝐶𝑒𝑛𝑐 (42)

where in the second step we have used the fact that 𝐻𝐻 = 𝐼 (so we can add a pair of Hadamards to every qubit without a
Hadamard). □

3Transversally here means that for each gate between a pair of qubits (𝑖, 𝑗 ) , in the encoded circuit the same gate now acts between the pair of
qubits (𝑖1, 𝑗1 ) .
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Ref. [BCL24] use a similar encoding scheme to ours. Specifically, they construct circuit 𝐶′ = 𝐵′𝐶1, where 𝐵′ is a
different 𝐶𝑁𝑂𝑇 network than 𝐵, but also acting amongst blocks of 𝑟 qubits. By examining 𝐵′, a simple adaptation of
the above proof will show that 𝐵′𝐶1𝐵

′† = 𝐶𝑒𝑛𝑐. This means that the encodings of Ref. [BMS17], Ref.[BCL24, Lemma
8.1], and Lemma 19 are all exactly equivalent up to CNOT networks on the output state. Since CNOTs commute with
measurement, this means their output distributions are equivalent modulo post-processing. This suggests that further
improvements to the noise-robustness of these constructions might require changes to the underlying error-correction
code (the repetition code) rather than circuit-level optimisations. We also use the fact that CNOTs commute with
measurement to establish the following lemma.

Lemma 20. Let 𝐶 be an arbitrary IQP circuit constructed with 2-qubit gates of depth 𝑑 on 𝑛 qubits. Then, for any
integer parameter 𝑟 ≥ 1, there is an encoded IQP circuit 𝐶∗ constructed with 2-qubit gates of depth 𝑑 + 𝑟 on 𝑛𝑟 qubits,
and a decoding algorithm 𝐴 such that,

𝐴∗ (𝑃𝐶∗ ,𝑞) = 𝑃𝐶,𝑝fail (43)

where 𝑝fail ≤ (4𝑞(1−𝑞))𝑟/2. Furthermore, the parent Hamiltonian of𝐶∗ has locality 𝑘 ≤ 𝑑 +2 and degree Δ ≤ 𝑟 (𝑑 +1)

Proof. Using the notation of Lemma 19, define 𝐶∗ = 𝐶1𝐵. 𝐵† is composed of classical gates, which means it commutes
with measurement. Therefore, we can apply it on the output distribution of 𝐶1𝐵, and then perform the decoding
algorithm 𝐴 of Lemma 18. That is,

𝐴∗ (𝑃𝐶∗ ,𝑞) = 𝐴(𝐵𝑃𝐶∗ ,𝑞) = 𝐴(𝑃𝐵𝐶∗ ,𝑞) = 𝐴(𝑃𝐶𝑟 ,𝑞) = 𝑃𝐶,𝑝fail (44)

To calculate the locality, we use the following circuit identities.

𝐶𝑁𝑂𝑇𝑥,𝑦 (1𝑥 ⊗ 𝑍𝑦)𝐶𝑁𝑂𝑇𝑥,𝑦 = 𝑍𝑥 ⊗ 𝑍𝑦 (45)
𝐶𝑁𝑂𝑇𝑥,𝑦 (𝑍𝑥 ⊗ 1𝑦)𝐶𝑁𝑂𝑇𝑥,𝑦 = 𝑍𝑥 ⊗ 1𝑦 (46)

We first conjugate 𝐻𝑁𝐼 with 𝐵

𝐵𝐻𝑁𝐼𝐵
†

= 𝐵
∑︁

𝑖∈[𝑛], 𝑗∈[𝑟 ]

1 − 𝑍𝑖 𝑗

2
𝐵†

=
∑︁
𝑖∈[𝑛]

𝐵
1 − 𝑍𝑖1

2
𝐵† +

∑︁
𝑖∈[𝑛], 𝑗∈[2,𝑟 ]

𝐵
1 − 𝑍𝑖 𝑗

2
𝐵†

=
∑︁
𝑖∈[𝑛]

∏
𝑗∈[2,𝑛]

𝐶𝑁𝑂𝑇𝑖1 ,𝑖 𝑗
1 − 𝑍𝑖1

2

∏
𝑗∈[2,𝑛]

𝐶𝑁𝑂𝑇𝑖1 ,𝑖 𝑗 +
∑︁

𝑖∈[𝑛], 𝑗∈[2,𝑟 ]
𝐶𝑁𝑂𝑇𝑖1 ,𝑖 𝑗

1 − 𝑍𝑖 𝑗

2
𝐶𝑁𝑂𝑇𝑖1 ,𝑖 𝑗

=
∑︁
𝑖∈[𝑛]

1 − 𝑍𝑖1

2
+

∑︁
𝑖∈[𝑛], 𝑗∈[2,𝑟 ]

1 − 𝑍𝑖1𝑍𝑖 𝑗

2

Note that for each qubit 𝑖1, there are at most 𝑑 diagonal gates acting on qubit 𝑖1 in 𝐶1. Thus, when conjugating the
𝑍𝑖1𝑍𝑖 𝑗 term with 𝐶1, the resulting interaction term spans at most 𝑑 + 2 qubits, so 𝑘 ≤ 𝑑 + 2.

Each qubit 𝑖1 appears in all 𝑟 − 1 terms of the form 𝐶1𝑍𝑖1𝑍𝑖 𝑗𝐶
†
1 . It also appears in all 𝑟 − 1 terms of the form

𝐶1𝑍𝑖′1𝑍𝑖
′
𝑗
𝐶
†
1 for each of the 𝑑 neighbours 𝑖′. If we count the 𝑍𝑖1 terms as well, the total degree is Δ ≤ (𝑑 + 1)𝑟 □
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