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Abstract

Product formulae are a popular class of digital quantum simulation algorithms due to their conceptual simplicity,
low overhead, and performance which often exceeds theoretical expectations. Recently, Richardson extrapolation and
polynomial interpolation have been proposed to mitigate the Trotter error incurred by use of these formulae. This work
provides an improved, rigorous analysis of these techniques for the task of calculating time-evolved expectation values.
We demonstrate that, to achieve error 𝜖 in a simulation of time 𝑇 using a 𝑝th-order product formula with extrapolation,
circuits depths of 𝑂

(
𝑇1+1/𝑝 polylog(1/𝜖)

)
are sufficient — an exponential improvement in the precision over product

formulae alone. Furthermore, we achieve commutator scaling, improve the complexity with 𝑇 , and do not require
fractional implementations of Trotter steps. Our results provide a more accurate characterisation of the algorithmic
error mitigation techniques currently proposed to reduce Trotter error.
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1 Introduction

Q
uantum simulation — the task of computing dynamical properties of a quantum system — has been an
early inspiration and impetus for quantum computing, and is among the most promising candidates for
near-term quantum advantage. Scientific domains such as quantum chemistry, nuclear physics, materials
science, and high energy physics stand to benefit from robust, programmable quantum devices which can

implement a quantum Hamiltonian of interest [Cao+19; Sha+20; Rog+20; Wat+23; Cli+24]. Beyond the study of
quantum phenomena, Hamiltonian simulation forms a key component to more generic routines such as linear systems
solvers [HHL09; CJS13], and even the investigation of non quantum phenomena [CJO19; Bab+23].

Hamiltonian simulation is, by now, a relatively mature subfield of quantum computing. Significant attention has
been given to all steps of the simulation procedure: qubit mappings [SW18; Der+21; WSM23], state preparation [CC22],
time evolution [Llo96; Ber+15; LC19], and measurement [KOS07; Som19]. Time evolution has received particular
attention as it is often the most expensive step in a full routine. Roughly speaking, there currently exist four families
of time evolution algorithms: product formulae (also known as Trotterization) [Llo96; Chi+21], linear combination
of unitaries (LCU) [CW12; Haa+21; LKW19; AAT24], quantum walks [BC12], and qubitization [LC19]. Despite
the inferior asymptotic scaling of product formulae, they have many desirable properties, including conceptual and
practical simplicity, lack of auxiliary qubits, natural incorporation of Lieb-Robinson bounds, commutator scaling, and
the tendency to conserve desirable properties and symmetries of the Hamiltonian [Tra+20; Chi+21; Tra+21; ŞS21;
Zha+22; ZZC24]. Many of these desirable properties are believed not to hold for post-Trotter methods in general
[ZS24]. Remarkably, the empirical performance of product formulae is often comparable to the LCU and qubitization
methods in numerical studies [Bab+15; Chi+18], and far better than leading error bounds predict [HHZ19]. These
studies indicate a gap in our theoretical understanding of expected Trotter error.

While the unexpectedly high empirical performance of product formulae is fortunate, the current constraints on
quantum hardware make simulating large, complicated Hamiltonians mostly out of reach, motivating the search for
improved Trotter-based approaches that do not significantly increase quantum resources. A wide range of product
formulae algorithms have been suggested to optimise performance according to properties of the Hamiltonian under
consideration [Yua+19; Cam19; OWC20; Mor+24; NBA24; ST24; Bos+24; Che+24] and by optimising the circuit itself
[ML23]. Additional progress has been made by recognising that time evolution is not a full algorithm, but ultimately a
subroutine embedded within a measurement protocol. With suitable choice of measurements, the resulting classical
data can be processed to improve results without going beyond product formulae. This amounts to algorithmic error
mitigation, which is conceptually similar to the hardware error mitigation being developed and employed on current
devices.

Several Trotter mitigation approaches have been proposed, including Richardson extrapolation [End+19; Vaz+23],
polynomial interpolation [RWW24] and parametric matrix models [Coo+24]. The Richardson extrapolation and
polynomial interpolation techniques are remarkably simple. Both involve taking an observable of interest and computing
its time-evolved expectation value under the approximate Trotterized evolution for different time step sizes. It is then
possible to extrapolate to the zero step-size limit, corresponding to the perfect (i.e. un-Trotterized) time evolution.

In this work, we conduct a rigorous and unified performance analysis of the Richardson extrapolation and polynomial
interpolation methods, taking inspiration from a recent treatment by Aftab et al. for multiproduct formulas [AAT24].
In particular, we demonstrate the expected commutator scaling and 𝑂 (𝑇1+1/𝑝) scaling with the simulation time for a
𝑝th-order formula. Our analysis separately considers "coherent" and "incoherent" measurement protocols for acquiring
the expectation values for various Trotter step sizes. While the incoherent scheme optimises for short circuit depths, the
coherent scheme achieves Heisenberg-limited precision and overall fewer quantum operations. For the short-depth
method, we show that only circuit depths of

𝑂

(
(𝜆𝑇)1+1/𝑝 polylog (1/𝜖)

)
are sufficient, where 𝜆 is a factor depending on commutators of terms in the Hamiltonian. For the method which
optimises asymptotic resources, we show that the overall number of Trotter steps which need to be implemented scales as

𝑂

(
(𝜆𝑇)1+1/𝑝

𝜖
polylog (1/𝜖)

)
.
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Essential to achieving these results is the fact that our extrapolation approaches are well-conditioned, such that small
errors in the data do not rapidly accumulate. Finally, the algorithms require no additional control gates or ancillary
qubits compared to regular product formulae.

The rest of this paper is outlined as follows. In Section 2, we provide background on product formulae, the variation
of parameters formula, extrapolation techniques, and measurement protocols. The main results are stated in Section 3.
Section 4 contains the technical error analysis of time-evolved observables under product formulae, which we then use
to inform the complexity analyses of Richardson extrapolation (Section 5) and polynomial interpolation (Section 6). We
support these theoretical findings with small numerical implementations in Section 7. Section 8 augments our approach
with the framework of classical shadows to estimate many time-evolved observables efficiently. Finally, we provide
some discussion and concluding remarks in Section 9.

2 Summary of Methods
In terms of the algorithms considered in this work, the primary elements are product formulae, amplitude measurement,
and two extrapolation techniques: Richardson and polynomial. For the theoretical analysis, we rely heavily on the
variation of parameters formula from the theory of first-order ordinary differential equations. This section briefly
reviews all of these components to help the reader understand the main results and subsequent proofs. Those interested
only in result statements are welcome to skip to Section 3.

2.1 Product Formulae
Consider a (time independent) Hamiltonian 𝐻 expressed as a sum of Γ terms

𝐻 =

Γ∑︁
𝛾=1

𝐻𝛾 (1)

for Hermitian 𝐻𝛾 . Product formulae are splittings of the exponential 𝑒−𝑖𝐻𝑡 , the time evolution operator, along the
various terms 𝐻𝛾 . For example, the simplest product formula, namely first order Trotter, is defined by

P1 (𝑡) B
Γ∏
𝛾=1

𝑒−𝑖𝐻𝛾 𝑡 (2)

where, by convention, we take the product going right to left. The utility of product formulae arises from the fact that
there often exists decompositions of 𝐻 into terms 𝐻𝛾 such that each exponential 𝑒−𝑖𝐻𝛾 𝑡 may be computed efficiently.
For example, 𝐻𝛾 may be 𝑘-local, or 𝐻 may be sparse and thus decomposable into 1-sparse terms.

Product formulae are meant to approximate the exact time evolution operator for short times 𝑡. Larger times can be
approximated to arbitrary precision by breaking the simulation time 𝑇 ∈ R into sufficiently many steps. A product
formula P is said to be order 𝑝 if

P(𝑡) − 𝑒−𝑖𝐻𝑡 = 𝑂 (𝑡 𝑝+1) (3)

for small 𝑡. Thus, for time 𝑇 ∈ R and 𝑟 ∈ Z+,

𝑒−𝑖𝐻𝑇 − P(𝑇/𝑟)𝑟 = 𝑂 (𝑇 𝑝+1/𝑟 𝑝). (4)

In this work, we only consider formulae of order at least 1. The order is roughly a proxy for accuracy, although large
constant factors typically negate the advantage of high-order formulae in typical instances. There exist product formulae
of arbitrarily large order, the most well-known family of which is the Trotter-Suzuki formulae 𝑆2𝑘 of order 𝑝 = 2𝑘 .
These are defined recursively as follows. For 𝑘 = 1,

𝑆2 (𝑡) B
1∏
𝛾=Γ

𝑒−𝑖𝐻𝛾 𝑡/2
Γ∏
𝛾=1

𝑒−𝑖𝐻𝛾 𝑡/2
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and for 𝑘 ∈ Z+ greater than 1,

𝑆2𝑘 (𝑡) B [𝑆2(𝑘−1) (𝑢𝑘 𝑡)]2𝑆2(𝑘−1) ((1 − 4𝑢𝑘)𝑡) [𝑆2(𝑘−1) (𝑢𝑘 𝑡)]2

with a value of 𝑢𝑘 ∈ R that is presently unimportant. One useful property of 𝑆2𝑘 is that it is symmetric, meaning
𝑆2𝑘 (−𝑡) = 𝑆−1

2𝑘 (𝑡).
We will find it useful to define 𝑠 B 1/𝑟 and treat 𝑠 as a continuous variable. It can be shown that P(𝑠𝑇)1/𝑠 is

analytic in a neighbourhood of 𝑠 = 0 [RWW24]. In such a neighbourhood, the product formula can be written as an
evolution under an effective Hamiltonian

P1/𝑠 (𝑠𝑇) = 𝑒−𝑖𝑇𝐻eff (𝑠𝑇 )

𝐻eff (𝑠𝑇) = 𝐻 +
∑︁
𝑗≥𝑝

𝐸 𝑗+1𝑠
𝑗𝑇 𝑗

= 𝐻 + 𝐸 (𝑠𝑇)

(5)

where 𝐸 (𝑡) B 𝐻eff (𝑡) − 𝐻 and 𝐸 𝑗+1 are a set of coefficients with explicit form given by the Baker-Campbell-Haussdorf
(BCH) formula. When P is symmetric, the error series is even in 𝑠, meaning 𝐸 𝑗+1 = 0 for odd 𝑗 .

2.2 Variation of Parameters Formula
Our primary technical tool in this work will be the variation of parameters formula for linear operators. Given two
matrices 𝐴, 𝐵, the formula reads

𝑒 (𝐴+𝐵)𝑡 = 𝑒𝐴𝑡 +
∫ 𝑡

0
𝑒𝐴(𝑡−𝜏 )𝐵𝑒 (𝐴+𝐵)𝜏𝑑𝜏. (6)

This can be understood as a special case of the formula from the theory ordinary first-order differential equations,
treating 𝐵 as a perturbation [AAT24].

We apply this formula by focusing on the relevant linear operators acting on the space of observables (sometimes
dubbed "superoperators"). The exact and Trotterized evolutions of an observable 𝑂 under 𝐻 are 𝑂 (𝑇) = 𝑒𝑖𝐻𝑇𝑂𝑒−𝑖𝐻𝑇
and 𝑂̃ (𝑇, 𝑠) = 𝑒𝑖𝑇 (𝐻+𝐸 (𝑠𝑇 ) )𝑂𝑒−𝑖𝑇 (𝐻+𝐸 (𝑠𝑇 ) ) , respectively, with 𝐸 defined in Eq. (5). We see that these are solutions to
the first-order differential equations

𝜕𝑇𝑂 (𝑇) = 𝑖 ad𝐻 𝑂 (𝑇) 𝜕𝑇𝑂̃ (𝑇, 𝑠) = 𝑖 ad𝐻+𝐸 (𝑠𝑇 ) 𝑂̃ (𝑇, 𝑠) (7)

where ad𝐻 (·) B [𝐻, ·]. Taking 𝐴 = 𝑖 ad𝐻 and 𝐵 = 𝑖 ad𝐸 (𝑠𝑇 ) , the formula (6) reads

𝑂̃ (𝑇, 𝑠) = 𝑒𝑖𝑇 ad𝐻eff (𝑂)

= 𝑒𝑖𝑇 ad𝐻 (𝑂) + 𝑖
∫ 𝑇

0
𝑑𝜏𝑒𝑖 (𝑇−𝜏 ) ad𝐻 ad𝐸 (𝑠𝑇 ) (𝑂̃ (𝜏, 𝑠)).

We can recursively insert the variation of parameters formula into the right hand side. Iterating this 𝐾 − 1 times, for
a value of 𝐾 we will choose appropriately, we get a series expansion for the time-evolved observable in terms of the
inverse Trotter-step 𝑠.

𝑂̃ (𝑇, 𝑠) = 𝑂 (𝑇) +
∑︁
𝑗≥𝑝

𝑠 𝑗 𝐸̃ 𝑗+1,𝐾 (𝑇) (𝑂) + 𝐹̃𝐾 (𝑠, 𝑇) (𝑂) (8)

Here 𝐸̃ and 𝐹̃ are (super)operator coefficients. The 𝐹𝐾 term can be thought of a type of remainder, made smaller with
larger 𝐾, and the coefficients 𝐸̃ 𝑗+1,𝐾 consist of nested commutators of the 𝐻𝛾 . These claims are made rigorous in
Section 4.1. The value of this expansion is that, by increasing 𝐾 , we can make the remainder term irrelevant compared
to the dominant errors captured by the power series in 𝐸̃ 𝑗+1,𝐾 . Thus, by characterising the 𝐸̃ 𝑗+1,𝐾 , it becomes much
easier to understand the effects of extrapolation on the resulting estimate.
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2.3 Extrapolation Methods
Eq. (8) defines a series expansion in terms of the inverse Trotter step size 𝑠 for the Trotterized time evolution of an
observable. This, in turn, gives us a series expansion for the scalar-valued function

𝑓 (𝑠) B ⟨𝑂̃ (𝑇, 𝑠)⟩. (9)

Ideally, we wish to estimate 𝑓 (0) to obtain a time evolved expectation value without Trotter error. By taking
measurements at particular values of 𝑠, we can extrapolate to the 𝑠 = 0 ideal. Here we review the two methods to
perform this extrapolation considered in this work: Richardson extrapolation and polynomial interpolation.

2.3.1 Richardson Extrapolation

Given a function 𝑓 with a series expansion, Richardson extrapolation is a method to get iteratively improved estimates
of a particular value [Ric11; Sid03]. Suppose we have a function with the expansion

𝑓 (𝑠) =
∞∑︁
𝑘=1

𝑐𝑘𝑠
𝑘

for some coefficients 𝑐𝑘 , and we wish to approximate 𝑓 (0) when the only information about 𝑓 we have access to values
of 𝑓 (𝑠) for 𝑠 ∈ {𝑠1, . . . , 𝑠𝑚}. Then we can iteratively construct an approximation as follows. Suppose we choose some
𝑠0 = 𝑠 > 0 and 𝑠1 = 𝑥/𝑘1 for integer 𝑘1 ≠ 0. We see that if we evaluate the function at a point 𝑓 (𝑠/𝑘1), we have

𝑓 (𝑠/𝑘1) = 𝑓 (0) + 𝑐1
𝑠

𝑘1
+ 𝑐2

(
𝑠

𝑘1

)2
+𝑂 (𝑠3).

Since 𝑓 (𝑠/𝑘1) and 𝑓 (𝑠)/𝑘1 match at first order, by subtracting the two equations yields

𝑓 (𝑠)/𝑘1 − 𝑓 (𝑠/𝑘1) = (1/𝑘1 − 1) 𝑓 (0) + 𝑐′2𝑠
2 +𝑂 (𝑠3)

or, after dividing by the factor multiplying 𝑓 (0),

𝑓 (𝑠)/𝑘1 − 𝑓 (𝑠/𝑘1)
1/𝑘1 − 1

≡ 𝐹 (1) (𝑠) = 𝑓 (0) + 𝑐2𝑠
2 +𝑂 (𝑠3). (10)

Thus, we have constructed an estimator 𝐹 (1) (𝑠) of 𝑓 (0) accurate to order 𝑂 (𝑠2). By comparison, 𝑓 (𝑠) is only order
𝑂 (𝑠). The precise form of 𝑐2 is irrelevant for the present illustration. The procedure can be iterated again to eliminate
the 𝑐2 terms, and so on as desired.

In general, a linear combination of 𝑚 evaluations of 𝑓 , with suitably chosen coefficients 𝑏 𝑗 , removes 𝑚 terms in the
series expansion. An 𝑚-term Richardson extrapolation 𝐹 (𝑚) (𝑠) has a small 𝑠 behaviour which satisfies

|𝐹 (𝑚) (𝑠) − 𝑓 (0) | ≤
𝑚∑︁
𝑗=1

|𝑏 𝑗 |
����� ∞∑︁
𝑘=𝑚+1

𝑐𝑘𝑠
𝑘

�����
= 𝑂 (𝑠𝑚+1).

Thus, by picking sufficiently small 𝑠 and sufficiently large 𝑚, we achieve a more accurate estimate of 𝑓 (0). We can then
apply this to the series expansion we have from Eq. (8).

When applying a well-condition Richardson extrapolation for time evolved expectation values, we will find that the
error scaling as

|𝐹 (𝑚) (𝑠) − ⟨𝑂 (𝑇)⟩| = 𝑂 (𝑠2𝑚𝑇2𝑚(1+1/𝑝) )

for a symmetric order 𝑝 product formula. By choosing the sampling points {𝑠𝑖}𝑚𝑖=1 such that 𝑠1 is the largest, and all
other are related by the Chebyshev nodes starting from 𝑠1, one can also show robustness of the estimator 𝐹 (𝑚) (𝑠)
to noisy data [LKW19]. We give a more thorough analysis of Richardson extrapolation applied to Trotter-evolved
expectation values in Section 5.
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2.3.2 Polynomial Interpolation

Here we review the proposal of Rendon et al. for using polynomial interpolation as a Trotter extrapolation
method [RWW24]. Given a real-valued function 𝑓 (𝑠) in a domain 𝐷 ⊆ R, and given a set of values 𝑓 (𝑠1), . . . , 𝑓 (𝑠𝑚),
there is a unique (𝑚 − 1) degree polynomial 𝑃𝑚−1 𝑓 which matches the value of 𝑓 at each 𝑠𝑖 . A concrete representation
may be given terms of the Lagrange basis polynomials

𝑃𝑚−1 𝑓 (𝑠) =
𝑚∑︁
𝑖=1

𝑓 (𝑠𝑖)L𝑖 (𝑠),

where

L𝑖 (𝑠) B
∏

1≤𝑛≤𝑚
𝑛≠𝑖

(𝑠 − 𝑠𝑛)
(𝑠𝑖 − 𝑠𝑛)

.

More importantly, 𝑃𝑚−1 𝑓 may be computed by a number of standard techniques such as barycentric interpolation,
which is efficient and stable to floating-point errors [Hig04]. By choosing the sample points 𝑠𝑖 to be at the Chebyshev
nodes of an interval of interest, the interpolation will be robust to errors in the computed values 𝑓 (𝑠𝑖) [Riv20]. These
features make interpolation a plausible tool for Trotter extrapolation.

To apply polynomial interpolation to Trotter-evolved expectation values 𝑓 (𝑠) of Eq. (9), we consider a neighbourhood
[−ℓ, ℓ] of the origin, where ℓ ∈ R+ is to be chosen based on problem parameters. This function can be computed
for both positive and negative 𝑠 using product formulae evolutions on a quantum computer. Performing a Chebyshev
interpolation of 𝑚 ∈ 2Z+ sample points, the final estimate is given by 𝑃𝑚−1 𝑓 (0). Fig. 1 depicts this setup. One can
show [RWW24] that the interpolation error at the point 𝑠 = 0 is bounded as

| 𝑓 (0) − 𝑃𝑚−1 𝑓 (0) | ≤ max
𝜉 ∈[−ℓ,ℓ ]

| 𝑓 (𝑚) (𝜉) |
(
ℓ

2𝑚

)𝑚
. (11)

Utilising the error expansion Eq. (8), we can bound the derivative term as

𝜕𝑚𝑠 ⟨𝑂̃ (𝑇, 𝑠)⟩ = 𝑂
(
ℓ𝑚𝑇𝑚(1+1/𝑝)

)
.

Hence, by choosing the interval with ℓ = 𝑂 (𝑇−(1+1/𝑝) ), we get that the approximation error from Eq. (11) decreasing
exponentially with 𝑚. See Section 6 for the complete analysis.

2.4 Taking the Measurements
So far, we have been concerned with the extrapolation schemes and their accuracies. However, to implement either
Richardson extrapolation or polynomial interpolation, we need to be able to take measurements of the time-evolved
observable at different value of 𝑠, and these measurements come with intrinsic errors (regardless of hardware effects).
For successful overall error reduction, we will require our measurements to be within some error tolerance of the exact
Trotter-evolved expectation value, and from robustness guarantees, this allows us to extrapolate to within a small error
of the ideal evolution. In this work, we consider two schemes for performing the expectation value measurements.

Method 1 (Incoherent): Simply time-evolve the initial state 𝜌0 under P1/𝑠 𝑗 (𝑠 𝑗𝑇), then measure the expecta-
tion value by repeated measurement of 𝑂. The precision will necessarily be shot noise limited, leading to a 𝑂 (1/𝜖2)
cost for precision 𝜖 . However, circuit depths will only be as long as needed to perform a single measurement, and
often these can be estimated straightforwardly with low depth circuits (e.g. using classical shadows using randomised
single-qubit measurements).

Method 2 (Coherent): Use iterative quantum amplitude amplification to achieve Heisenberg-limited scaling 𝑂̃ (1/𝜖) in
the measurement precision. This is essentially a quadratic improvement over in error scaling Method 1 but involves

7



Figure 1: Schematic of the polynomial interpolation procedure. The dotted purple line is the true value of the Trotter-evolved
expectation value, ⟨𝑂̃ (𝑇, 𝑠)⟩, and the blue line is the interpolating polynomial 𝑃𝑚−1 𝑓 (𝑠) for 𝑚 = 8. The red points are estimates of
the time-evolved expectation value obtained via product formula evolution with measurement, which are then used to construct the
polynomial. The final estimator of the expectation value is given by 𝑃𝑚−1 𝑓 (0).

longer circuit depths. Iterative protocols for amplitude estimation require few auxiliary qubits while still achieving
competitive results compared to Fourier-based methods. For our analysis, we consider specifically the iterative Quantum
Amplitude Estimation protocol of Grinko et al. [Gri+21].

A flowchart illustrating the entire extrapolation process is given in Fig. 2. Method 1 optimises for shorter cir-
cuit depths at the expense of greater overall resources by using incoherent measurements for observables. As such, this
method may be more promising for NISQ devices. Method 2 uses coherent measurements to improve the overall scaling
at the expense of longer circuits, and hence may be more useful for fault-tolerant devices.

8



Figure 2: Flowchart indicating the incoherent (Method 1) and coherent (Method 2) schemes for performing extrapolation of the
time-evolved expectation values using product formulae, where the specified time and final error are 𝑇 and 𝜖 respectively. For each
time-step size, we need to make a measurement of the observable’s expectation to precision 𝜖 . While the incoherent scheme is simpler
and requires shorter circuit depths, the coherent scheme achieves a quadratic speedup from using quantum amplitude estimation.
Regardless of the measurement protocol, the algorithm concludes with the same classical calculation of the acquired data.
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3 Results
Our results are stated for two separate measurement routines for performing the expectation value calculations, as
discussed in Section 2.4. Fig. 2 gives a schematic workflow for the extrapolation protocols using either measurement
type. We now informally state the main results of our work; see later sections for more rigorous formulations.

Theorem 1 (Trotter Extrapolation Resource Counts (Informal)). Let 𝑂 be an observable and 𝐻 =
∑Γ
𝛾 𝐻𝛾 be a time

independent Hamiltonian. Let 𝑂est be the estimate for a time-evolved expectation value on an arbitrary initial state,
⟨𝑂 (𝑇)⟩, produced by varying the Trotter step-size of a 𝑝th-order Trotter-Suzuki formula, taking 𝑚 measurement samples,
and then extrapolating to the zero step-size limit using either Richardson extrapolation or polynomial interpolation.
Then, for a simulation time 𝑇 , a relative error 𝜖 can be achieved, with high probability, such that

|⟨𝑂 (𝑇)⟩ −𝑂est | ≤ 𝜖 ∥𝑂∥

using 𝑚 = 𝑂 (log(1/𝜖)) extrapolation points. Furthermore, the maximum circuit depth and total gate count for each of
the estimation subroutines described above scales as given in the following table.

Method
Cost Max Circuit Depth Total Gate Cost

Incoherent 𝑂̃

(
(𝜆𝑇)1+1/𝑝 polylog

( 1
𝜖

) )
𝑂̃

(
(𝜆𝑇 )1+1/𝑝

𝜖 2 polylog
( 1
𝜖

) )
Coherent 𝑂̃

(
(𝜆𝑇 )1+1/𝑝

𝜖
polylog

( 1
𝜖

) )
𝑂̃

(
(𝜆𝑇 )1+1/𝑝

𝜖
polylog

( 1
𝜖

) )
Here 𝑂̃ hides log log factors, and 𝜆 ≤ 4

∑
𝛾 ∥𝐻𝛾 ∥ is a nested commutator with full expression given in Lemma 7.

These results demonstrate an improvement in circuit depth over the direct application of product formulae by an
exponential in the error scaling, while maintaining the same time scaling (see Table 1 for a direct comparison for
the results in Theorem 1). As we discuss in Section 3.1 below, our analysis improves on prior results for both
Richardson extrapolation and polynomial interpolation. The extrapolated techniques are shown to inherit all the of
desirable properties of standard product-formulae methods such as locality, commutator scaling, respecting the system’s
symmetries, etc. We note that the results have either 1/𝜖 or 1/𝜖2 scaling for the coherent or incoherent measurement
procedures respectively; this is a consequence of the measurement protocols, not the time evolution. Indeed, this scaling
would be present even for LCU or quantum signal processing simulation techniques using the incoherent or coherent
measurement protocols, and lower bounds can be shown from results in metrology [GLM06].

Trotter Performance without Extrapolation

Method
Cost Max Circuit Depth Total Gate Cost

Incoherent [Chi+21] 𝑂̃

(
(𝛼(𝑝+1)

comm )1/𝑝𝑇1+1/𝑝

𝜖 1/𝑝

)
𝑂̃

(
(𝛼(𝑝+1)

comm )1/𝑝𝑇1+1/𝑝

𝜖 2+1/𝑝

)
Coherent [Chi+21] 𝑂̃

(
(𝛼(𝑝+1)

comm )1/𝑝𝑇1+1/𝑝

𝜖 1+1/𝑝

)
𝑂̃

(
(𝛼(𝑝+1)

comm )1/𝑝𝑇1+1/𝑝

𝜖 1+1/𝑝

)
Table 1: Summary of asymptotic scalings for Trotter-based protocols for time-evolved expectation values without extrapolation.
Results are obtained using current best scalings for product formulae (see reference). This should be compared to the results in
Theorem 1. The quantity 𝛼 (𝑝+1)

comm ≤ 2𝑝 (∑𝛾 ∥𝐻𝛾 ∥)𝑝+1 is a sum of 𝑝 + 1 nested commutators defined in Eq. (15).

Additionally, method 1 (using incoherent measurements) is fully compatible with classical shadow-based techniques.
That is, if we wish to estimate 𝑀 different local observables with probability ≥ 1 − 𝛿, then we get an additional resource
cost 𝑂 (log(𝑀/𝛿)). In Appendix A, we also show how the prefactors in Theorem 1 can be improved by taking into
account symmetries of the system.

Finally we note that the bounds in Theorem 1 are in terms of the number of Trotter steps. The total number of
elementary exponential operations comes with a multiplicative factor ΥΓ which may contain additional information
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about scaling with system size. A true elementary circuit depth and gate cost would require more specification of a
computational model, such as a 𝑘-local or sparse matrix model.

3.1 Comparison to Previous Extrapolation Results
Richardson Extrapolation. The use of Richardson extrapolation to reduce Trotter error was originally proposed in
[End+19]. Although the authors note that Richardson extrapolation should reduce the error with repeated samples,
the work does not provide rigorous resource estimates in terms of the basic simulation parameters. Subsequent
work in [Vaz+23] employs Richardson extrapolation on actual quantum hardware, observing improvements over bare
simulation results. However, there appear to be errors in the formal treatment of the algorithmic error, which we discuss
in Appendix C. As a result, a rigorous asymptotic analysis of the scaling of Richardson extrapolation for quantum
simulation does not appear to be present in the literature. We hope the present work provides a more complete theoretical
picture of the Richardson approach.

Polynomial Interpolation. The polynomial interpolation approach was introduced and rigorously analysed in
[RWW24]. There it was shown that, to measure an observable at time 𝑇 , it is sufficient to use a total number of Trotter
steps (in the coherent measurement case) scaling as 𝑂̃

(
(𝜒𝑇 )2

𝜖
log

(
𝑇
𝜖

) )
, independent of the order of product formula,

where 𝜒 = Γmax𝛾 ∥𝐻𝛾 ∥. Besides scaling as a first-order product formula in 𝑇 , regardless of the order, it additionally
does not demonstrate the expected commutator scaling, and instead depends on the Hamiltonian’s norm. Furthermore,
the prior work invokes the use of fractional implementations of the product formula, i.e. P 𝛿 for 𝛿 ∈ (0, 1). Although
this can be implemented by quantum signal processing methods, this may not be easily achievable on a NISQ device. If
the fractional implementation is not used, then previous analysis leads to a 𝑂

(
𝑇3

𝜖
log

(
𝑇
𝜖

) )
scaling on account of the

imperfect Chebyshev nodes. By contrast, the present work demonstrates improved time scaling, commutator scaling,
and avoids the need to implement fractional product formulae. Recent work in [Ren23] demonstrates how to deal with
the fractional queries and achieves a 𝑂 (𝑇1+1/𝑝) scaling in the time parameter, but does not give explicit prefactors or
commutator scaling.

Other Approaches using Classical Post-Processing. Other approaches at “dequantising” Hamiltonian simulation
techniques exist, but are not directly related to the present work. For example, [Fae+22] introduce a randomised version
of the multiproduct formula presented in [LKW19], achieving near-optimal scaling. However, the method requires
auxiliary qubits and control operations. Further work on the dequantising the multiproduct formula can be seen in
[ZRB23], in which they improve the scaling of the multiproduct formula and show it satisfies commutator scaling
with a quadratic improvement in the error associated with the size of the time-steps relative to standard 𝑝𝑡ℎ-order
product formulae. Other approaches include constructing non-unitary channels which can be computed using classical
post-processing using randomised compiling methods [Gon+23; NBA24].

4 Error Analysis
In this section, we derive our primary technical results and develop our most important tool: an explicit series expansion,
with respect to Trotter step, of a time evolved expectation value of an observable 𝑂 evolved under a product formula.
The results contained here will be directly applied to Richardson extrapolation and polynomial interpolation in the
appropriately labelled subsequent sections. Our approach is directly inspired by the recent work of Aftab et al. [AAT24],
and much of the logic follows closely.

We begin with some essential concepts and definitions. A staged product formula P is, in the sense of [Chi+21],
one which can be expressed as

P(𝑡) B
Υ∏
𝜐=1

Γ∏
𝛾=1

𝑒
−𝑖𝑡𝑎(𝜐,𝛾)𝐻𝜋𝜐 (𝛾) , (12)
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where Υ ∈ Z+ is the number of stages, 𝑎 (𝜐,𝛾) ∈ R are coefficients and 𝜋𝜐 ∈ 𝑆Γ are permutations. For 𝑝 ∈ Z+, a 𝑝th
order product formula satisfies

P(𝑡) − 𝑒−𝑖𝐻𝑡 = 𝑂 (𝑡 𝑝+1) (13)

in the small 𝑡 limit. For ease of notation, let [𝑋1𝑋2 . . . 𝑋𝑛] refer to a right-nested 𝑛-commmutator

[𝑋1𝑋2 . . . 𝑋𝑛] B [𝑋1, [𝑋2, [. . . [𝑋𝑛−1, 𝑋𝑛] . . .]]] (14)

and define

𝛼
( 𝑗 )
comm B

Γ∑︁
𝛾1𝛾2...𝛾 𝑗=1

∥ [𝐻𝛾1𝐻𝛾2 . . . 𝐻𝛾 𝑗 ] ∥. (15)

It will be useful, for our purposes, to employ a BCH formula based on right-nested commutators [ACC21]. We first
define

𝜙 𝑗 (𝑌1, 𝑌2, . . . , 𝑌 𝑗 ) B
1
𝑗2

∑︁
𝜎∈𝑆 𝑗

(−1)𝑑𝜎
(
𝑗 − 1
𝑑𝜎

)−1
[𝑌𝜎 (1) . . . 𝑌𝜎 ( 𝑗 ) ] . (16)

where 𝑆 𝑗 is the set of permutations over 𝑗 elements and 𝑑𝜎 is the number of descents in 𝜎. An index 𝑖 is a descent of 𝜎
if 𝜎(𝑖) > 𝜎(𝑖 + 1). In these terms, the BCH formula reads

𝑛∏
𝑖=1

𝑒𝑋𝑖 = 𝑒𝑍 (17)

where

𝑍 =

𝑛∑︁
𝑖=1

𝑋𝑖 +
∞∑︁
𝑗=2

1
𝑗!

∑︁
J

(
𝑗

𝑗1 . . . 𝑗𝑛

)
𝜙 𝑗

(
𝑋
× 𝑗1
1 , . . . , 𝑋

× 𝑗𝑛
𝑛

)
. (18)

Here, the J sums appropriately over the multinomial

J B {( 𝑗1, . . . , 𝑗𝑛) ∈ N𝑛 |
𝑛∑︁
𝑗=1

𝑗𝑖 = 𝑗} (19)

and 𝑋×𝑖 refers to 𝑖 copies of 𝑋 in the argument. The expression Eq. (18) is formal and may not converge. Convergence
is guaranteed provided that the nested commutators do not grow too rapidly.

We begin with a lemma concerning an error series in the effective Hamiltonian 𝐻eff (𝑡), which approximates 𝐻 for
small 𝑡. It follows essentially from [Chi+21, Theorem 9].

4.1 Error Expansion of the Trotterized Operator
Lemma 2 (Effective Hamiltonian Error Series). Let P be a staged product formula with coefficients 𝑎 (𝜐,𝛾) of order
𝑝 ∈ Z+, and let 𝐻eff be the effective Hamiltonian of P defined by the relation

P(𝑡) = 𝑒−𝑖𝑡𝐻eff (𝑡 ) .

for 𝑡 ∈ R. Suppose that there exists a 𝐽 ∈ Z+ and 𝐶 ∈ R+ such that

sup
𝑗≥𝐽

𝛼
( 𝑗 )
comm (𝑎maxΥ|𝑡 |) 𝑗 ≤ 𝐶,

with 𝑎max B max𝜐,𝛾 |𝑎 (𝜐,𝛾) |. Then the effective Hamiltonian can be written as

𝐻eff (𝑡) = 𝐻 +
∞∑︁
𝑗=1

𝐸 𝑗+1𝑡
𝑗

12



where

𝐸 𝑗 B
(−𝑖) 𝑗−1

𝑗!

∑︁
J

(
𝑗

𝑗1 . . . 𝑗𝑛

) (
𝑛∏
𝑖=1

𝑎
𝑗𝑖
𝑖

)
𝜙 𝑗

(
𝐻

× 𝑗1
𝛾1 , . . . , 𝑋

× 𝑗𝑛
𝛾𝑛

)
and 𝑛 = ΥΓ. Moreover, 𝐸 𝑗 satisfies the bound

∥𝐸 𝑗 ∥ ≤ (𝑎maxΥ) 𝑗
𝑗2

𝛼
( 𝑗 )
comm.

.

Proof. Consider P written as

P(𝑡) =
𝑛∏
𝑖=1

𝑒−𝑖𝑡𝑎𝑖𝐻𝑖 (20)

with 𝐻𝑖 ≡ 𝐻𝛾𝑖 notated as such for simplicity, and because we aren’t concerned with the possibility that 𝐻𝑖 = 𝐻 𝑗 may
frequently occur. By definition of 𝐻eff we have

𝑛∏
𝑖=1

𝑒−𝑖𝑡𝑎𝑖𝐻𝑖 = 𝑒−𝑖𝐻eff 𝑡 (21)

and may therefore express 𝐻eff as a formal BCH expansion. Using Eq. (18) with 𝑍 = −𝑖𝑡𝐻eff (𝑡) and 𝑋𝑖 = −𝑖𝑡𝑎𝑖𝐻𝑖 ,

−𝑖𝑡𝐻eff (𝑡) =
𝑛∑︁
𝑖=1

−𝑖𝑡𝑎𝑖𝐻𝑖 +
∞∑︁
𝑗=2

1
𝑗!

∑︁
J

(
𝑗

𝑗1 . . . 𝑗𝑛

)
𝜙 𝑗

(
(−𝑖𝑡𝑎1𝐻1)× 𝑗1 , . . . , (−𝑖𝑡𝑎𝑛𝐻× 𝑗𝑛

𝑛 )
)
. (22)

Since P is at least 1st order, we have
∑
𝑖 𝑎𝑖𝐻𝛾𝑖 = 𝐻. Using the multilinearity of 𝜙 𝑗 ,

𝐻eff (𝑡) = 𝐻 +
∞∑︁
𝑗=1

(−𝑖𝑡) 𝑗
( 𝑗 + 1)!

∑︁
J

(
𝑗 + 1
𝑗1 . . . 𝑗𝑛

) (
𝑛∏
𝑖=1

𝑎
𝑗𝑖
𝑖

)
𝜙 𝑗+1

(
𝐻

× 𝑗1
1 , . . . , 𝐻

× 𝑗𝑛
𝑛

)
= 𝐻 +

∞∑︁
𝑗=1
𝑡 𝑗𝐸 𝑗+1

(23)

where we’ve defined the Hermitian error operators

𝐸 𝑗 B
(−𝑖) 𝑗−1

𝑗!

∑︁
J

(
𝑗

𝑗1 . . . 𝑗𝑛

) (
𝑛∏
𝑖=1

𝑎
𝑗𝑖
𝑖

)
𝜙 𝑗

(
𝐻

× 𝑗1
1 , . . . , 𝐻

× 𝑗𝑛
𝑛

)
. (24)

Applying the triangle inequality and using the definition of 𝜙 𝑗 in Eq. (16)

∥𝐸 𝑗 ∥ ≤ 1
𝑗!

∑︁
J

(
𝑗

𝑗1 . . . 𝑗𝑛

) (
𝑛∏
𝑖=1

|𝑎𝑖 | 𝑗𝑖
)

1
𝑗2

∑︁
𝜎∈𝑆 𝑗

(
𝑗 − 1
𝑑𝜎

)−1
∥ [𝐻𝜎 (𝑖1 ) . . . 𝐻𝜎 (𝑖 𝑗 ) ] ∥, (25)

where
𝐻𝑖1 . . . 𝐻𝑖 𝑗 = 𝐻

× 𝑗1
1 . . . 𝐻

× 𝑗𝑛
𝑛 (26)

and 𝑖𝑘 ∈ {1, . . . , 𝑛}. We wish to reindex this sum to be over tuples (𝑖1, . . . , 𝑖 𝑗 ) with 𝑖𝑘 ∈ {1, . . . 𝑛} varying freely, and
accomplish this by rehashing arguments used surrounding [AAT24, Eq. (44)]. For a given [𝐻𝑖1 . . . 𝐻𝑖 𝑗 ], there exists a
unique ( 𝑗1, . . . , 𝑗𝑛) ∈ J specifying the terms in that commutator, as the 𝑗𝑘 indices give the number of each 𝐻𝑘 present
in the commutator, and this is a function of a full (𝑖1, . . . , 𝑖 𝑗 ) specification. Thus, we may write

∥𝐸 𝑗 ∥ ≤ 1
𝑗! 𝑗2

𝑛∑︁
𝑖1...𝑖 𝑗=1

∥ [𝐻𝑖1 . . . 𝐻𝑖 𝑗 ] ∥
(
𝑗

®𝚥

) (
𝑗∏
𝑘=1

|𝑎𝑖𝑘 |
) ∑︁
𝜎∈𝑆 (𝑖1 ,...,𝑖 𝑗 )

(
𝑗 − 1
𝑑𝜎

)−1
(27)
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where ®𝚥 = ( 𝑗1, . . . 𝑗𝑛) is the vector of counts determined by the 𝑖𝑘 , and 𝑆(𝑖1, . . . , 𝑖 𝑗 ) ⊆ 𝑆 𝑗 refers to the permutations
which leave the sequence (𝑖1, . . . , 𝑖 𝑗 ) invariant. There are exactly 𝑗1! 𝑗2! . . . 𝑗𝑛! of these. Thus,∑︁

𝜎∈𝑆 (𝑖1 ,...,𝑖 𝑗 )

(
𝑗 − 1
𝑑𝜎

)−1
≤

∑︁
𝜎∈𝑆 (𝑖1 ,...,𝑖 𝑗 )

1 = 𝑗1! 𝑗2! . . . 𝑗𝑛! (28)

and therefore

∥𝐸 𝑗 ∥ ≤ 1
𝑗2

𝑛∑︁
𝑖1 ,...𝑖 𝑗=1

∥ [𝐻𝑖1 . . . 𝐻𝑖 𝑗 ] ∥
𝑗∏
𝑘=1

|𝑎𝑖𝑘 |

≤ 𝑎
𝑗
max
𝑗2

𝑛∑︁
𝑖1 ,...𝑖 𝑗=1

∥ [𝐻𝑖1 . . . 𝐻𝑖 𝑗 ] ∥
(29)

where 𝑎max B max𝑖 𝑎𝑖 . We now remember that each 𝐻𝑖𝑛 runs Υ times over each term 𝐻𝛾 in 𝐻. Thus, each sequence
𝐻𝛾1𝐻𝛾2 . . . 𝐻𝛾 𝑗 is represented Υ 𝑗 times in the multi-index (𝑖1, . . . , 𝑖 𝑗 ). Hence,

𝑛∑︁
𝑖1 ,...𝑖 𝑗=1

∥ [𝐻𝑖1 . . . 𝐻𝑖 𝑗 ] ∥ = Υ 𝑗

Γ∑︁
𝛾1 ,...,𝛾 𝑗=1

∥ [𝐻𝛾1 . . . 𝐻𝛾 𝑗 ] ∥ = Υ 𝑗𝛼
( 𝑗 )
comm. (30)

This gives our upper bound on 𝐸 𝑗 from the lemma statement.
To summarise, we have that 𝑡𝐻eff (𝑡) = 𝑡𝐻 +∑∞

𝑗=1 𝐸 𝑗+1𝑡
𝑗+1 provided that the series converges. A sufficient condition

is absolute convergence, namely the convergence of

∞∑︁
𝑗=2

|𝑡 | 𝑗 ∥𝐸 𝑗 ∥. (31)

We note that
∑
𝑗 𝐶/ 𝑗2 is a convergent series for all 𝐶 ∈ R+, and thus, by the squeeze theorem, it suffices that there exists

an 𝐽 ∈ Z+ such that for all 𝑗 ≥ 𝐽, 𝑡 𝑗 ∥𝐸 𝑗 ∥ ≤ 𝐶/ 𝑗2. Using our bound on ∥𝐸 𝑗 ∥, this is satisfied provided

(𝑎maxΥ𝑡) 𝑗 𝛼 ( 𝑗 )
comm ≤ 𝐶 (32)

for such 𝑗 . This is equivalent to the condition provided in the lemma. □

Observe that less stringent conditions for convergence could be derived, e.g., by bounding the series with a 1/ 𝑗1+𝜖
decay for any 𝜖 > 0 instead of 1/ 𝑗2, and indeed the condition under which such series converge is well studied [Lak17;
Lak19]. However, our condition here is simple enough and not too stringent. Using the bound

𝛼
( 𝑗 )
comm ≤ 1

2

(
2
∑︁
𝛾

∥𝐻𝛾 ∥
) 𝑗

(33)

we may obtain the simpler, sufficient condition

2𝑎maxΥ|𝑡 |
Γ∑︁
𝛾=1

∥𝐻𝛾 ∥ < 1 (34)

which shows that, for any 𝐻, there exists an open neighbourhood about 𝑡 = 0 for which the BCH series converges. For
the case of Trotter-Suzuki formulae P = 𝑆2𝑘 , we have [Wie+10, Appendix A] 𝑎max ≤ 2𝑘/3𝑘 and Υ = 2 × 5𝑘−1.

A symmetric product formula is one for which P(−𝑡) = P−1 (𝑡). For 𝑝th order formulas, the lowest 𝐸 𝑗 are zero, and
for symmetric formulas, the error series for 𝐻eff is even, as is captured in the following lemma.
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Lemma 3. Let P(𝑡) be a 𝑝th order staged product formula, and suppose the BCH convergence condition of Lemma 2
holds. Then the error operators 𝐸 𝑗+1 from Lemma 2 are zero for all 𝑗 < 𝑝. Moreover, for symmetric P, 𝐸 𝑗+1 = 0 for all
odd 𝑗 .

Proof. We will show that 𝐻eff (𝑡) = 𝐻 +𝑂 (𝑡 𝑝), which directly implies the first claim of the lemma. The Hamiltonians
𝐻eff (𝑡) and 𝐻 may be defined through the logarithm

𝐻eff (𝑡) = − 1
𝑖𝑡

log P(𝑡), 𝐻 = − 1
𝑖𝑡

log𝑈 (𝑡) (35)

and, in a neighborhood of 𝑡 = 0, the logarithm may be expanded in a power series.

𝐻eff (𝑡) − 𝐻 = − 1
𝑖𝑡

∞∑︁
𝑗=0

(−1) 𝑗
𝑗 + 1

[
(P(𝑡) − 1) 𝑗+1 − (𝑈 (𝑡) − 1) 𝑗+1]

=
1
𝑖𝑡

∞∑︁
𝑗=1

(−1) 𝑗
𝑗

[
𝑗∑︁
𝑘=0

(−1) 𝑗−𝑘 (P𝑘 (𝑡) −𝑈𝑘 (𝑡))
] (36)

Since P(𝑡) −𝑈 (𝑡) = 𝑂 (𝑡 𝑝+1) we have that P(𝑡) −𝑈 (𝑡) = 𝑡 𝑝+1𝐸 (𝑡) for some analytic, operator-valued function 𝐸 . In
fact, this implies

P𝑘 (𝑡) −𝑈𝑘 (𝑡) = 𝑡 𝑝+1𝐸 (𝑘 ) (𝑡) (37)

for some analytic 𝐸 (𝑘 ) . Factoring out the 𝑡 𝑝+1 from the series, we find that

𝐻eff (𝑡) − 𝐻 = 𝑡 𝑝 𝐸̃ (𝑡) (38)

where, again, 𝐸̃ is some analytic operator-valued function. This shows that 𝐻eff (𝑡) − 𝐻 = 𝑂 (𝑡 𝑝) and thus, provided the
BCH series exists, all 𝐸 𝑗 = 0 for 𝑗 < 𝑝.

For symmetric product formulas, the condition P(−𝑡) = P† (𝑡) (P is unitary) implies for the effective Hamiltonian
that

(−𝑖𝑡𝐻eff (𝑡))† = −𝑖(−𝑡)𝐻eff (−𝑡) (39)

which further implies 𝐻eff (𝑡) is an even function. Thus, the BCH error series is even provided it exists. □

As an aside, it is possible that the order conditions from [Chi+21, Theorem 9], could be adapted for our purposes.
However, they characterise their exponential error using a time-ordered exponential, which is suitable for their objectives
but less so for ours.

We have thus characterised the error terms in 𝐻eff adequately for our purposes. Moving towards our primary interest,
dynamical evolution of observables, we now wish to construct an error series for an observable evolved under a product
formula. The following lemma provides what we need, and mimics the ideas of [AAT24].

Lemma 4. Let P be a staged 𝑝th order product formula and let 𝑂 be an observable. For any 𝑠 ∈ R, let

𝑂̃ (𝑇, 𝑠) B P1/𝑠† (𝑠𝑇)𝑂P1/𝑠 (𝑠𝑇)

be the approximate evolution of 𝑂 for duration 𝑇 ∈ R and Trotter step size 𝑠𝑇 , with 𝑠 = 0 defined via the limit. Suppose
that there exists a 𝐽 ∈ Z+ and 𝐶 ∈ R+ such that

sup
𝑗≥𝐽

𝛼
( 𝑗 )
comm (𝑎maxΥ|𝑠𝑇 |) 𝑗 ≤ 𝐶,

with 𝑎max B max𝜐,𝛾 |𝑎 (𝜐,𝛾) |. Let 𝜎 = 2 if P is symmetric, 1 otherwise. Then for any 𝐾 ∈ Z+, the approximation error
in 𝑂̃ (𝑇, 𝑠) compared with the exact evolution 𝑂 (𝑇) B 𝑒𝑖𝐻𝑇𝑂𝑒−𝑖𝐻𝑇 may be expressed as

𝑂̃ (𝑇, 𝑠) −𝑂 (𝑇) =
∑︁

𝑗∈𝜎Z+≥𝑝
𝑠 𝑗 𝐸̃ 𝑗+1,𝐾 (𝑇) (𝑂) + 𝐹̃𝐾 (𝑇, 𝑠) (𝑂).
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Here, 𝐸̃ 𝑗+1,𝐾 (𝑇) and 𝐹̃𝐾 (𝑇, 𝑠) are superoperators whose induced spectral norm ∥·∥ is bounded as

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤ (𝑎maxΥ𝑇) 𝑗
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1

(𝑎maxΥ𝑇)𝑙
𝑙!

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)

∥𝐹̃𝐾 (𝑇, 𝑠)∥ ≤ (𝑎maxΥ𝑇)𝐾
𝐾!

∑︁
𝑗∈𝜎Z+≥𝐾𝑝

(𝑎maxΥ𝑠𝑇) 𝑗
©­­­«

∑︁
𝑗1... 𝑗𝐾 ∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝐾= 𝑗

(
𝐾∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)ª®®®¬ .
Proof. By definition, we have that

P1/𝑠 (𝑠𝑇) = 𝑒−𝑖𝑇𝐻eff (𝑡 ) , (40)

where 𝑡 := 𝑠𝑇 is the Trotter step size. By Lemma 2, 𝐻eff is expandable as a BCH series, and we write 𝐻eff (𝑡) = 𝐻 +𝐸 (𝑡),
where

𝐸 (𝑡) =
∑︁

𝑗∈𝜎Z+≥𝑝
𝐸 𝑗+1𝑡

𝑗 . (41)

In what follows, the independent parameters are 𝑡 and 𝑇 , and any 𝑡-dependence is left implicit. Our analysis is based
on the variation of parameters formula applied to the Hamiltonian evolution of observables. For observable 𝑂, and
Hermitian 𝐻 and 𝐸 , the evolution equations for 𝑂̃ (𝑇) := 𝑒𝑖 (𝐻+𝐸 )𝑇𝑂𝑒−𝑖 (𝐻+𝐸 )𝑇 and 𝑂 (𝑇) := 𝑒𝑖𝐻𝑇𝑂𝑒−𝑖𝐻𝑇 are given by

𝜕𝑇𝑂̃ (𝑇) = 𝑖[𝐻 + 𝐸, 𝑂̃ (𝑇)], 𝜕𝑇𝑂 (𝑇) = 𝑖[𝐻,𝑂 (𝑇)] . (42)

For ease of notation, we will write this in a super-operator formalism

𝑂̃ (𝑇, 𝑠) = 𝑒𝑖𝑇 ad𝐻+𝐸𝑂, 𝑂 (𝑇) = 𝑒𝑖𝑇 ad𝐻𝑂 (43)

where ad𝑋 (·) := [𝑋, ·] is (anti) Hermitian with respect to the Hilbert-Schmidt inner product when 𝑋 is (anti) Hermitian
with respect to the standard inner product. In this context, the variation of parameters formula (6) gives

𝑂̃ (𝑇, 𝑠) = 𝑂 (𝑇) +
∫ 𝑇

0
𝑑𝜏1𝑒

𝑖 (𝑇−𝜏1 ) ad𝐻 𝑖 ad𝐸 (𝑂̃ (𝜏1)). (44)

Iterating this formula once,

𝑂̃ (𝑇, 𝑠) = 𝑂 (𝑇)

+
∫ 𝑇

0
𝑑𝜏1𝑒

𝑖 (𝑇−𝜏1 ) ad𝐻 𝑖 ad𝐸 (𝑂 (𝜏1)) +
∫ 𝑇

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2𝑒

𝑖 (𝑇−𝜏1 ) ad𝐻 𝑖 ad𝐸 𝑒𝑖 (𝜏1−𝜏2 ) ad𝐻 𝑖 ad𝐸 (𝑂̃ (𝜏2)). (45)

Iterating 𝐾 − 1 times gives

𝑂̃ (𝑇, 𝑠) = 𝑂 (𝑇)

+
𝐾−1∑︁
𝑙=1

∫ 𝑇

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2· · ·

∫ 𝜏𝑙−1

0
𝑑𝜏𝑙𝑒

𝑖 (𝑇−𝜏1 ) ad𝐻 𝑖 ad𝐸 𝑒𝑖 (𝜏1−𝜏2 ) ad𝐻 𝑖 ad𝐸 . . . 𝑒𝑖 (𝜏𝑙−1−𝜏𝑙 ) ad𝐻 𝑖 ad𝐸 (𝑂 (𝜏𝑙)) (46)

+
∫ 𝑇

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2· · ·

∫ 𝜏𝑝−1

0
𝑑𝜏𝐾𝑒

𝑖 (𝑇−𝜏1 ) ad𝐻 𝑖 ad𝐸 𝑒𝑖 (𝜏1−𝜏2 ) ad𝐻 𝑖 ad𝐸 . . . 𝑒𝑖 (𝜏𝐾−1−𝜏𝐾 ) ad𝐻 𝑖 ad𝐸 (𝑂̃ (𝜏𝐾 )). (47)
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Taking line (46) and expanding the definition of 𝐸 ,
𝐾−1∑︁
𝑙=1

∫ 𝑇

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2· · ·

∫ 𝜏𝑙−1

0
𝑑𝜏𝑙𝑒

𝑖 (𝑇−𝜏1 ) ad𝐻 𝑖 ad𝐸 𝑒𝑖 (𝜏1−𝜏2 ) ad𝐻 𝑖 ad𝐸 . . . 𝑒𝑖𝜏𝑙−1−𝜏𝑙 ) ad𝐻 𝑖 ad𝐸 (𝑂 (𝜏𝑙))

=

𝐾−1∑︁
𝑙=1

∫ 𝑇

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2· · ·

∫ 𝜏𝑙−1

0
𝑑𝜏𝑙

( 1∏
𝜅=𝑙

( ∑︁
𝑗𝜅 ∈𝜎Z+≥𝑝

𝑒𝑖 (𝜏𝜅−1−𝜏𝜅 ) ad𝐻 𝑖 ad𝐸 𝑗𝜅+1 𝑡
𝑗𝜅

))
(𝑂 (𝜏𝑙)) (48)

=

𝐾−1∑︁
𝑙=1

∫ 𝑇

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2· · ·

∫ 𝜏𝑙−1

0
𝑑𝜏𝑙

©­­­«
∑︁

𝑗∈𝜎Z+≥𝑝𝑙
𝑡 𝑗

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

( 1∏
𝜅=𝑙

𝑒𝑖 (𝜏𝜅−1−𝜏𝜅 ) ad𝐻 𝑖 ad𝐸 𝑗𝜅+1

)ª®®®¬ (𝑂 (𝜏𝑙)) (49)

with 𝜏0 ≡ 𝑇 . We now reinsert 𝑡 = 𝑠𝑇 , and make a change of variables 𝑠𝑖 = 𝜏𝑖/𝑇 . This gives

𝐾−1∑︁
𝑙=1

𝑇 𝑙
∫ 1

0
𝑑𝑠1

∫ 𝑠1

0
𝑑𝑠2· · ·

∫ 𝑠𝑙−1

0
𝑑𝑠𝑙

©­­­«
∑︁

𝑗∈𝜎Z+≥𝑝𝑙
(𝑠𝑇) 𝑗

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

( 1∏
𝜅=𝑙

𝑒𝑖 (𝑠𝜅−1−𝑠𝜅 )𝑇 ad𝐻 𝑖 ad𝐸 𝑗𝜅+1

)ª®®®¬ (𝑂 (𝑇𝑠𝑙)). (50)

Next, we regroup the sum according to the degree of 𝑠, which yields∑︁
𝑗∈𝜎Z+≥𝑝

(𝑠𝑇) 𝑗
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1
𝑇 𝑙

∫ 1

0
𝑑𝑠1

∫ 𝑠1

0
𝑑𝑠2· · ·

∫ 𝑠𝑙−1

0
𝑑𝑠𝑙

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

( 1∏
𝜅=𝑙

𝑒𝑖𝑇 (𝑠𝜅−1−𝑠𝜅 ) ad𝐻 𝑖 ad𝐸 𝑗𝜅+1

)
(𝑂 (𝑇𝑠𝑙))

=
∑︁

𝑗∈𝜎Z+≥𝑝
𝑠 𝑗 𝐸̃ 𝑗+1,𝐾 (𝑇) (𝑂). (51)

Here, we have defined

𝐸̃ 𝑗+1,𝐾 (𝑇) B
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1
𝑇 𝑗+𝑙

∫ 1

0
𝑑𝑠1

∫ 𝑠1

0
𝑑𝑠2· · ·

∫ 𝑠𝑙−1

0
𝑑𝑠𝑙

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

( 1∏
𝜅=𝑙

𝑒𝑖 (𝑠𝜅−1−𝑠𝜅 )𝑇 ad𝐻 𝑖 ad𝐸 𝑗𝜅+1

)
𝑒𝑖𝑠𝑙𝑇 ad𝐻 . (52)

We now want to put bounds on the norm of 𝐸̃ 𝑗+1,𝐾 . Using the triangle inequality, unitarity of 𝑒𝑖𝜏 ad𝐻 , and evaluating the
remaining integral,

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1
𝑇 𝑗+𝑙

∫ 1

0

∫ 𝑠1

0
· · ·

∫ 𝑠𝑙−1

0
𝑑𝑠𝑙

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

∥ad𝐸 𝑗𝜅+1 ∥
)

≤ 𝑇 𝑗
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1

𝑇 𝑙

𝑙!

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

∥ad𝐸 𝑗𝜅+1 ∥
)
.

(53)

Noting that ∥ad𝑥 ∥ ≤ 2∥𝑋 ∥ and applying Lemma 2,

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤ 𝑇 𝑗
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1

𝑇 𝑙

𝑙!

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

2𝛼 ( 𝑗𝜅+1)
comm

(𝑎maxΥ) 𝑗𝜅+1

( 𝑗𝜅 + 1)2

)

= (𝑎maxΥ𝑇) 𝑗
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1

(𝑎maxΥ𝑇)𝑙
𝑙!

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)
.

(54)
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So far we have considered the terms in line (46). We now consider line (47), which we will denote as 𝐹̃𝐾 (𝑇, 𝑠).
Applying the triangle inequality and utilising unitarity in a similar manner as above, we can check that the operator
norm of 𝐹̃𝐾 (𝑇, 𝑠) is bounded by

∥𝐹̃𝐾 (𝑇, 𝑠)∥ ≤ 𝑇𝐾

𝐾!
∥ad𝐸 ∥𝐾

≤ 𝑇𝐾

𝐾!
2𝐾 ∥𝐸 ∥𝐾

≤ 𝑇𝐾

𝐾!
2𝐾

( ∑︁
𝑗∈𝜎Z+≥𝑝

∥𝐸 𝑗+1∥(𝑠𝑇) 𝑗
)𝐾

=
𝑇𝐾

𝐾!
2𝐾

∑︁
𝑗1... 𝑗𝐾 ∈𝜎Z+≥𝑝

(
𝐾∏
𝜅=1

∥𝐸 𝑗𝜅+1∥
)
(𝑠𝑇) 𝑗1+···+ 𝑗𝐾

≤ 𝑇𝐾

𝐾!

∑︁
𝑗∈𝜎Z+≥𝐾𝑝

(𝑠𝑇) 𝑗
©­­­«

∑︁
𝑗1... 𝑗𝐾 ∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝐾= 𝑗

𝐾∏
𝜅=1

2∥𝐸 𝑗𝜅+1∥
ª®®®¬ .

Using, as before, the bounds from Lemma 2,

∥𝐹̃𝐾 (𝑇, 𝑠)∥ ≤ (𝑎maxΥ𝑇)𝐾
𝐾!

∑︁
𝑗∈𝜎Z+≥𝐾𝑝

(𝑎maxΥ𝑠𝑇) 𝑗
©­­­«

∑︁
𝑗1... 𝑗𝐾 ∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝐾= 𝑗

𝐾∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

ª®®®¬ (55)

giving the second bound of the lemma.
□

5 Richardson Extrapolation
Having laid the technical groundwork in the previous section, we now apply these results to analyse Richardson
extrapolation for time evolved observables. Before we begin, we briefly provide a more detailed overview Richardson
extrapolation to supplement Section 2.3.1. A more detailed and general discussion of the method can be found in [Sid03].

In our context 𝑓 : [0, ℓ] → R is a smooth function, such that

𝑓 (𝑠) = 𝑓 (0) +
𝑛∑︁
𝑗=1
𝑐 𝑗 𝑠

𝜎 𝑗 +𝑂 (𝑠𝜎𝑛+1 ) (56)

where the 𝜎𝑗 ∈ Z+ form an increasing sequence. Moreover, suppose 𝑓 (𝑠𝑘) can be computed for a monotonically
decreasing sequence of inputs 𝑠𝑘 ∈ (0, ℓ]. Richardson extrapolation provides a new function 𝐹 (𝑚) (𝑠) satisfying

𝐹 (𝑚) (𝑠) = 𝑓 (0) +
𝑛∑︁
𝑗=𝑚

𝑐 𝑗 𝑠
𝜎 𝑗 +𝑂 (𝑠𝜎𝑛+1 ) (57)

for some 1 ≤ 𝑚 ≤ 𝑛. Thus, the convergence rate to 𝑓 (0) for small 𝑠 is boosted from 𝑂 (𝑠𝜎1 ) to 𝑂 (𝑠𝜎𝑚 ). The procedure
can be applied to 𝐶𝑚 functions on [0, 𝑐], and in this case the relevant expansion is the Taylor polynomial.

There are several algorithms for performing Richardson extrapolation. Regardless of how it is performed, the result
is a linear combination

𝐹 (𝑚) (𝑠) =
𝑚∑︁
𝑘=1

𝑏𝑘 𝑓 (𝑠𝑘) (58)
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where the 𝑠𝑘 are themselves functions of 𝑠, and 𝑠 = max𝑘 𝑠𝑘 = 𝑠1. Moreover, 𝑏 = (𝑏1, . . . , 𝑏𝑚) solves the linear system

𝑉𝑏 = 𝑒1 (59)

where 𝑒 𝑗 is the 𝑗 th standard basis vector and 𝑉 is a generalised 𝑚 × 𝑚 Vandermonde matrix, with elements

𝑉 𝑗𝑘 = 𝑠
𝜎 𝑗−1
𝑘

(60)

and 𝜎0 ≡ 0. For certain values of 𝜎𝑗 , an exact solution to Eq. (59) is known. In particular, if

𝜎𝑗 = 𝜂 𝑗 (61)

for some 𝜂 ∈ Z \ {0} and 𝑗 = 0, 1, . . . , 𝑚 − 1, then 𝑉 is the standard Vandermonde matrix in terms of 𝑦𝑘 ≡ 𝑥𝜂𝑘 . Thus,
the inverse is known via the theory of Lagrange interpolation. In particular,

𝑏𝑘 = (𝑉−1)𝑘0 =
∏
𝑖≠𝑘

𝑥
𝜂

𝑖

𝑥
𝜂

𝑖
− 𝑥𝜂

𝑘

. (62)

For more general 𝜎𝑗 , Eq. (59) still holds, but it is less clear if a closed form solution exists in the mathematics literature.
This has important implications for higher order product formula simulations that we will discuss later in this section.

A proper choice of sample points is crucial for the Richardson method to be well-conditioned, hence robust to
computational imprecision. For example, certain natural choices, such as 𝑠𝑘 = 𝑠/𝑘 for 𝑘 > 0, lead to poor conditioning.
In our context, the relevant condition number is the one norm ∥𝑏∥1 of 𝑏, which can grow very large despite the
summation constraint ∑︁

𝑘

𝑏𝑘 = 1 (63)

enforced by Eq. (59). This results in a sign problem, where small numerical errors in 𝑓 (𝑥𝑘) are magnified by enormous
𝑏𝑘 and hence large ∥𝑏∥1, while the size of the answer 𝑓 (0) remains 𝑂 (1). Some choices of 𝑠𝑘 , such as a geometric
sequence 𝑠𝑘 = 𝜔𝑘−1𝑠1 for 𝜔 ∈ (0, 1) are provably well-conditioned. However, in many applications such as our own,
computing 𝑠𝑘 closer to 0 becomes intolerably expensive. To achieve low-depth Trotter evolutions, it is preferable to
keep the sample points 𝑠𝑘 as far from the origin as allowable.

Additionally, for product formula simulation, we would also like to choose 𝑠𝑘 = 1/𝑟𝑘 for nonzero integer 𝑟𝑘 , since
otherwise we would have to apply fractional Trotter steps. Although this is possible using quantum signal processing
techniques, the overhead is potentially large and undesirable — particularly if using a NISQ-era device. 𝑠1 is a parameter
chosen appropriately to minimise the number of Trotter steps necessary while also ensuring sufficiently accurate
simulations.

To meet the well-conditioning and integer query conditions we desire, we make use of results from [LKW19]. In
particular, we let

𝑟𝑘 = 𝑟scale

⌈
𝑅

sin(𝜋(2𝑘 − 1)/8𝑚)

⌉
, 𝑘 ∈ {1, . . . , 𝑚} (64)

and we will make the explicit choice 𝑅 =
√

8𝑚/𝜋, chosen such that the 𝑟𝑘 are distinct, and 𝑟scale ∈ Z+ scales to ensure
the 𝑟𝑘 are large enough to accommodate longer evolutions. This scaling has no effect on 𝑏 and hence the conditioning.
A useful upper bound for the purpose of resource estimates is [Wat+24]

𝑚 ≤ 𝑟𝑘/𝑟scale ≤ 3𝑚2 (65)

One can prove the following about this choice of extrapolation points.

Lemma 5 (Well-conditioned Richardson Extrapolation [LKW19]). Let 𝑓 ∈ 𝐶2𝑚+2 ( [−1, 1]) be an even, real-valued
function of 𝑠, and let 𝑃 𝑗 and 𝑅 𝑗 be the degree 𝑗 Taylor polynomial and Taylor remainder, respectively, such that
𝑓 (𝑠) = 𝑃 𝑗 (𝑠) + 𝑅 𝑗 (𝑠). Let

𝐹 (𝑚) (𝑠) =
𝑚∑︁
𝑘=1

𝑏𝑘 𝑓 (𝑠𝑘)
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be the unique Richardson extrapolation of 𝑓 at points 𝑠1, 𝑠2, . . . 𝑠𝑚 given by

𝑠𝑘 =
𝑠

𝑟𝑘
,

for 𝑟𝑘 defined in Eq. (64) and 𝑏𝑘 given in Eq. (62) for 𝜂 = 2. Then

𝐹 (𝑚) (𝑠) = 𝑓 (0) +
𝑚∑︁
𝑘=1

𝑏𝑘𝑅2𝑚 (𝑠𝑘)

and ∥𝑏∥1 = 𝑂 (log𝑚).

Proof. By the extrapolation properties of 𝐹 (𝑚) ,
∑𝑚−1
𝑘=0 𝑏𝑘𝑃2𝑚 (𝑥𝑘) = 𝑓 (0). Equation (5) follows immediately. The

scaling of ∥𝑏∥1 with 𝑚 is proven in reference [LKW19] for 𝑟scale = 1. For 𝑟scale ≠ 0, it is relatively straightforward to
show that the same 𝑏 solves Eq. (59). Hence, ∥𝑏∥1 = 𝑂 (log𝑚). □

5.1 Application to Time Evolved Observables
Richardson extrapolation may be applied to the problem of computing time-evolved expectation values, where the
Trotter step 𝑠 is the extrapolation parameter and the function of interest is

𝑓 (𝑠) = ⟨𝑂 𝑝 (𝑇, 𝑠)⟩ B tr
(
𝜌0P1/𝑠† (𝑠𝑇)𝑂P1/𝑠 (𝑠𝑇)

)
. (66)

Here, 𝑝 is the order of the product formula P. Note that 𝑓 (0) may be defined via the limit, and corresponds to the ideal
value.

In what follows, we will assume the extrapolation always starts from the linear or quadratic error terms, depending
on the symmetry of the product formula. We do not start the extrapolation from the smallest nonzero power according
to 𝑝. Although this may seem unnecessary for large 𝑝, we wish to eventually utilise the well-conditioned extrapolation
of Lemma 5, which is begins at 2nd order. It is possible that these concerns are primarily academic, and practitioners
may find it more reasonable to use an alternative scheme without the theoretical guarantees.

The following lemma characterises the error in Richardson approach thus described, without committing yet to a
specific choice of sampling points.

Lemma 6 (Richardson Extrapolation Error). Let 𝑂 be an observable, 𝐻 =
∑Γ
𝛾 𝐻𝛾 be a time independent Hamiltonian,

and 𝜌0 a quantum state. Let P be a staged 𝑝th order product formula of symmetry class 𝜎, where 𝜎 = 2 if P is
symmetric, 1 otherwise. Let

⟨𝑂 𝑝,𝑚 (𝑇)⟩ B
𝑚∑︁
𝑘=1

𝑏𝑘 ⟨𝑂 𝑝 (𝑇, 𝑠𝑘)⟩

be an 𝑚-term Richardson extrapolation, with ascending sequence of Trotter steps 𝑟𝑘 = 1/𝑠𝑘 ∈ Z+, which cancel the
powers 𝑠𝜎 , 𝑠𝜎2, . . . , 𝑠𝜎 (𝑚−1) . Suppose that, for all 𝑘 = 1, . . . , 𝑚, there exist 𝐽 ∈ Z+ and 𝐶 ∈ R+ such that

sup
𝑗≥𝐽

(𝑎maxΥ|𝑠𝑘𝑇 |) 𝑗𝛼 ( 𝑗 )
comm ≤ 𝐶.

Then, the error in the extrapolation, as compared to the exact evolution ⟨𝑂 (𝑇)⟩, satisfies

|⟨𝑂 (𝑇)⟩ − ⟨𝑂 𝑝,𝑚(𝑇)⟩| ≤ ∥𝑂∥∥𝑏∥1
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

𝑠
𝑗

1

(
𝐾∑︁
𝑙=1

(𝑎maxΥ𝑇𝜆 𝑗 ,𝑙) 𝑗+𝑙

𝑙!

)

where ∥𝑏∥1 =
∑
𝑘 |𝑏𝑘 |, 𝐾 =

⌈
𝜎𝑚
𝑝

⌉
, and

𝜆 𝑗 ,𝑙 B

( ∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

𝑙∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)1/( 𝑗+𝑙)
.
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Proof. By Lemma 4,

⟨𝑂̃ (𝑇, 𝑠)⟩ = ⟨𝑂 (𝑇)⟩ +
∑︁

𝑗∈𝜎Z+≥𝑝
𝑠 𝑗 ⟨𝐸̃ 𝑗+1,𝐾 (𝑇) (𝑂)⟩ + ⟨𝐹̃𝐾 (𝑇, 𝑠) (𝑂)⟩ (67)

and ⟨𝐹̃𝐾 (𝑇, 𝑠)⟩ = 𝑂 (𝑠𝐾𝑝). The Richardson extrapolation procedure with 𝑚 samples will remove all terms up to
𝑂 (𝑠𝜎 (𝑚−1) ) in the series. Choose a value of 𝐾 such that

𝐾𝑝 > 𝜎(𝑚 − 1), (68)

such as 𝐾 =

⌈
𝜎𝑚
𝑝

⌉
. Then, an 𝑚-term Richardson extrapolation will cancel only terms in the 𝐸̃ series, but leave 𝐹̃𝐾

intact. Thus, the Richardson extrapolation satisfies

⟨𝑂 𝑝,𝑚 (𝑇)⟩ − ⟨𝑂 (𝑇)⟩ =
𝑚∑︁
𝑘=1

𝑏𝑘 ⟨𝑅𝜎 (𝑚−1) (𝑇, 𝑠𝑘) (𝑂)⟩ (69)

where 𝑅𝑞 is the Taylor remainder of degree 𝑞 and satisfies

𝑅𝜎 (𝑚−1) (𝑇, 𝑠) B
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

𝑠 𝑗 𝐸̃ 𝑗+1,𝐾 (𝑇) + 𝐹̃𝐾 (𝑇, 𝑠). (70)

Applying a Hölder’s inequality,

|⟨𝑂 𝑝,𝑚 (𝑇)⟩ − ⟨𝑂 (𝑇)⟩| ≤ ∥𝑏∥1 max
𝑘

∥𝑅𝜎 (𝑚−1) (𝑇, 𝑠𝑘) (𝑂)∥ ≤ ∥𝑏∥1∥𝑂∥ max
𝑘

∥𝑅𝜎 (𝑚−1) (𝑇, 𝑠𝑘)∥, (71)

and we now focus on the remainder of Eq. (70). By the triangle inequality,

∥𝑅𝜎 (𝑚−1) (𝑇, 𝑠)∥ ≤
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

𝑠 𝑗 ∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ + ∥𝐹̃𝐾 (𝑇, 𝑠)∥. (72)

For our choice of 𝐾 , 𝐾 − 1 ≤ ⌊ 𝑗/𝑝⌋ for all 𝑗 ≥ 𝜎𝑚, and we may write

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤ (𝑎maxΥ𝑇) 𝑗
𝐾−1∑︁
𝑙=1

(𝑎maxΥ𝑇)𝑙
𝑙!

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)

=

𝐾−1∑︁
𝑙=1

(𝑎maxΥ𝑇𝜆 𝑗 ,𝑙) 𝑗+𝑙

𝑙!
.

(73)

Applying the bound on 𝐹̃𝐾 (𝑇, 𝑠) from Lemma 4 and the bound on 𝐸̃ 𝑗+1,𝐾 from Eq. (73) into Eq. (72),

∥𝑅𝜎 (𝑚−1) (𝑇, 𝑠)∥ ≤
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

𝑠 𝑗
𝐾−1∑︁
𝑙=1

(𝑎maxΥ𝑇𝜆 𝑗 ,𝑙) 𝑗+𝑙

𝑙!
+

∑︁
𝑗∈𝜎Z+
𝑗≥𝐾𝑝

𝑠 𝑗
(𝑎maxΥ𝑇𝜆 𝑗 ,𝑙) 𝑗+𝐾

𝐾!
. (74)

In turn, this is upper bounded by starting the 𝑗 ≥ 𝐾𝑝 index at 𝜎𝑚. Rearranging, we see that there is a matching of
terms and hence we can combine the sums as

∥𝑅𝜎 (𝑚−1) (𝑇, 𝑠)∥ ≤
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

𝑠 𝑗
𝐾∑︁
𝑙=1

(𝑎maxΥ𝑇𝜆 𝑗 ,𝑙) 𝑗+𝑙

𝑙!
. (75)
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This almost amounts to the statement of the lemma. To conclude, we observe that our bound increases with larger 𝑠.
Since 𝑠𝑘 is decreasing in 𝑘 , max𝑘 𝑠𝑘 = 𝑠1. Thus,

max
𝑘

∥𝑅𝜎 (𝑚−1) (𝑇, 𝑠𝑘)∥ ≤
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

𝑠
𝑗

1

𝐾∑︁
𝑙=1

(𝑎maxΥ𝑇𝜆 𝑗 ,𝑙) 𝑗+𝑙

𝑙!
. (76)

which, when combined with Eq. (71), gives the result of the lemma. □

To make use of this lemma, we would like to ensure that 𝜆 𝑗 ,𝑙 adequately captures the "size" of 𝐻, and does not grow
too large with the indices 𝑗 , 𝑙. In particular, we will subsequently describe error bounds using the simpler parameter

𝜆 B sup
𝑗∈𝜎Z+≥𝜎𝑚

1≤𝑙≤𝐾

𝜆 𝑗 ,𝑙 (77)

but first, we must ensure 𝜆 exists. In fact, we have that

𝜆 𝑗 ,𝑙 ≤ 4
Γ∑︁
𝛾=1

∥𝐻𝛾 ∥ (78)

and thus 𝜆 exists and satisfies the same bound. To prove this, we first take a triangle inequality through the expression
in Lemma 6, and use the bound on 𝛼 ( 𝑗 )

comm given in Eq. (33).

𝜆 𝑗 ,𝑙 ≤ 2

(∑︁
𝛾

∥𝐻𝛾 ∥
) ©­­­«

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

𝑙∏
𝜅=1

1
( 𝑗𝜅 + 1)2

ª®®®¬
1/( 𝑗+𝑙)

(79)

Next, ©­­­«
∑︁

𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

𝑙∏
𝜅=1

1
( 𝑗𝜅 + 1)2

ª®®®¬
1/( 𝑗+𝑙)

≤
©­­­«

∑︁
𝑗1... 𝑗𝑙∈N
𝑗1+···+ 𝑗𝑙= 𝑗

1
ª®®®¬

1/( 𝑗+𝑙)

=

(
𝑗 + 𝑙 − 1
𝑙 − 1

)1/( 𝑗+𝑙)
. (80)

We can then use that
( 𝑗+𝑙−1
𝑙−1

)
≤ 2 𝑗+𝑙−1 < 2 𝑗+𝑙 to get that

( 𝑗+𝑙−1
𝑙−1

)1/( 𝑗+𝑙) ≤ 2. Put together, this provides the stated bound.
With the relevant error bounds in hand, we turn to the question of algorithmic cost to achieve an error within

tolerance 𝜖 . Given Trotter steps (𝑟1, . . . , 𝑟𝑚) ∈ Z𝑚+ listed in ascending order, the maximum Trotter depth is 𝑟𝑚 and the
total Trotter depth is

∑
𝑘 𝑟𝑘 . These are both important parameters for discussing the true simulation cost. Note that, in

the full algorithm, the true number of Trotter steps will be higher as a certain number of repetitions are necessary for
any chosen measurement protocol.

We start by using our error bounds to derive a sufficient Trotter depth to achieve precision 𝜖 in the estimator,
assuming exactly computed expectation values throughout.

Lemma 7 (Sufficient Trotter Depth). Consider the Richardson extrapolation scenario described in Lemma 6. Define

𝜆 B sup
𝑗∈𝜎Z+≥𝜎𝑚

1≤𝑙≤𝐾

𝜆 𝑗 ,𝑙

and 𝑠1 is chosen such that 𝑎maxΥ𝑠1𝜆𝑇 < 1/2. To achieve a relative error 𝜖 , namely

|⟨𝑂 (𝑇)⟩ − ⟨𝑂 𝑝,𝑚(𝑇)⟩| ≤ 𝜖 ∥𝑂∥,

it suffices to choose a minimum number of Trotter steps

𝑟1 ≥ (𝑎maxΥ𝜆𝑇)
(

4∥𝑏∥1
𝜖

) 1
𝜎𝑚
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for 𝑎maxΥ𝜆𝑇 ≤ 1 ("short times") and

𝑟1 ≥ (𝑎maxΥ𝜆𝑇)
1+ 1

𝜎𝑚

⌈
𝜎𝑚
𝑝

⌉ (
4∥𝑏∥1
𝜖

) 1
𝜎𝑚

for 𝑎maxΥ𝜆𝑇 > 1.

Proof. From Lemma 6,

|⟨𝑂 (𝑇)⟩ − ⟨𝑂 𝑝,𝑚(𝑇)⟩| ≤ ∥𝑂∥∥𝑏∥1
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

𝑠
𝑗

1

(
𝐾∑︁
𝑙=1

(𝑎maxΥ𝑇𝜆 𝑗 ,𝑙) 𝑗+𝑙

𝑙!

)

≤ ∥𝑂∥∥𝑏∥1
∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

(𝑠1𝑎maxΥ𝜆𝑇) 𝑗
𝐾∑︁
𝑙=1

(𝑎maxΥ𝜆𝑇)𝑙
𝑙!

.

(81)

The inner sum is a partial sum of the exponential, which we wish to upper bound with an elementary expression. Using
the upper bound,

(𝑎maxΥ𝜆𝑇)𝑙 ≤ max{𝑎maxΥ𝜆𝑇, 1}𝐾 ≡ 𝜂𝐾 (82)

we have
𝐾∑︁
𝑙=1

(𝑎maxΥ𝜆𝑇)𝑙
𝑙!

≤ 𝜂𝐾 (𝑒 − 1) (83)

and thus,

|⟨𝑂 (𝑇)⟩ − ⟨𝑂 𝑝,𝑚(𝑇)⟩| ≤ (𝑒 − 1)∥𝑂∥∥𝑏∥1𝜂
𝐾

∑︁
𝑗∈𝜎Z+
𝑗≥𝜎𝑚

(𝑠1𝑎maxΥ𝜆𝑇) 𝑗

= (𝑒 − 1)∥𝑂∥∥𝑏∥1𝜂
𝐾 (𝑠1𝑎maxΥ𝜆𝑇)𝜎𝑚

∑︁
𝑗∈𝜎Z+
𝑗≥0

(𝑠1𝑎maxΥ𝜆𝑇) 𝑗

≤ (𝑒 − 1)∥𝑂∥∥𝑏∥1𝜂
𝐾 (𝑠1𝑎maxΥ𝜆𝑇)𝜎𝑚

∑︁
𝑗∈𝜎Z+
𝑗≥0

(
1
2

) 𝑗
≤ 4∥𝑂∥∥𝑏∥1𝜂

𝐾 (𝑠1𝑎maxΥ𝜆𝑇)𝜎𝑚.

(84)

To achieve an relative error (i.e., normalised by ∥𝑂∥) of 𝜖 , it suffices then to choose 𝑟1 = 1/𝑠1 satisfying

𝑟1 ≥ 𝑎maxΥ𝜆𝑇

(
4∥𝑏∥1𝜂

𝐾

𝜖

) 1
𝜎𝑚

, (85)

and we may simply take the ceiling of the right hand side as our value.
We now split into the short and long-time regimes. For short times 𝑎maxΥ𝜆𝑇 ≤ 1, 𝜂 = 1 and we have

𝑟1 =

⌈
𝑎maxΥ𝜆𝑇

(
4∥𝑏∥1
𝜖

) 1
𝜎𝑚

⌉
. (86)

On the other hand, for long times (𝑎maxΥ𝜆𝑇 > 1), we choose

𝑟1 =

⌈
(𝑎maxΥ𝜆𝑇)

1+ 1
𝜎𝑚

⌈
𝜎𝑚
𝑝

⌉ (
4∥𝑏∥1
𝜖

) 1
𝜎𝑚

⌉
. (87)

This gives the lemma statement. □
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So far we have derived a set of bounds for the minimum number of Trotter steps required to reach a given error. We now
examine the asymptotic scaling of the parameters.

Corollary 8 (Asymptotic Trotter Costs). Consider an 𝑚-term Richardson extrapolation of a time-evolved expectation
value in the setting of the previous lemma, where P is symmetric. Choose the Trotter step size according to Lemma 5,
with 𝑟scale large enough such that 𝑟1 satisfies the "long time" condition of Lemma 7 for a choice of 𝑚 scaling as
𝑂 (log(1/𝜖)). Then, the maximum number of Trotter steps that needs to be implemented scales as

max
𝑘
𝑟𝑘 = 𝑂

(
(𝑎maxΥ𝜆𝑇) (1+1/𝑝) log(1/𝜖)

)
.

Proof. By satisfying the conditions of Lemma 7, the extrapolation scheme achieves a relative error 𝜖 , in the sense stated
in that lemma. Since ∥𝑏∥1 = 𝑂 (log𝑚), ∥𝑏∥1/2𝑚

1 = 𝑂 (1). Choose 𝑚 = 𝑝

⌈
log

(
1
𝜖

)⌉
. Then,(

4
𝜖

) 1
2𝑝⌈log(1/𝜖 )⌉

= 𝑂 (1). (88)

Moreover, since 𝑚 is a multiple of 𝑝, 1
𝜎𝑚

⌈ 𝜎𝑚
𝑝
⌉ = 1

𝑝
. Putting these into Lemma 7,

𝑟1 = 𝑂

(
(𝑎maxΥ𝜆𝑇) (1+1/𝑝)

)
(89)

is the minimum number of Trotter steps. To obtain an upper bound on the maximum number of steps, we utilise the
bounds Eq. (65) to obtain

𝑟𝑘 ≤ 3𝑚𝑟1

= 𝑂

(
(𝑎maxΥ𝜆𝑇) (1+1/𝑝)𝑚

) (90)

given our choice of 𝑚, this yields the scaling stated in the corollary. □

We remark that, in the above proof, the choice to make 𝑚 a multiple of 𝑝 is mainly for simplicity of proof. For our
purposes, we treat 𝑝 as fixed and not scaling with the simulation parameters.

5.2 Resource Estimates for Richardson Extrapolation
So far, we have determined error bounds for the Richardson procedure and provided partial results on the resources
required. In this section, we will derive full resource costs. We examine two metrics: the maximum circuit depth 𝐷max
of Trotter steps needed, and the total number 𝐶Trot of Trotter steps required. The former is arguably the most relevant
metric for NISQ-era devices where only short-depth circuits are possible to implement, whereas 𝐶Trot is more relevant
for fault tolerant devices. We note that 𝐶Trot is proportional to the total number of elementary operations required for
the protocol.

There are two primary sources of error we consider: the extrapolation error (associated with the Richardson
extrapolation procedure) and the error associated with the measurement protocol (e.g., shot noise). Notably, we fully
neglect "physical" errors such as gate imperfections or decoherence. We suppose the estimates for the function 𝑓 at
points {𝑠1}𝑚𝑘=1 are given by 𝑓 (𝑠𝑘), such that the final estimate we have is 𝐹̃ (𝑚) (𝑠) = ∑𝑚

𝑘=1 𝑏𝑘 𝑓 (𝑠𝑘). The error in our
final prediction is 𝜖 = | 𝑓𝐵 (0) − 𝐹̃ (𝑚) (𝑠) | which can be broken down as

| 𝑓𝐵 (0) − 𝐹̃ (𝑚) (𝑠) | ≤ | 𝑓𝐵 (0) − 𝐹 (𝑚) (𝑠) | + |𝐹 (𝑚) (𝑠) − 𝐹̃ (𝑚) (𝑠) |

≤ | 𝑓𝐵 (0) − 𝐹 (𝑚) (𝑠) | +
�����𝑚−1∑︁
𝑘=0

𝑏𝑘 𝑓 (𝑠𝑘) −
𝑚−1∑︁
𝑘=0

𝑏𝑘 𝑓 (𝑠𝑘)
�����

≤ ∥𝑂∥(𝜖ext + ∥𝑏∥1𝜖data), (91)
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where 𝜖ext is the (relative) interpolation error and | 𝑓 (𝑠𝑘) − 𝑓 (𝑠𝑘) | ≤ ∥𝑂∥𝜖data is the maximum (relative) error associated
with each individual measurement point. To satisfy a total relative error tolerance 𝜖 , it thus suffices to ensure that

𝜖ext ≤
𝜖

2
, 𝜖data ≤ 𝜖

2∥𝑏∥1
. (92)

The resources required to satisfy the first of these inequalities is essentially the content of Corollary 8, because the factor
of 1/2 will not affect the asymptotics. In the following subsections, we look more closely at the resources needed to
have sufficiently small error in the data, then obtain an overall cost bound.

5.2.1 Incoherent Measurements

Within the incoherent scheme, let’s consider how many measurements are needed to ensure 𝜖data ≤ 𝜖/(2∥𝑏∥1). From
Hoeffding’s inequality, we see that to achieve an estimate ⟨𝑂⟩′ satisfying

| tr[P†1/𝑠 (𝑠𝑇)𝑂P1/𝑠 (𝑠𝑇)𝜌0] − ⟨𝑂⟩′ | ≤ 𝜖data∥𝑂∥ (93)

with probability ≥ (1 − 𝛿′), it suffices to choose a number of samples 𝑁 satisfying

𝑁 ≥ 1
2𝜖2

data
log

(
2
𝛿′

)
. (94)

By the union bound, it suffices to choose 𝛿′ = 𝛿/𝑚 to have an overall success probability of 1 − 𝛿 for all measurements.
Taking 𝑚 = 𝑂 (log(1/𝜖)) from Corollary 8, we have that 𝑁 scales as

𝑁 = 𝑂

(
∥𝑏∥2

1
𝜖2 log

(𝑚
𝛿

))
= 𝑂

(
(log𝑚)3

𝜖2

)
= 𝑂

(
(log log 1/𝜖)3

𝜖2

)
. (95)

Each measurement requires one product formula evolution. The maximum Trotter step size is given in Corollary 8,
and this directly gives the maximum Trotter depth. Meanwhile, the total number of Trotter steps required (which is
proportional to the total resources) scales as

𝐶Trot ≤ 𝑁

𝑚∑︁
𝑘=1

𝑟𝑘

≤ 𝑁𝑟1

𝑚∑︁
𝑘=1

(𝑟𝑘/𝑟1)

≤ 𝑁𝑟1
1
𝑚

𝑚∑︁
𝑘=1

⌈
𝑅

sin(𝜋(2𝑘 + 1)/8𝑚)

⌉ (96)

where we have used that 1/𝑟1 ≤ 1/(𝑟scale𝑚) from Eq. (65). Next, we have

≤ 𝑁𝑟1
1
𝑚

𝑚∑︁
𝑘=1

©­­«
𝑅

sin
(
𝜋 (2𝑘+1)

8𝑚

) + 1
ª®®¬

≤ 𝑁𝑟1

(
𝑚∑︁
𝑘=1

8𝑅
𝜋(2𝑘 + 1) + 1

)
≤ 𝑁𝑟1

(
𝑅

4
𝜋
(2 + log𝑚) + 1

)
= 𝑂 (𝑁 (𝑎maxΥ𝜆𝑇)1+1/𝑝𝑚 log(𝑚)).

(97)

Using the scaling from Eq. (95), and 𝑚 = 𝑂 (log(1/𝜖)), we arrive at our main result concerning the use of Richardson
extrapolation with incoherent measurements.
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Theorem 9 (Resource Costs for Incoherent Measurements). Let ⟨𝑂 𝑝,𝑚(𝑇)⟩ be the 𝑚-term Richardson extrapolation
estimate for ⟨𝑂 (𝑇)⟩, taken by varying the step size of a 𝑝𝑡ℎ-order staged product formula, with samples taken at the
rescaled Chebyshev nodes as specified in Eq. (64). The resource costs for computing this estimate such that

|⟨𝑂 (𝑇)⟩ − ⟨𝑂 𝑝,𝑚 (𝑇)⟩| ≤ 𝜖 ∥𝑂∥,

when using incoherent measurements uses a number of sample points 𝑚 = 𝑂 (1/𝜖). Moreover, the maximum Trotter
depth and total Trotter steps scales as

𝐷max = 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝 log(1/𝜖)

)
, 𝐶Trot = 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝

𝜖2 log(1/𝜖) (log log(1/𝜖))4
)
.

Here 𝜆 ≤ 4
∑
𝛾 ∥𝐻𝛾 ∥ is defined in Lemma 7 and there is a failure probability of 𝛿 = 0.01.

5.2.2 Coherent Measurements

Although incoherent measurements are conceptually simple and easy to implement, they give 𝑂 (1/𝜖2) scaling rather
than the optimal Heisenberg scaling of𝑂 (1/𝜖). In this section, we consider the Iterative Quantum Amplitude Estimation
(IQAE) scheme developed by Grinko et al. for this problem. Although the method deviates by 𝑂 (log log 1/𝜖) from the
ideal Heisenberg scaling, it achieves better constant factors among rigorously-analysed methods with true Heisenberg
scaling that do not require standard Quantum Phase Estimation (QPE), a relatively intensive routine with large qubit
overhead [Gri+21]. Thus, the method represents a practical yet rigorous algorithm suitable for our purposes. We follow
a similar analysis to [RWW24].

We assume the problem of measuring the expectation value can be written as the problem of estimating an amplitude,
as is often done in practice via, say, the Hadamard test. Assuming ∥𝑂∥ ≤ 1 (if otherwise, we can rescale it), then
performing a Hadamard test gives an amplitude 1+⟨𝑂𝑝 (𝑇,𝑠) ⟩

2 . This amplitude can now be estimated using IQAE. In
particular, for each sample point 𝑠𝑘 , we need a number of calls to a Grover oracle 𝑁𝐺 scaling as [RWW24, Section E]

𝑁𝐺 ≤ 100
𝜖data

log
(

2𝑚
𝛿

log
(
𝜋

𝜖data

))
(98)

where 𝛿/𝑚 is the probability of failure per data point, which by the union bound ensures an overall success rate of 1 − 𝛿.
For a particular value of Trotter step 𝑠, we need a total Trotter depth scaling as 𝑁𝐺/𝑠. The maximum Trotter step size
needed to compute 𝐹 (𝑚) (𝑠) is max𝑘 𝑟𝑘 , which is characterised asymptotically in Corollary 8. Thus, the maximum
Trotter depth is

𝐷max ≤ 𝑁𝐺 max
𝑘
𝑟𝑘

= 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝 log(1/𝜖) ∥𝑏∥1

𝜖
log

(
log(1/𝜖)

𝛿
log

(
∥𝑏∥1
𝜖

)))
= 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝

𝜖
log(1/𝜖) (log log(1/𝜖))2

)
Meanwhile, the total number of Trotter steps, 𝐶Trot, is bounded as

𝐶Trot ≤ 𝑁𝐺

𝑚∑︁
𝑘=1

𝑟𝑘 . (99)

Using the same reasoning as in Eq. (97), with 𝑁 replaced by 𝑁𝐺 , we obtain

𝐶Trot = 𝑂
(
𝑁𝐺 (𝑎maxΥ𝜆𝑇)1+1/𝑝𝑚 log𝑚

)
= 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝

𝜖
log(1/𝜖) (log log(1/𝜖))3

)
.

(100)

We summarise the results of the above analysis in our main result for Richardson extrapolation using coherent
measurements.
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Theorem 10 (Resource Costs for Coherent Measurements). Let ⟨𝑂 𝑝,𝑚(𝑇)⟩ be the 𝑚-term Richardson extrapolation
estimate for ⟨𝑂 (𝑇)⟩, taken by varying the step size of a 𝑝𝑡ℎ-order symmetric staged product formula, with samples
taken at the rescaled Chebyshev nodes as specified in Eq. (64). The resource costs for computing this estimate such that

|⟨𝑂 (𝑇)⟩ − ⟨𝑂 𝑝,𝑚(𝑇)⟩| ≤ 𝜖 ∥𝑂∥,

when using coherent measurements is given by

𝐷max = 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝

𝜖
log(1/𝜖) (log log(1/𝜖))2

)
, 𝐶Trot = 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝

𝜖
log(1/𝜖) (log log(1/𝜖))3

)
where 𝜆 ≤ ∑

𝛾 ∥𝐻𝛾 ∥ is defined in Lemma 7 and there is a failure probability of 𝛿 = 0.01. Moreover, 𝑚 = 𝑂 (log(1/𝜖)).

6 Polynomial Interpolation
We now consider the polynomial interpolation algorithm of Rendon et al. for mitigating Trotter errors. Let 𝑓 (𝑠) ∈
𝐶𝑚 [−ℓ, ℓ] be real-valued function, and suppose we have the value of 𝑓 at points 𝑠1, 𝑠2, . . . 𝑠𝑚. Let 𝑃𝑚−1 𝑓 be the unique
degree 𝑚 − 1 polynomial interpolating 𝑓 at the 𝑠𝑘 . It is possible to show [QSS10] that the error of the approximating
polynomial in the interval [−ℓ, ℓ] is bounded as

| 𝑓 (𝑠) − 𝑃𝑚−1 𝑓 (𝑠) | ≤ max
𝜉 ∈[−ℓ,ℓ ]

| 𝑓 (𝑚) (𝜉) |
𝑚!

|𝜔𝑚 (𝑠) |,

where

𝜔𝑚 (𝑠) B
𝑚∏
𝑘=1

(𝑠 − 𝑠𝑘)

is the monic nodal polynomial. If we choose our samples to be taken at the Chebyshev nodes on [−ℓ, ℓ], given by

𝑠𝑖 = ℓ cos
(

2𝑖 − 1
2𝑚

𝜋

)
, 𝑖 ∈ {1, 2, . . . , 𝑚}, (101)

then the interpolation satisfies a number of nice properties, such as robustness to errors in the interpolation values. As in
the Richardson extrapolation case, we are interesting in bounding the error at 𝑠 = 0. To do so, we can use the following
lemma.

Lemma 11 (Lemma 2, [RWW24]). Let 𝑠1, 𝑠2, . . . , 𝑠𝑚 be the collection of Chebyshev interpolation points on the interval
[−ℓ, ℓ]. Then the error of the interpolating polynomial 𝑃𝑚−1 𝑓 with respect to 𝑓 at 𝑠 = 0 is bounded as

| 𝑓 (0) − 𝑃𝑚−1 𝑓 (0) | ≤ max
𝑠∈[−ℓ,ℓ ]

| 𝑓 (𝑚) (𝑠) |
(
ℓ

2𝑚

)𝑚
.

6.1 Application to Time Evolved Observables
From Lemma 11, we see that the key property in bounding the error to polynomial interpolation is to bound the
derivatives as a function of 𝑠. We start by bounding the derivatives at the origin.

Lemma 12. Under the assumptions and notation of Lemma 4, consider an observable 𝑂 time evolved for time 𝑇
under a 𝑝𝑡ℎ-order staged product formulae with step size 𝑠𝑇 , denoted 𝑂̃ (𝑇, 𝑠). Then 𝑂̃ (𝑇, 𝑠) is analytic in 𝑠 within a
neighbourhood of the origin, and the derivatives are given by

𝜕
𝑗
𝑠 𝑂̃ (𝑇, 0) = 𝑗!𝐸̃ 𝑗+1,𝐾 (𝑇) (𝑂)

for any choice of 𝐾 > ⌈ 𝑗/𝑝⌉. In particular, for any such 𝐾 , 𝐸̃ 𝑗+1 ≡ 𝐸̃ 𝑗+1,𝐾 is the 𝑗 th coefficient in the Taylor series for
𝑂̃ (𝑇, 𝑠) at 𝑠 = 0, and is independent of 𝐾 .
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Proof. First, 𝑂̃ (𝑇, 𝑠) is an analytic function of 𝑠 in a neighbourhood of the origin, being an exponential of the effective
Hamiltonian, which is analytic by Lemma 2. For convenience, we reproduce the primary equation of Lemma 4.

𝑂̃ (𝑇, 𝑠) = 𝑂 (𝑇) +
∑︁

𝑗∈Z+≥𝑝
𝑠 𝑗 𝐸̃ 𝑗+1,𝐾 (𝑇) (𝑂) + 𝐹̃𝐾 (𝑇, 𝑠) (𝑂) (102)

The term 𝐹̃𝑝 (𝑇, 𝑠) (𝑂) is of order at least 𝑠𝑝𝐾 . Thus, choosing 𝐾 > ⌈ 𝑗/𝑝⌉ means that the Taylor coefficient of order 𝑠 𝑗
is simply 𝐸̃ 𝑗+1,𝐾 (𝑇) (𝑂). Since the Taylor coefficient of 𝑂̃ is 𝐾-independent, the 𝐸̃ 𝑗+1,𝐾 are in fact 𝐾-independent for
all such choice of 𝐾 . □

We emphasise in passing that the independence of 𝐸̃ 𝑗+1,𝐾 on 𝐾 for 𝐾 > ⌈ 𝑗/𝑝⌉ can be verified from the explicit
expression for 𝐸̃ 𝑗+1,𝐾 in Eq. (52).

From the bounds previously derived in Lemma 4 we can straightforwardly obtain a bound on the derivatives in
terms of fundamental simulation parameters.

Lemma 13. In the notation of Lemma 12, for any 𝑗 ≥ 𝑝, we have

∥𝐸̃ 𝑗+1 (𝑇)∥ ≤ 2(𝑎maxΥ𝜆𝑇) 𝑗+1.

for "short times" 𝑎maxΥ𝜆𝑇 ≤ 1 and
∥𝐸̃ 𝑗+1 (𝑇)∥ ≤ 2(𝑎maxΥ𝜆𝑇) 𝑗 (1+1/𝑝)

for "long times" 𝑎maxΥ𝜆𝑇 > 1.

Proof. For convenience we reproduce the bound on ∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ from Lemma 4.

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤ (𝑎maxΥ𝑇) 𝑗
min{𝐾−1,⌊ 𝑗/𝑝⌋ }∑︁

𝑙=1

(𝑎maxΥ𝑇)𝑙
𝑙!

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)
(103)

Choosing 𝐾 > ⌈ 𝑗/𝑝⌉ and invoking the definition of 𝜆,

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤ (𝑎maxΥ𝑇) 𝑗
⌊ 𝑗/𝑝⌋∑︁
𝑙=1

(𝑎maxΥ𝑇)𝑙
𝑙!

∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

(
𝑙∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)
(104)

≤
⌊ 𝑗/𝑝⌋∑︁
𝑙=1

(𝑎maxΥ𝑇𝜆) 𝑗+𝑙
𝑙!

. (105)

First, consider the case 𝑎maxΥ𝜆𝑇 ≤ 1. We have

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤ (𝑎maxΥ𝜆𝑇) 𝑗+1
⌊ 𝑗/𝑝⌋∑︁
𝑙=1

1
𝑙!

< (𝑎maxΥ𝜆𝑇) 𝑗+1 (𝑒 − 1)
< 2(𝑎maxΥ𝜆𝑇) 𝑗+1.

(106)

This provides the first bound of the corollary. For the long-time case, we instead use the bound

∥𝐸̃ 𝑗+1,𝐾 (𝑇)∥ ≤ (𝑎maxΥ𝜆𝑇) 𝑗+⌊ 𝑗/𝑝⌋
⌊ 𝑗/𝑝⌋∑︁
𝑙=1

1
𝑙!
< 2(𝑎maxΥ𝜆𝑇) 𝑗 (1+1/𝑝) . (107)

These two bounds gives the stated result. □
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As an aside, for 0 < 𝑗 < 𝑝, the 𝐸̃ 𝑗+1 simply vanish because of the properties of the error series for order 𝑝 formulae.
Thus, we simply exclude this case from the above corollary.

Corollary 14 (Taylor Series for Trotter-Evolved Observable). The Trotter-evolved observable can be expressed as a
Taylor series

𝑂̃ (𝑇, 𝑠) = 𝑂 (𝑇) +
∑︁

𝑗∈𝜎Z≥𝑝
𝑠 𝑗 𝐸̃ 𝑗+1 (𝑇) (𝑂),

where ∥𝐸̃ 𝑗+1∥ is bounded as per Lemma 13.

Proof. Follows by constructing the Taylor series from the derivatives using Lemma 12. The bounds on the derivatives
are then given in Lemma 13. □

We can now apply this to bound the error of the polynomial interpolation procedure.

Theorem 15 (Polynomial Interpolation Error). Consider a Chebyshev interpolation 𝑃𝑚−1 𝑓 (𝑠) of the time evolved
expectation value 𝑓 (𝑠) on the interval [−ℓ, ℓ], for long simulation time 𝑎maxΥ𝜆𝑇 > 1, with

ℓ =
1
2
(𝑎maxΥ𝜆𝑇)−(1+1/𝑝) .

The approximation error at 𝑠 = 0 may be bounded as

| 𝑓 (0) − 𝑃𝑚−1 𝑓 (0) |
∥𝑂∥ ≤ 𝑐𝑒−𝛾𝑚

where 𝛾 > 1.5 and 𝑐 < 11.

Proof. From Corollary 14, the Taylor series for 𝑂̃ (𝑇, 𝑠) is given by

𝑂̃ (𝑇, 𝑠) = 𝑂 (𝑇) +
∑︁

𝑗∈𝜎Z≥𝑝
𝑠 𝑗 𝐸̃ 𝑗+1 (𝑇) (𝑂).

The 𝑚th derivative of 𝑂̃ is then given by

𝜕𝑚𝑠 𝑂̃ (𝑇, 𝑠) =
∑︁
𝑗∈𝜎Z

𝑗≥max{𝑝,𝑚}

𝑗!
( 𝑗 − 𝑚)! 𝑠

𝑗−𝑚𝐸̃ 𝑗+1 (𝑇) (𝑂)

= 𝑚!
∑︁
𝑗∈𝜎Z

𝑗≥max{𝑝,𝑚}

(
𝑗

𝑚

)
𝐸̃ 𝑗+1 (𝑇) (𝑂)𝑠 𝑗−𝑚.

(108)

Applying the triangle inequality and noting that |𝑠 | ≤ ℓ,

max
𝑠∈[−ℓ,ℓ ]

∥𝜕𝑚𝑠 𝑂̃ (𝑇, 𝑠)∥ ≤ 𝑚!∥𝑂∥
∑︁
𝑗∈𝜎Z

𝑗≥max{𝑝,𝑚}

(
𝑗

𝑚

)
ℓ 𝑗−𝑚∥𝐸̃ 𝑗+1 (𝑇)∥. (109)

Using Lemma 13 in the long-time regime,

max
𝑠∈[−ℓ,ℓ ]

∥𝜕𝑚𝑠 𝑂̃ (𝑇, 𝑠)∥ ≤ 2
𝑚!
ℓ𝑚

∥𝑂∥
∑︁
𝑗∈𝜎Z

𝑗≥max{𝑝,𝑚}

(
𝑗

𝑚

) (
ℓ(𝑎maxΥ𝜆𝑇)1+1/𝑝

) 𝑗
. (110)
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We now choose ℓ = 1
2 (𝑎maxΥ𝜆𝑇)−(1+1/𝑝) . Doing so, the infinite series is given by∑︁

𝑗∈𝜎Z
𝑗≥max{𝑝,𝑚}

(
𝑗

𝑚

)
1
2 𝑗

(111)

and may be upper bounded by
∞∑︁
𝑗=𝑚

(
𝑗

𝑚

)
1
2 𝑗

= 2. (112)

Thus, the derivative is upper bounded as

max
𝑠∈[−ℓ,ℓ ]

∥𝜕𝑚𝑠 𝑂̃ (𝑇, 𝑠)∥ ≤ 4∥𝑂∥𝑚!
ℓ𝑚
. (113)

Applying Lemma 11 gives

| 𝑓 (0) − 𝑃𝑚−1 𝑓 (0) | ≤ 4∥𝑂∥ 𝑚!
(2𝑚)𝑚 . (114)

Using a simplified Stirling-type upper bound 𝑚! <
√

2𝜋𝑚(𝑚/𝑒)𝑚𝑒1/(12𝑚) , one obtains

| 𝑓 (0) − 𝑃𝑚−1 𝑓 (0) | ≤ 4
√

2𝜋𝑒1/12√𝑚(2𝑒)−𝑚∥𝑂∥
< 𝑐𝑒−𝛾𝑚∥𝑂∥

(115)

where 𝛾 ≡ ln 2 + 1 − 1/(2𝑒) ≈ 1.509 and 𝑐 ≡ 4
√

2𝜋𝑒1/12 ≈ 10.9. This immediately leads to the statement of the
lemma. □

It is interesting to note that, while the factor of 1/2 in ℓ was chosen for simplicity, other choices will lead to different
values of 𝑐, 𝛾. In particular, a factor approaching 1 should make the exponential decay more shallow and increase the
constant factor. However, it is interesting that the form of the error dependence remains exponentially decaying.

We now have the ability to estimate the number of Trotter steps necessary to achieve a certain accuracy in the
interpolation, assuming the values 𝑓 (𝑠𝑘) are computed exactly.

Lemma 16. In the setting of Theorem 15, to achieve a relative error 𝜖 such that

|𝑂 (𝑇) − 𝑃𝑚−1 𝑓 (0) | ≤ 𝜖 ∥𝑂∥,

it suffices to choose 𝑚 = 𝑂 (log(1/𝜖)) and ℓ = 1
2 (𝑎maxΥ𝜆𝑇)−(1+1/𝑝) . This interpolation protocol requires a maximum

number of Trotter steps

max
𝑘
𝑟𝑘 = 𝑂

(
(𝑎maxΥ𝜆𝑇) (1+1/𝑝) log(1/𝜖)

)
.

Proof. From Theorem 15, to achieve relative error 𝜖 , it suffices to choose 𝑚 such that

𝑐𝑒−𝛾𝑚 ≤ 𝜖 (116)

i.e., 𝑚 = 𝑂 (log(1/𝜖)). To find the maximum number of Trotter steps needed for an particular sampling point, we see
from Eq. (101) that the smallest 𝑠𝑘 is given by 𝑘 = 𝑚/2 and is of size 𝑂 (𝑚−1). Hence,

max
𝑘
𝑟𝑘 = 𝑂 (ℓ𝑚) = 𝑂 ((𝑎maxΥ𝜆𝑇) (1+1/𝑝) log(1/𝜖)). (117)

□
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6.2 Resource Estimates
As for the Richardson extrapolation case, for polynomial interpolation we will have to deal with both the algorithmic
extrapolation error 𝜖ext and the measurement error 𝜖data. We assume that each 𝑓 (𝑠𝑖) is measured with error ≤ 𝜖data, i.e.
we measure a set of data points { 𝑓𝑖}𝑖 such that | 𝑓 (𝑠𝑖) − 𝑓𝑖 | ≤ 𝜖data. Let 𝑃̃𝑚 𝑓 be the polynomial obtained from fitting to
the data { 𝑓𝑖}𝑖 , then it can be shown [Riv20] that

max
𝑠∈[−ℓ,ℓ ]

|𝑃𝑚 𝑓 (𝑠) − 𝑃̃𝑚 𝑓 (𝑠) | ≤ 𝐿𝑚𝜖data,

where 𝐿𝑚 is the Lebesgue constant, which for Chebyshev interpolation is bounded by 2
𝜋

log(𝑚 + 1) + 1.
Thus, in terms of the total error, 𝜖 , we can make the partition

𝜖ext =
𝜖

2
, 𝜖data =

𝜖

2𝐿𝑚
.

To find the total resource costs for the polynomial interpolation methods, we realise that the analysis is identical to the
analysis performed in Section 5.2.1 and Section 5.2.2.

6.2.1 Stability to Imperfect Chebyshev Nodes

As in the Richardson extrapolation case, when performing polynomial interpolation, we wish to ensure our samples are
taken from inverse integer values which are at or close to the ideal Chebyshev nodes. However, in Appendix B, we see
that by choosing a slightly larger value of ℓ, we get robustness to this sampling error but with a new Lesbegue constant
𝐿′𝑚 which satisfies 𝐿′𝑚 ≤ 2𝐿𝑚. Thus, rather than sampling from the Chebyshev nodes exactly, we can instead sample
from the closest inverse integer. The robustness condition is satisfied by choosing

1/ℓ = 𝑂
(
(𝑎maxΥ𝜆𝑇)1+1/𝑝𝑚2 log (𝑚)

)
= 𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝 log2

(
1
𝜖

)
log log

(
1
𝜖

))
.

(118)

Thus the maximum number of Trotter steps scales as

𝑂

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝 log3

(
1
𝜖

)
log log

(
1
𝜖

))
.

Considering the total number 𝐶Trot of Trotter steps only changes the overall scaling by log log factors in 1/𝜖 , which we
neglect. We summarise these findings in the following theorem.

Theorem 17 (Resource Costs for Polynomial Interpolation). Let 𝑃̃𝑚 𝑓 be the 𝑚-degree polynomial fit taken at the
inverse integers closest to the Chebyshev nodes in the interval [−ℓ, ℓ]. The resource requirements to achieve error

|⟨𝑂 (𝑇)⟩ − 𝑃̃𝑚 𝑓 (0) | ≤ 𝜖 ∥𝑂∥

for incoherent and coherent measurement scales as the following table.

Scaling Max Depth, 𝐷max Total Resources, 𝐶Trot

Coherent 𝑂̃

(
(𝑎maxΥ𝜆𝑇 )1+1/𝑝

𝜖
log3 ( 1

𝜖

) )
𝑂̃

(
(𝑎maxΥ𝜆𝑇 )1+1/𝑝

𝜖
log3 ( 1

𝜖

) )
Incoherent 𝑂̃

(
(𝑎maxΥ𝜆𝑇)1+1/𝑝 log3 ( 1

𝜖

) )
𝑂̃

(
(𝑎maxΥ𝜆𝑇 )1+1/𝑝

𝜖 2 log3 ( 1
𝜖

) )
Here, 𝜆 ≤ ∑

𝛾 ∥𝐻𝛾 ∥ is defined in Lemma 7, 𝑂̃ hides log log factors, and there is a failure probability of 𝛿 = 0.01.
Moreover, 𝑚 = 𝑂 (log 1/𝜖).
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7 Numerical Demonstrations
Here we test the above results using the Heisenberg model on a length 𝐿 1D chain, defined as:

𝐻 =

𝐿−1∑︁
𝑖=1

(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + 𝑍𝑖𝑍𝑖+1) +
𝐿∑︁
𝑖=1

ℎ𝑖𝑍𝑖

where we choose the values {ℎ𝑖}𝐿𝑖=1 uniformly randomly in the interval [−1, 1]. This Hamiltonian is well studied in the
context of Trotter simulation [Chi+18]. We choose to work with a 𝑝 = 2 product formula on a system of 𝐿 = 6 qubits.
For the initial state, we choose a randomly chosen classical bit string: |𝑥⟩ , 𝑥 ∈ {0, 1}𝑛 and we choose a randomly
chosen sum of 3 Pauli strings to act as the observable. In order to generate the figures in the following section, we have
used a minimum number of Trotter steps 𝑟 = 1/𝑠min =

⌈
(Λ𝑇)3/2⌉.

7.1 Error with Fixed Maximum Circuit Depth
Here we consider the error associated with choosing a fixed maximum circuit depth that we can utilise (e.g. if we are
limited by noise in the physical circuit), and then use this to compare results from time simulation. That is, suppose
we want to predict ⟨𝑂 (𝑇)⟩ but are restricted to some maximum circuit depth (i.e. Trotter steps). How does the
unextrapolated error compare to the extrapolated error?

Fig. 3 (left) shows that if we consider a fixed time and as we increase the number of steps from a minimum value of
𝑟 =

⌈
(Λ𝑇)3/2⌉, using Trotter extrapolation drastically reduces the error compared with just measuring the state directly.

However, as demonstrated by Fig. 3 (right), the benefits of this are limited by the error associated by the measurements
at each point. As one might expect, neither extrapolation techniques can improve results beyond the limit to which we
measure the observable we are extrapolating.
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Figure 3: Left: Error comparison between the observable measured on the time-evolved state using Trotterisation vs. the extrapolated
error for different maximum numbers of Trotter steps on a system of 6 qubits. The initial number of steps corresponds to ∼ (Λ𝑇)3/2.
We see the plot levels out at the bottom due to floating point precision. Right: The same as left, but where the extrapolation procedures
are performed with a measurement error of 10−6 for each measurement.

We can also consider the case where we run the simulation for different amounts of time and see how the error scales
with the number of nodes. From Fig. 4 we see that the extrapolation holds for much longer simulation times. We point
the reader to [Wat24, Chapter 3] for similar numerics1.

1We note a small difference in the scaling of the error compared to [Wat24] where the gradient changes with 𝑇 . This is due to the different choice
in the minimum number of Trotter steps.
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Figure 4: A comparison in the performance of Richardson extrapolation as a function of the Richardson extrapolation degree for
different simulation times.

8 Aside: Compatibility with Classical Shadows
In this section, we consider the estimation of many time evolved expectation values using the classical shadows technique.
To use classical shadows alongside extrapolation, simply run the classical shadows protocol on each of the 𝑚 states
{𝜌𝑘}𝑚𝑘=1 resulting from a Trotter evolution with step size 𝑠𝑘 . Then compute the expectation values of interest using
these shadows and perform the extrapolation.

Classical shadows requires repeated computational basis measurements measurements on the time-evolved states
𝜌𝑘 , which is cheap but limits us to shot-noise accuracy. From [HKP20], to estimate the expectation value of 𝑀 local
observables {𝑂𝑖}𝑀𝑖=1 to accuracy | tr[𝜌𝑂𝑖] −𝑂𝑖,𝑒𝑠𝑡 | ≤ 𝜖data∥𝑂𝑖 ∥ with probability ≥ (1 − 𝛿), it suffices to take a number
of samples of 𝜌𝑘 which is bounded by

≤ 128
𝜖2

data
max
𝑖

∥𝑂𝑖 ∥2 log
(
𝑀

𝛿

)
.

Each of these samples requires a single Trotter evolution whose cost is determined by 𝑘 , etc. The following theorem is a
simple corollary of the above results on Richardson and polynomial extrapolation.

Theorem 18. Let {𝑂𝑖 (𝑇)}𝑀𝑖=1 be a set of 𝑀 𝑘-local time-evolved observables 𝑂 (𝑇) = 𝑒𝑖𝐻𝑇𝑂𝑒−𝑖𝐻𝑡 . To get an estimate
|tr(𝜌𝑂𝑖 (𝑇)) −𝑂𝑖,𝑒𝑠𝑡 | ≤ 𝜖data∥𝑂𝑖 ∥ with probability ≥ (1 − 𝛿), the maximum Trotter depth scales as

𝐷max = 𝑂

(
(𝜆𝑇)1+1/𝑝 polylog(1/𝜖)

)
,

where we need to run experiments at no more than 𝑚 = 𝑂 (log(1/𝜖)) sampling points. Meanwhile, the total number of
Trotter steps for the entire protocol scales as

𝐶Trot = 𝑂̃

(
1
𝜖2 (𝜆𝑇)

1+1/𝑝 polylog
(

1
𝜖

)
log

(
𝑀

𝛿

))
,

where 𝑂̃ suppresses doubly-logarithmic multiplicative factors.
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9 Discussion and Conclusions
In this work, we have shown that by performing product formulae evolutions with different time-step sizes, we can
use classical extrapolation techniques to predict the expectation values of observables with gate complexity scaling as
𝑂

(
𝑇1+1/𝑝

𝜖
polylog

(
1
𝜖

))
, where we are ignoring log log factors. We emphasise that the 𝑂 (1/𝜖) scaling arises from the

measurement error, and that the effective Trotter error scales as 𝑂 (polylog(1/𝜖)).
In the NISQ regime, circuit depth is arguably the most important cost metric. For this, we consider extrapolation using

shot-limited measurements of the observable or classical shadows. Here the fact coherent measurements are not needed
drastically reduces the constant overheads needed and we see only circuit depths scaling as 𝑂

(
𝑇1+1/𝑝 polylog

(
1
𝜖

))
are

required. We expect the resource scaling with error to be optimal up to log factors. The Heisenberg measurement limit
is fundamental measurement limit which requires at least Ω(1/𝜖) scaling [GLM06]. Thus we should expect our total
resource cost to scale as Ω(1/𝜖) in general.

Beyond Standard Product Formulae There are many proposals for modifying product formulae, or otherwise
combining them with simulations algorithms [RRW22; ST24]. It remains open whether these algorithms can be
fruitfully combined with the Richardson or polynomial extrapolation approaches considered here to improve their
performance.

State Dependent Bounds The bounds given in this work are also sensitive to the “physics” of the system. That is, if
the system has symmetries, or is restricted to a particular subspace, then we can improve the error estimates given here
by replacing the spectral norm with a symmetry-respecting norm. We demonstrate this in Appendix A, where we show
that if the evolution is restricted to a particular subspace, the various norms or commutators characterising the error can
be replaced with quantities projected onto the relevant subspace.

More Tractable Expressions for Commutator Scaling Although the results in this paper demonstrate commutator
scaling in the error of Richardson extrapolation, actually computing these expressions is likely to be extremely
computationally expensive. Developing an expression which can be computed efficiently is an enormously important
task, as it allows us to upper bound the amount of quantum resources needed to reach a guaranteed precision. We hope
that future work will find simplified expressions for the commutator error.

Lower Bounds The work here gives an improvement on the Trotter error for measured observables. In the general
setting, lower bounds have been proven for the performance of Trotterization methods [Hah+24], but it remains to be
seen if similar bounds on the query complexity can be proven if post-processing is allowed.
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A Improved Bounds with Physical Knowledge
Here we consider the case where the Hamiltonian may have some physical symmetry. In this case, we may be able to
exploit this symmetry to improve our convergence bounds. Let 𝐻 =

∑
𝑗 ℎ 𝑗 , where {ℎ 𝑗 } 𝑗 are the terms used in the Trotter

decomposition. Then assume that there exists some symmetry subspace denoted S, such that ΠS is a projector onto the
subspace S. We assume that the both the overall Hamiltonian and the individual terms in the Trotter decomposition
preserve the symmetry. That is, the following holds.

[𝐻,ΠS] = 0 [ℎ 𝑗 ,ΠS] = 0

Consider a state |𝜓S⟩ ∈ S. Then we see that

𝑒−𝑖ℎ 𝑗 𝑡 |𝜓S⟩ = 𝑒−𝑖ℎ 𝑗 𝑡ΠS |𝜓S⟩
= ΠS𝑒

−𝑖ΠSℎ 𝑗ΠS 𝑡ΠS |𝜓S⟩ ,

where we have used that |𝜓S⟩ = ΠS |𝜓S⟩ and ΠS = ΠSΠS . Applying this to product formulae,

P(𝑡) |𝜓S⟩ =
∏
𝑗

𝑒−𝑖𝑎 𝑗ℎ 𝑗 𝑡 𝑗 |𝜓S⟩

=
∏
𝑗

𝑒−𝑖𝑎 𝑗ΠSℎ 𝑗ΠS 𝑡 𝑗 |𝜓S⟩ .

Thus, because the simulation is restricted to a particular subspace, we can consider the Hamiltonian restricted to that
subspace. In this case we no longer need to consider the full operator norm and can consider a “symmetry projected”
norm. We can define “symmetry-respecting” norms which characterise the rate of convergence.

ΛS B
∑︁
𝑗

∥ΠSℎ 𝑗ΠS ∥

For the case of commutators, from Lemma 6,

𝜆 𝑗 ,𝑙 B

( ∑︁
𝑗1... 𝑗𝑙∈𝜎Z+≥𝑝
𝑗1+···+ 𝑗𝑙= 𝑗

𝑙∏
𝜅=1

2
𝛼
( 𝑗𝜅+1)
comm

( 𝑗𝜅 + 1)2

)1/( 𝑗+𝑙)

and

𝛼
( 𝑗 )
comm,S =

Γ∑︁
𝛾1𝛾2...𝛾 𝑗=1

∥ΠS [𝐻𝛾1𝐻𝛾2 . . . 𝐻𝛾 𝑗 ]ΠS ∥.

These symmetry respecting quantities can then be used in place of Λ, 𝛼 ( 𝑗 )
comm in Lemma 6 and elsewhere, thus giving us

improved convergence results. We believe that similar results should hold when the restriction to the subspace S is not
strictly preserved, i.e. there is some leakage to other subspaces. For example, if one restricts to low-energy states as per
[ŞS21].

B Polynomial Interpolation: Error from Imperfect Chebyshev Nodes
As described earlier, if the Cheybshev nodes do not coincide with the inverse integers, we may not be able to sample
exactly from the Chebyshev nodes as, if we restrict ourselves to integer applications of the Trotter evolution, we require
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𝑠 = 1/𝑟, for 𝑟 ∈ Z. For any 𝜉 ∈ Z, the spacing between inverse integers is(
1
𝜉
− 1
𝜉 + 1

)
=

1
𝜉

∞∑︁
𝑘=1

(−1)𝑘
𝜉𝑘

≤ 1
𝜉

∞∑︁
𝑘=1

1
𝜉𝑘

≤ 2
𝜉2 , for sufficiently large 𝜉, (119)

where one can use the standard bound on a geometric sum to get the last line. We then use the following theorem.

Theorem 19 (Perturbed Chebyshev Nodes, Section 3 of [VP18]). Let 𝑥 ∈ [𝑐, 𝑑], and let 𝐿𝑚 Lebesgue constant of the
𝑚 + 1 Chebyshev points in [𝑐, 𝑑]. The Lebesgue constant of the points after they have been perturbed by ≤ 𝜖𝑁 away
from the Chebyshev node, denoted 𝐿′𝑚, is bounded by

𝐿′𝑚 ≤ 𝐿𝑚

1 − 𝛼 ,

where 𝜖𝑚 satisfies

𝜖𝑚 =
𝛼(𝑑 − 𝑐)
𝑚2𝐿𝑚

.

We can apply this to the case where we are not sampling from the exact Chebyshev nodes. We now consider the
interval [−ℓ, ℓ] on which we wish to learn the function 𝑓𝐵 (𝑠). Applying Theorem 19 with 𝛼 = 1/2 gives

𝐿′𝑚 ≤ 2𝐿𝑚,

provided for

𝜖𝑚 =
ℓ

𝑚2𝐿𝑚
.

If we consider the interval [−ℓ, ℓ], then the maximum distance between inverse point is at the boundaries. Hence from
Eq. (119), the maximum distance between inverse integers in [−ℓ, ℓ] is

𝜖𝑚 ≤ max
𝜉 ∈[−1/ℓ,1/ℓ ]

1
𝜉2

≤ ℓ2.

Thus, for a given 𝑚, we need to ensure that ℓ ≤ (𝑚2𝐿𝑚)−1. We note that in general ℓ scales in terms of 𝑂 (𝑇1+1/𝑞),
while 𝑚 = 𝑂 (log(1/𝜖)) and 𝐿𝑚 = 𝑂 (log log(1/𝜖). To satisfy both bounds we can choose

ℓ ≤ 1
(𝑎maxΥ𝜆𝑇)1+1/𝑞𝑚2𝐿𝑚

,

and thus the minimum number of Trotter steps scales as

𝑂 (𝑚/ℓ) = 𝑂
(
(𝑎maxΥ𝜆𝑇)1+1/𝑞 log3

(
1
𝜖

)
log log

(
1
𝜖

))
.
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C Errata for Previous Literature on Richardson Extrapolation
Here we discuss the previous work on Richardson extrapolation by Vazquez et al. [Vaz+23], which appears to have
incorrect derivations for the error in Richardson extrapolation of observables.

In Appendix A, equation (13) of Ref. [Vaz+23], it is claimed that the iterated product formula has an expansion

P𝑘 (𝑇/𝑘) = 𝑒−𝑖𝐻𝑇 +
∞∑︁
𝑛=1

𝐴𝑛
𝑇𝑛+1

𝑘𝑛
, (120)

where the 𝐴𝑛 are size 𝑂 (1) in 𝑇 and consist of nested-commutators of the Hamiltonian terms. However, this expansion
is incorrect, which can be seen by comparison to a counter-example2. Consider the Hamiltonian 𝐻 = 𝑋 + 𝑍 and the
associated Trotterization 𝑒−𝑖𝑋𝑇/𝑘𝑒−𝑖𝑍𝑇/𝑘 . Making the identification 𝑠 = 1/𝑘 , using the standard BCH formula we get
an effective Hamiltonian

log
(
𝑒−𝑖𝑋𝑠𝑇𝑒−𝑖𝑍𝑠𝑇

)
= −𝑖𝑠𝑇 (𝑋 + 𝑍) − (𝑠𝑇)2 1

2
[𝑋, 𝑍] + 𝑖(𝑠𝑇)

3

12
( [𝑋, [𝑋, 𝑍]] + [𝑍, [𝑍, 𝑋]])

− (𝑠𝑇)4

24
[𝑍 [𝑋, [𝑋, 𝑍]]]︸             ︷︷             ︸

=0

+𝑂 (𝑠5𝑇5)

= −𝑖(𝑋 + 𝑍) (𝑠𝑇) + 𝑖𝑌 (𝑠𝑇)2 + 𝑖(𝑍 + 𝑋) (𝑠𝑇)
3

3
+𝑂 ((𝑠𝑇)5).

(121)

We can then exponentiate this and consider the iterated first-order product formula to get

P1/𝑠 (𝑠𝑇) =
(
𝑒−𝑖𝑋𝑠𝑇𝑒−𝑖𝑍𝑠𝑇

)1/𝑠

= exp
(
−𝑖(𝑋 + 𝑍)𝑇 + 𝑖𝑌 𝑠𝑇2 + 𝑖(𝑍 + 𝑋) 𝑠

2𝑇3

3
+𝑂 (𝑠4𝑇5)

)
. (122)

To obtain a polynomial expansion in 𝑠, we use the variation of parameters formula

𝑒𝐴+𝐵 = 𝑒𝐴 +
∫ 1

0
𝑑𝜏𝑒 (1−𝜏 )𝐴𝐵𝑒 (𝐴+𝐵)𝜏 (123)

which we iterate 4 times to get the following.

𝑒𝐴+𝐵 = 𝑒𝐴 +
∫ 1

0
𝑑𝜏1𝑒

(1−𝜏1 )𝐴𝐵𝑒𝐴𝜏1

+
∫ 1

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2𝑒

(1−𝜏1 )𝐴𝐵𝑒𝐴(𝜏1−𝜏2 )𝐵𝑒𝜏2𝐴

+
∫ 1

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2

∫ 𝜏2

0
𝑑𝜏3 𝑒

(1−𝜏1 )𝐴𝐵𝑒𝐴(𝜏1−𝜏2 )𝐵𝑒 (𝜏2−𝜏3 )𝐴𝐵𝑒𝜏3𝐴

+
∫ 1

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2

∫ 𝜏2

0
𝑑𝜏3

∫ 𝜏3

0
𝑑𝜏4 𝑒

(1−𝜏1 )𝐴𝐵𝑒𝐴(𝜏1−𝜏2 )𝐵𝑒 (𝜏2−𝜏3 )𝐴𝐵𝑒 (𝜏3−𝜏4 )𝐴𝐵𝑒𝜏4 (𝐴+𝐵)

(124)

We now make the explicit choice

𝐴 = −𝑖𝑇 (𝑋 + 𝑍)

𝐵 = 𝑖𝑌 𝑠𝑇2 + 𝑖(𝑍 + 𝑋) 𝑠
2𝑇3

3
+𝑂 (𝑠4𝑇5)

(125)

2We add that the series in Eq. (120) (i.e. [Vaz+23, eq. (13)]) is claimed to come from Ref. [Chi10], however, we were unable to verify this explicit
series appears in Ref. [Chi10].
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and neglect any terms above 𝑂 (𝑠3). Since 𝐵 is 𝑂 (𝑠), then the last line of Eq. (124) is 𝑂 (𝑠4), hence we neglect it.
Keeping some 𝐴 terms implicit for brevity, we have

P1/𝑠 (𝑠𝑇) = 𝑒−𝑖𝑇 (𝑋+𝑍 )

+
∫ 1

0
𝑑𝜏1𝑒

𝐴(1−𝜏1 ) (𝑖𝑌 𝑠𝑇2 + 𝑖(𝑍 + 𝑋) 𝑠
2𝑇3

3
)𝑒𝐴𝜏1

+
∫ 1

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2

[
𝑒𝐴(1−𝜏1 ) (𝑖𝑌 𝑠𝑇2 + 𝑖(𝑍 + 𝑋) 𝑠

2𝑇3

3
)𝑒𝐴(𝜏1−𝜏2 ) (𝑖𝑌 𝑠𝑇2 + 𝑖(𝑍 + 𝑋) 𝑠

2𝑇3

3
)𝑒𝐴𝜏2

]
+

∫ 1

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2

∫ 𝜏2

0
𝑑𝜏3 𝑒

𝐴(1−𝜏1 ) (𝑖𝑌 𝑠𝑇2)𝑒𝐴(𝜏1−𝜏2 ) (𝑖𝑌 𝑠𝑇2)𝑒𝐴(𝜏2−𝜏3 ) (𝑖𝑌 𝑠𝑇2)𝑒𝐴𝜏3 +𝑂 (𝑠4).

(126)

Grouping the above according to combinations of 𝑠 and 𝑇 , the expression may be written as

P1/𝑠 (𝑠𝑇) = 𝑒−𝑖𝐻𝑇 + 𝑠𝑇2𝐺1 (𝑇) + 𝑠2𝑇3𝐺2 (𝑇) + 𝑠2𝑇4𝐺3 (𝑇) + 𝑠3𝑇5𝐺4 (𝑇) + 𝑠3𝑇6𝐺5 (𝑇) +𝑂 (𝑠4) (127)

where 𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5 = 𝑂 (1) are matrix functions of 𝑇 only. We note in particular that there are terms with scaling
𝑂 (𝑠2𝑇4), 𝑂 (𝑠3𝑇6), and 𝑂 (𝑠2𝑇5) which do not appear with the ratio 𝑠𝑚𝑇𝑚+1 which would be necessary for Eq. (120) to
be valid. It can be checked that this occurs for higher order terms as well.

The incorrect series expansion given in Eq. (120) is then used in Appendix C of Ref. [Vaz+23] and hence the errors
unfortunately propagate into this later section. In particular, through equations (15)-(18) which is where the error in
the Richardson extrapolation is derived. Following from [Vaz+23, eq. (17)] (and broadly using their notation) with
P𝑘 𝑗 (𝑇/𝑘 𝑗 ) = 𝑈 + 𝐸 𝑗 , then

⟨𝑂 (𝑘−1
𝑗 , 𝑇)⟩ = ⟨𝜓 |𝑈†𝑂𝑈 |𝜓⟩ + ⟨𝜓 |𝑈†𝑂𝐸 𝑗 |𝜓⟩

+ ⟨𝜓 | 𝐸†
𝑗
𝑂𝑈 |𝜓⟩ + ⟨𝜓 | 𝐸†

𝑗
𝑂𝐸 𝑗 |𝜓⟩ .

We now explicitly consider Richardson extrapolation with 𝑙 = 3 extrapolation points, for the Hamiltonian 𝐻 = 𝑋 + 𝑍 .
Following [Vaz+23, eq. (17)],

𝜖 =

𝑙=3∑︁
𝑗=1
𝑎 𝑗 ⟨𝜓 |𝑈†𝑂𝐸 𝑗 |𝜓⟩ (128)

=

𝑙=3∑︁
𝑗=1
𝑎 𝑗 ⟨𝜓 |𝑈†𝑂

(
𝑇2 1
𝑘 𝑗
𝐺1 +

1
𝑘2
𝑗

𝑇3𝐺2 +
1
𝑘2
𝑗

𝑇4𝐺3 +
1
𝑘3
𝑗

𝑇5𝐺4 +
1
𝑘3
𝑗

𝑇6𝐺5

)
|𝜓⟩ + O

(
1
𝑘4

1

)
. (129)

We see that the Richardson conditions cancels off all terms up to order 𝑂 (𝑘−2
1 ). This gives

𝜖 =

𝑙=3∑︁
𝑗=1
𝑎 𝑗 ⟨𝜓 |𝑈†𝑂

(
1
𝑘3
𝑗

𝑇4𝐺4 +
1
𝑘3
𝑗

𝑇6𝐺5

)
|𝜓⟩ + O

(
1
𝑘4

1

)
.

Thus 𝜖 = O
(
𝑇6

𝑘3
1

)
is the asymptotic scaling of the error. This gives an overall error scaling of the Richardson estimator as

𝑙=3∑︁
𝑗=1
𝑎 𝑗 ⟨𝑂 (𝑘−1

𝑗 , 𝑇)⟩ = ⟨𝜓 |𝑈†𝑂𝑈 |𝜓⟩ + O
(
𝑇6

𝑘3
1

)
. (130)

The result is that the asymptotic behaviour of the error given in equation (7) in the main text of Ref. [Vaz+23]
appears to be incorrect. The correct version of Eq. (120) appears in [AAT24, Lemma 7]. We also realise that for the
error in Eq. (130) to shrink, we require that 𝑘1 = 𝑂 (𝑇2), and hence we would require a number of Trotter steps (and
hence circuit depths) scaling as 𝑂 (𝑇2). As such, the error scaling in Eq. (130) is consistent with the bounds present in
the current work, as seen in Theorem 1 where the time scaling is 𝑂 (𝑇2) for 𝑝 = 1 product formulae.
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