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We utilize the symmetry groups of regular tessellations on two-dimensional surfaces of different constant
curvatures, including spheres, Euclidean planes and hyperbolic planes, to encode a qubit or qudit into the phys-
ical degrees of freedom on these surfaces. We show that the codes exhibit decent error correction properties by
analysis via geometric considerations and the representation theory of the isometry groups on the correspond-
ing surfaces. Interestingly, we demonstrate how this formalism enables the implementation of certain logical
operations via geometric rotations of the surfaces. We provide a variety of concrete constructions of such codes
associated with different tessellations, which give rise to different logical groups.

I. INTRODUCTION

In the pursuit of scalable quantum technologies, quantum
error correction is a challenging yet essential task. Aside from
the robust storage of the encoded quantum information, ef-
ficient and robust manipulation of the encoded quantum in-
formation through logical operations is also a nontrivial but
crucial problem for achieving fault-tolerant quantum comput-
ing. Consequently, designing quantum error-correcting codes
with desired logical gate sets emerges as a pressing problem
that has garnered substantial attention, spanning a variety of
important settings, including topological codes [1–7], product
codes [8, 9], covariant codes [10–17], bosonic codes [18–25],
dynamical codes [26–28], fusion-based quantum computing
[29, 30].

In this work, we adopt a geometric perspective and study
codes whose code states are extended in real space. Here,
symmetries of the space can be utilized as a resource.
The Gottesman–Kitaev–Preskill (GKP) code [18] utilizes the
translation symmetry on flat space. We explore the rotation
symmetries of two-dimensional surfaces with different curva-
tures and demonstrate how they enable geometric rotations to
implement logical quantum gates. While codes that allow gate
implementation via rotations have been explored on spheres
[31–34], we approach the code construction from the new
perspective of regular triangle tessellations and construct ge-
ometric codes on different curved surfaces including spheres,
Euclidean planes and hyperbolic surfaces. Specifically, the
connections between the group structures of the logical gate
sets and the triangle groups of the tessellations underlies the
construction. That is, our codes can be viewed as codes based
on the representation of the logical gate sets [32, 33, 35–39].
On the other hand, our formalism utilizes lattices defined by
tessellation. In this regard, our constructions also generalize
the GKP codes [40, 41] based on lattices on curved spaces.
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We note that some specific kinds of surface tessellation were
used to construct microscopic models of holography [42–44]
and quantum codes [45] in different setups in previous studies.

Specifically, we provide a versatile geometric formalism for
constructing quantum codes, whose codewords are superposi-
tions obeying patterns of surface tessellation and the logical
gates correspond to rotation symmetries acting on the tessel-
lation. By choosing different tessellations, we obtain quan-
tum codes with different logical gate sets and error correction
properties. In particular, the exotic features of hyperbolic sur-
faces may have striking implications for coding theory and
physics. This has been seen in classical codes [46], the hyper-
bolic surface codes that overcome the Bravyi–Poulin–Terhal
(BPT) bound [47–49], band theory for non-abelian lattices
[50–53], and exotic phases of matter [54–58]. The present
work provides the first examples of continuous-variable codes
on hyperbolic surfaces. Especially, the infinite types of regular
tessellations on hyperbolic surfaces enable us to realize a wide
range of logical gate sets, including the qudit Pauli group, the
single-qubit Clifford groups, the binary icosahedral group and
even the single qubit universal gate set.

The paper is organized as follows. We first overview the
group structure of Pauli and Clifford groups. We present
their underlying connection to the triangle groups in Sec. II.
In Sec. III, we set up the framework of our code construc-
tion, including the encoding map III A, the error model and
its correction strategy III B. In Sec. IV, we provide several
examples built from our formalism in different surfaces and
tessellations, including examples on the sphere (Example 1),
Euclidean plane (Examples 2, 3), and hyperbolic space (Ex-
amples 4, 5, 6). These examples exhibit the interplay among
lattice symmetries, logical gate sets, and error correction. In
Sec. V, we discuss the potential of our framework to realize
universal logical gates.
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II. GROUP STRUCTURE

In this work, we consider the following version of the Pauli
group, whose group presentation is

⟨X,Z ∣X2 = Z2 = (XZ)4 = 1⟩. (1)

The group has a centre element XZXZ = ZXZX , squared
to identity. For a qudit of general dimension d ≥ 3, we have
X = ∑j ∣j + 1⟩⟨j∣ and Z = ∑j ω

j ∣j⟩⟨j∣, where ω = ei 2π
d . The

group presentation is

⟨X,Z ∣Xd = Zd = ΩXΩ−1X−1 = ΩZΩ−1Z−1 = 1⟩. (2)

Here Ω ≡ XZX−1Z−1 is the commutator of X and Z. The
last two relations mean that Ω is a central element. One can
derive Ωd = 1 with these relations. Therefore, Ω is identified
as ei

2π
d 1 in a unitary representation of the Pauli group. One

can also derive (XZ)d = 1 for odd integer d and (XZ)2d = 1
for even integer d from Eq. (2).

There are various realizations of the single qubit Clifford
group. They are equivalent up to global phases. An example
presented in Ref. [36] is generated by

S = (e
iπ
4 0
0 e−i

π
4
), U = 1√

2
( ei

π
4 ei

π
4

−e−iπ
4 e−i

π
4
). (3)

We have S4 = U3 = (US)2 = −1. This version of the single
qubit Clifford group has 48 elements. The presentation of this
group can be written as

⟨S,U ∣ S8 = U6 = (US)4 = S4U3 = S4(US)2 = 1⟩. (4)

We construct codes geometrically realizing logical operations
of this group in Example 5.

Regular tessellations of two-dimensional surfaces are deter-
mined by the associated triangle group. A triangle group has
three generators which are reflections along each side of a tri-
angle. Label the reflections along the corresponding sides as
fa, fb, fc. The triangle group ∆(p, q, r) is classified by three
positive integers {p, q, r}, all greater than 1. Its presentation
is

⟨fa, fb, fc∣ f2
a = f2

b = f2
c = (fbfc)p = (fcfa)q = (fafb)r = 1⟩.

(5)
An index-2 subgroup of the triangle group is called the proper
triangle group, denoted as ∆̄(p, q, r). It only contains even
numbers of the reflections in the triangle group. By redefining
rA ≡ fbfc, rB ≡ fcfa, rC ≡ fafb = (rArB)−1, its presentation
is

⟨rA, rB ∣ rpA = r
q
B = (rArB)

r = 1⟩. (6)

Here rA = fbfc is the rotation around the angle A defined by
sides b and c in the direction from c to b by 2π

p
. rB and rC

have similar geometric meanings, as depicted in Figure 1.
The integers label the types of the tessellations. Their re-

ciprocal sum is related to the curvature of the surfaces,

1

p
+ 1

q
+ 1

r

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

> 1 Ô⇒ sphere,
= 1 Ô⇒ Euclidean plane,
< 1 Ô⇒ hyperbolic plane.

(7)

FIG. 1. The {2,4,4} tessellation on the plane is used to illustrate the
action of the generators of the triangle and proper triangle groups.
Generators of other {p, q, r} groups act similarly geometrically. The
dashed double-arrow lines represent reflections, and the solid single-
arrow lines represent rotations.

The structural similarities between the presentation of
proper triangle groups (6) and the Pauli group (2) or the sin-
gle qubit Clifford group (4) motivate us to realize logical qubit
gates via geometric manipulations.

The presentations of the Pauli or Clifford groups have extra
relations compared to their triangle group counterparts. From
an algebraic perspective, imposing extra relations R is de-
scribed as the quotient of the triangle group by the normal
subgroup called the normal closure of R. The normal closure
is generated by the generators of the form R∆̄ = {g−1rg, g ∈
∆̄, r ∈ R}. Geometrically, these extra relations set identifica-
tion relations to the lattice points of the tessellation, thus spec-
ifying unit cells of the lattice. The normal closure is the trans-
lation group in lattice theory and is often denoted as Γ. It plays
a similar role to the stabilizer group in the non-commuting
case, so we call Γ the generalized stabilizer group. The re-
lation between the logical group G, the proper triangle group
∆̄, and the generalized stabilizer group Γ is

G = ∆̄/Γ. (8)

III. GENERAL FORMALISM

A. Encoding strategy

We now explain our general framework for constructing
continuous-variable quantum codes that enable geometric re-
alizations of logical gates. The physical degree of freedom is
a free massless two-dimensional boson on the corresponding
surfaces. The logical degree of freedom is a qubit or a qu-
dit, which can be understood as a virtual system that host the
logical group actions as we shall discuss. We adopt the strat-
egy in Ref. [36] to construct the positional configurations of
the logical states. We review this formalism and specify our
construction.

LetHL andHP be the logical and physical Hilbert spaces,
and ρL and ρ be the representations of the group G acting
on HL and HP , respectively. Define the linear operator V =
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∑g∈G ρL(g)−1 ⊗ ρ(g). Then choose two states ∣Σ⟩ ∈ HL and
∣i⟩ ∈ HP such that ⟨Σ∣V ∣i⟩ ≠ 0. The representation of the
logical state ∣k̄⟩ ∈ HP can be written as

∣k̄⟩ ≡ E(∣k⟩) ∝ ∑
g∈G
⟨Σ∣ρL(g)†∣k⟩ρ(g)∣init⟩, (9)

where ∣k⟩ ∈ HL is the logical state to be encoded and ∣init⟩ can
be arbitrary state inHP . Different choices of ∣init⟩ induce dif-
ferent code constructions. Indeed, ρ(g0)∣k̄⟩ = E(ρL(g0)∣k⟩).

In our constructions, ∣Σ⟩ = ∣0⟩ ∈ HL. The ∣init⟩ state is
taken to be a two-dimensional delta state localized at a given
point pi. We emphasize this by writing ∣init⟩ = ∣pi⟩ hereafter.
∣pi⟩ can be chosen arbitrarily inside or on the edges of a unit
Schwarz triangle for code construction, except the vertices. If
the logical unitary around a certain vertex has eigenvalue 1,
∣pi⟩ can be put on this vertex. In this case, instead of ∣0⟩ ∈ HL,
we need to choose ∣Σ⟩ = ∣v1⟩, which is the eigenvalue 1 eigen-
vector of this logical unitary. The choice of the constellation
points is tightly related to the code performance. It is dis-
cussed in detail in Appendix A. The group G is the designated
logical group and ρL is its unitary representation acting on a
logical qubit or qudit. The representation ρ is the quotient
group in Eq. (8), acting geometrically on the state ∣pi⟩ as ro-
tating the point pi. For the spherical case, the triangle group is
isomorphic to the logical group and no quotient is needed. For
the planar and hyperbolic cases, each logical g can be written
as ρ(g) = Γg0 = ∑γ∈Γ γg0, for an arbitrary representative g0
in the coset. This leads to unnormalizable states. This infinity
also occurs in the exact GKP code states.

B. Error model and correction

We discuss error models on each type of surface and intro-
duce parameters to characterize the code performance. The
position error is modelled by an orientation-preserving iso-
metric transformation of the plane and reflects the impreci-
sion of logical operation implementations or unexpected vi-
bration of the system. The momentum error is modelled by
the eigenfunctions of the Laplacian operators on each type of
surface. Physically, the eigenvalues are the kinetic energies of
the modes and the errors are the unexpected energy excitations
of the physical system. Mathematically, they are bases of ir-
reducible representations of the isometry group. We denote
an error operator as Êr,n, in which r labels the representation
and n labels the n-th basis of the vector space carrying the
representation. In Table I, we list different types of position
and momentum errors on corresponding surfaces.

The codes performance against position errors can be nat-
urally characterized by geometric parameters. One such pa-
rameter is one-half of the minimal distance among pairs of
adjacent points, which we call the resolution dx. For the class
of isometry g which transforms a point up to a finite distance,
∥pi−gpi∥ = dg < ∞, if dg < dx, then the error g is correctable.
The resolution dx depends on the position of the constellation
points, through the choice of ∣pi⟩ in Eq. (9). In Appendix A,
we show how to determine the optimal resolution configura-
tion of a given tessellation.

Then we briefly describe the general theory of the correc-
tion of position errors. To correct position error is to deter-
mine an unknown isometry. In principle, there are at most
two fixed points for isometries on a sphere and at most one
for isometries on an Euclidean plane or a hyperbolic plane
(excluding the infinity point). Therefore, we can measure two
points (three points on a sphere if the first two measurement
results are antipodal) and compare their positions before and
after the isometry. The unknown isometry should be solved up
to an element of the generalized stabilizer group. We can then
apply the inverse isometry to correct the error. Every mea-
surement gives one position and we need to at least measure
twice.

Suppose the positions of constellation points in the noise-
less codewords are known, denoted as the set L. The syn-
drome measurement gives the positions of two points pm1 , pm2
of the noisy state. The error correction amounts to determin-
ing their original positions and the error ge. We examine dif-
ferent ansatz of isometries that take the two positions back
to one pair of points in the original configuration L. We de-
note all such isometries as the set Q = {g∣gpm2 , gpm2 ∈ L}.
If a proper probability distribution p of the group elements is
given, we may use the maximal probability decoder to find the
error:

ge = argmax
g,g∈Q

p(g). (10)

The analysis of the Knill–Laflamme error correction con-
ditions [59] of momentum errors can be unified with the help
of the representation theory of the isometry groups. In sum-
mary, all the pairs of Ê†

r,nÊr,n satisfy the condition. For the
pairs (r1, n1) ≠ (r2, n2), most of them also satisfy the error
correction condition, exactly due to the consequence of the
representation theory of the generalized stabilizer group. It is
straightforward to calculate the violating pairs for the codes
on the plane but harder for those on the hyperbolic plane. We
collect the analysis of error correction conditions of momen-
tum errors in Appendix B.

IV. CASE STUDIES

In the following, we introduce some representative exam-
ples of codes associated with spherical, planar, and hyperbolic
tessellations derived from the above general framework, with
certain groups of logical operations realized by geometric ro-
tations. There are infinitely many different regular tessella-
tions on the hyperbolic plane enabling us to realize a wide
range of logical gate sets. We only present three examples as
proof of principle. We describe each code by the type of tes-
sellation, the generalized stabilizers, the logical operator gen-
erators, and the code performance against position and mo-
mentum errors. To lighten the notation, we take the curvature
radius of both sphere and hyperbolic plane to be 1. For the
Euclidean plane, the side length of the isosceles right trian-
gle is 1. So is the side length of the equilateral triangle. We
summarize the parameters and key information of all codes in
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Table II. In the main text, we present the codewords configu-
rations of the examples with a particular choice of ∣pi⟩. The

general codewords and their relations to other codes are given
in Appendix C.

Sphere Euclidean plane Hyperbolic plane
Isometry group SO(3) E(2) PSL(2,R)
Position errors Rotation along any axis Translations, rotations Hyperbolic translations, rotations

Momentum errors Y m
l (θ̂, ϕ̂) = P

m
l (cos θ̂)e

imϕ̂ exp (i(kxx̂ + ky ŷ)) Pn
− 1

2
+is(cosh ρ̂)e

inϕ̂

TABLE I. Different types of position and momentum errors in the table. Position errors are elements of orientation-preserving isometry groups.
Momentum errors are the eigenfunctions of the Laplacians of the corresponding surfaces. They are also basis of unitary representations of the
isometry group.

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
Designated logical group Qubit Pauli Qubit Pauli Qutrit Pauli Z5 qudit Pauli Qubit Clifford Binary icosahedral

Surface type Sphere Euclidean plane Euclidean plane Hyperbolic plane Hyperbolic plane Hyperbolic plane
Triangle tessellation {2,2,4} {2,4,4} {3,3,3} {5,5,5} {6,4,8} {4,3,5}

rA → Z rA →X rA → Z rA → Z rA → U rA → ΦF −1

Generator identifications rB →X rB → Z rB →X rB →X rB → (US)−1 rB → −F
rC →XZ rC → (XZ)−1 rC → (ZX)−1 rC → (ZX)−1 rC → S rC → −Φ

−1

Extra relations − r2B
ΩrAΩ

−1r−1A ,
ΩrBΩ

−1r−1B
ΩrAΩ

−1r−1A ,
ΩrBΩ

−1r−1B
r2Br

3
A, r2Br

4
C r2BrAr

2
Br
−1
A

State configuration Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8
Resolution dx

1
2
arccos 1

3
1
2

√
3

2
1.6169 0.6605 0.5011

TABLE II. Different properties of the codes constructed in this work. We denote Ω ≡ rBrArC , which is identified as XZX−1Z−1, the
commutator of the Pauli X and Z operator.

Example 1. First, we utilize the sphere’s {2,2,4} tessellation
to realize a qubit code with logical Pauli operations realized
by rotations. The ∆̄(2,2,4) is isomorphic to the qubit Pauli
group (1). The most general form of the logical state is pre-
sented in Eq. (C1) In Figure 2, the configuration corresponds
to the specific choice θ0 = arccos 1√

3
, ϕ0 = π

4
. They are on the

vertices of a cube. The logical operations are implemented as
rotations along different axes. The logical Z is rotating around
the x axis by π. The logical X is rotating around the diagonal
of the x, y axis by π. The logical XZ is to rotate around the z
axis counterclockwise by π

2
.

The position error on the sphere is a rotation R(θ, ϕ,α)
around the axis through the point (θ, ϕ) by an angle α. There-
fore, for any two rotations R1(θ1, ϕ1, α1) and R2(θ2, ϕ2, α2)
with α1, α2 < 1

2
arccos 1

3
, the off-diagonal KL condition

⟨0̄∣R†
2R1∣1̄⟩ = ⟨1̄∣R†

2R1∣0̄⟩ = 0 is always satisfied. For the
diagonal condition ⟨0̄∣R†

2R1∣0̄⟩, ⟨1̄∣R†
2R1∣1̄⟩, they are also 0,

unless the cases in which the axis of the composite rotation
R†

2R1 exactly passes through one of the configuration point
in logical states ∣0̄⟩ or ∣1̄⟩. However, in these special cases,
because the antipodal points on the rotational axis belong to
∣0̄⟩ and ∣1̄⟩ respectively for the configuration in Figure 2, the
diagonal error correction is still satisfied. Therefore, this code
can correct the set of rotations R(θ, ϕ,α)with arbitrary (θ, ϕ)

and α < 1
2
arccos 1

3
.

The momentum errors are the spherical harmonics Y m
l ∶=

Y m
l (θ̂, ϕ̂) = Pm

l (cos θ̂)eimϕ̂. Because the logical ∣0̄⟩ and ∣1̄⟩
have no spatial overlap, the off-diagonal error correction con-
ditions are always satisfied. For the diagonal part, we evaluate
⟨0̄∣Y m1†

l1
Y m2

l2
∣0̄⟩, ⟨1̄∣Y m1†

l1
Y m2

l2
∣1̄⟩ in Appendix B 1. The KL

condition is only violated when l1 + l2 is odd and (m1 +m2)
mod 4 = 2. The lowest uncorrectable pair of the errors is
Y 0†
1 Y ±22 . Therefore, this code can correct all the momentum

errors with l = 1.

Example 2. The next example is the {2,4,4} tessellation
on the Euclidean plane. Although the symmetry ∆̄(2,4,4) is
different from the qubit Pauli group, we impose the extra rela-
tion r2B = 1. We obtain a two-dimensional CV code encoding
a logical qubit. The logical X operation is the rotation around
the marked vertex along the axis perpendicular to the surface
by π. The logical Z and (XZ)−1 are rotations around their
corresponding vertices counterclockwise by π

2
respectively.

In Figure 3, we illustrate a specific case (x0, y0) = ( 12 ,
1
2
).

Here we take the vertex for the rotation (XZ)−1 as the origin,
horizontal direction as x and vertical direction as y. This code
can be viewed as a two-mode GKP code encodes one logical
qubit. Each direction is a single-mode GKP code encoding a
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FIG. 2. The constellation of the spherical code in Example 1. The
logical 0 state is superposed by the states localized at red and pink
points, while logical 1 is by blue and light blue ones. The red and
blue points have a coefficient of 1 while the pink and light blue ones
have a coefficient of −1.

qubit, while the full code on the plane is a 2-to-1 concatenated
qubit code using the two GKP qubits. In appendix C 2 we de-
scribe in detail the stabilizers and logical operators from this
point of view.

The error correction properties of this code are analogous
to those of the GKP codes. For position errors of the trans-
lation type, this code can correct any translation of distance
less than the resolution dx = 1

2
. The momentum errors are the

plane waves. We abbreviate the momentum errors, which are
plane waves, as V̂k⃗ ≡ e

ikxx̂eiky ŷ . For a pair of errors V̂ †
k⃗1
V̂k⃗2

,
write ∆kx ≡ kx1−kx2 and ∆ky ≡ ky1−ky2. The error correc-
tion condition is violated only when both ∆kx,∆ky are odd
multiplicities of π

2
. Therefore the code can correct any error

with ∣k⃗∣ <
√
2π
4

. The calculation for the momentum error is in
Appendix B 2.

FIG. 3. The unit cell of the constellation of the Euclidean plane code.
The colours represent the same as those in Figure 2. The logical op-
erations are implemented by rotation around the corresponding ver-
tices.

FIG. 4. The unit cell of the constellation of the qutrit code in Ex-
ample 3. The red, blue and green points consist of the logical ∣0⟩,
∣1⟩, ∣2⟩ states respectively. The coefficients in the superposition are
labelled next to the points. The logical operations are implemented
by rotation around the corresponding vertices counterclockwise by
2π
3

.

Example 3. The {3,3,3} tessellation can encode a logical
qutrit in the plane. As shown in Table II, the qutrit Pauli group
is obtained from the ∆̄(3,3,3) group by adding an extra con-
dition indicating Ω = XZX−1Z−1 is a central element. The
logical gate X , Z and (ZX)−1 are implemented by rotations
around the corresponding vertices by 2π

3
. Figure 4 shows one

unit cell of the codewords with the choice ∣pi⟩ = ∣(1,0)⟩. The
explicit code word is shown in Eq. (C6). As described in Ap-
pendix C 3, this code has GKP-like stabilizer operators, see
Eq. (C7). The GKP-like logical Z operator can also be ob-
tained. However, the logical X operator cannot be realized by
real space displacement.

For the position error of the translation type, this code cor-
rects translation of distance less than dx =

√
3
2
. For the mo-

mentum error, the error correction condition is only violated
when both 3∆kx and

√
3∆ky are multiplicities of 2π

3
but not

multiplicities of 2π. It turns out this code can correct mo-
mentum errors in any direction with ∣k⃗∣ < 2π

9
. The detailed

calculation is in Appendix B 3.

Example 4. The Z5 qudit Pauli group has presentation as
in Eq. (2) with d = 5. It is natural to realize it on a {5,5,5}
lattice with extra relations, as presented in Table II. The log-
ical gates X , Z and (ZX)−1 are implemented by rotations
around the corresponding vertices by 2π

5
. Figure 6 highlights

one unit cell of the codewords if we choose ∣pi⟩ = ∣(b,0)⟩,
where b = arccosh cos π

5 +cos2 π
5

sin2 π
5

is the distance between the ver-

tices of (ZX)−1 and Z. For the position error of the transla-
tion type, this code corrects translation of distance less than
dx = 1

2
arccosh ((1 − cos 2π

5
) cosh2 b + cos 2π

5
) ≈ 1.6169. Be-

cause of the 5-fold rotation symmetry of the hyperbolic lattice,
this code can correct any momentum error with n < 5.

Example 5. The group presentation of the Clifford group in
Eq. (4) is analogous to the proper triangle group ∆̄{6,4,8}.
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We can use this tessellation to construct codes with geomet-
ric logical Clifford operations. In Figure 7 we show the
codeword configurations of the logical ∣0̄⟩ and ∣1̄⟩. Here we
choose ∣pi⟩ = ∣( b2 ,0)⟩, where b = arccosh cos π

4 +cos π
8 cos π

6

sin π
8 sin π

6
is

the distance between the vertices of S and U . The logical
S gate is realized by rotation around the corresponding ver-
tex by π

4
, while the logical U gate is realized by rotation

around the corresponding vertex by π
3

. These gates are de-
fined in Eq. (3). Interestingly, two logical states have po-
sitional overlap, but the relative phases guarantee that they
have a zero inner product. This is analogous to the logical
∣±̄⟩ states of GKP code. For the position error of the transla-
tion type, this code corrects translation of distance less than
dx = 1

2
arccosh ((1 − cos π

4
) cosh2 b

2
+ cos π

4
) ≈ 0.6605.

Example 6. We can construct a code with the logical binary
icosahedral group [37, 60] on the tessellation {4,3,5}. This
group has 120 elements and contains non-Clifford gates. It
can be generated by

F = e−i
π
4

√
2
(1 −i
1 i

), Φ = 1

2
(ϕG + iϕ−1G 1

−1 ϕG − iϕ−1G
). (11)

Here ϕG =
√
5+1
2

is the golden ratio. The generators have the
relations F 3 = Φ5 = (ΦF −1)2 = −1. In Figure 7 we show
the codeword configurations of the logical ∣0̄⟩ and ∣1̄⟩. Here
we choose ∣pi⟩ = ∣( b2 ,0)⟩, where b = arccosh cos π

3 +cos π
4 cos π

5

sin π
4 sin π

5

is the distance between the vertices of −F and −Φ−1. The
logical −F gate is realized by rotation around the correspond-
ing vertex by 2π

3
, while the logical −Φ−1 gate is realized by

rotation around the corresponding vertex by 2π
5

. These gates
are defined in Eq. (3). For the position error of the transla-
tion type, this code corrects translation of distance less than
dx = 1

2
arccosh ((1 − cos 2π

5
) cosh2 b

2
+ cos 2π

5
) ≈ 0.5011.

V. UNIVERSAL GATE SET ON HYPERBOLIC SURFACES

Although the code constructions discussed above mostly
focus on discrete logical groups, we note that it is possible
to realize the universal single-qubit logical gate set within
our formalism. Hyperbolic surfaces admit a special family of
tessellations, one or two of whose labelling integers {p, q, r}
could be ∞. For example, the {∞,2,8} tessellation has pre-
sentation r2B = r8C = 1. It is natural to identify rB with the
Hadamard gate H and rC with the T gate. By imposing the
extra relation (rBr2C)3 commutes with every generator and
(rBr2C)24 = 1, the resulting quotient of the proper triangle
group is isomorphic to the universal gate set. This indicates
the feasibility of using Eq. (9) to construct a code whose entire
logical gate set are implemented by geometric rotations.

VI. DISCUSSION

In this work, we introduced a geometric formalism for con-
structing continuous variable quantum error-correcting codes

whose designated logical gate sets can be realized by geomet-
ric rotations, providing new perspectives for designing codes
with desired logical gate sets. The symmetries of the tessella-
tion lattice and the underlying surfaces play a crucial role in
code construction and error correction.

Numerous directions are worth further exploring. First,
the error correction protocol is worth a more comprehensive
study. Specifically, we discussed the correction for position
errors in Sec. III B, but the case of momentum errors has not
been fully understood and should be further investigated. Sec-
ond, we expect interesting geometric analogues of the Eastin–
Knill theorem and its extensions [10–14, 17, 61] that charac-
terize general limitations on logical gates. Third, we expect
further studies of the geometric interpretation and physical
relevance of magic in similar settings [62–64] to be fruitful.
Fourth, the code state written formally in Eq. (9) is unnor-
malizable for the codes on the Euclidean or hyperbolic sur-
faces. It is interesting to study the regularized version of the
code and how exact logical gates become approximate under
the regularization. Fifth, generalizing our formalism to log-
ical gates among several encoded degrees of freedom is also
an important future direction for realizing universal quantum
computing.

Furthermore, our formalism opens up new possibilities for
experimental implementations of logical quantum computing
through real-space geometric manipulations. Note that the
lattices in curved manifolds have been implemented in ex-
perimental platforms [65–68]. Exploration of the application
of our codes from tessellation in future quantum experiments
would be worthwhile.
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Appendix A: Distances on surfaces and the resolution

In this section, we present the formula for calculating the distances of two points on the sphere and the hyperbolic plane.
For the two-dimensional sphere S2, we conventionally embed it into the three-dimensional flat space R3:

X1 = sin θ cosϕ, X2 = sin θ sinϕ, X3 = cos θ, X2
1 +X2

2 +X2
3 = 1, ds2 = dX2

1 + dX2
2 + dX2

3 . (A1)

Because the sphere is a homogeneous and isotropic space, to calculate the distance of two arbitrary points on the sphere, we can
always find an isometry that transforms one point to p1 = (θ = 0, ϕ = 0) and another to a certain p2 = (θ = θ0, ϕ = 0). In this
case, it is not difficult to calculate the geodesic distance between them as θ0. Note that if we write the res in the embedding
coordinate, we have

d(p1, p2) = arccos X⃗(1) ⋅ X⃗(2), (A2)

where X⃗(i) = (sin θ cosϕ, sin θ sinϕ, cos θ)∣pi . Because the inner product is invariant under any isometry of the sphere, the
above expression applies to arbitrary two points on the sphere.

For the hyperbolic surface, it is also convenient to embed it into R2,1.

X0 = coshη, X1 = sinhη cos θ, X2 = sinhη sin θ, −X2
0 +X2

1 +X2
2 = −1, ds2 = −dX2

0 + dX2
1 + dX2

2 . (A3)

The resulting line element is ds2 = dη2+ sinh2 ηdθ2. Because the hyperbolic space is also homogeneous and isotropic, we adopt
the same strategy as in the sphere case to calculate the distance between two points. We first transform two points such that p1
is at the origin, p2 at (η0, θ = 0). It is easy to calculate their distance in this case as η0. Writing in terms of the embedding
coordinate, it is

d(p1, p2) = arccosh (−X⃗(1) ⋅ X⃗(2)), (A4)

where X⃗(i) = (coshη, sinhη cos θ, sinhη sin θ)∣pi and −X⃗(1) ⋅ X⃗(2) = X
(1)
0 X

(2)
0 − X

(1)
1 X

(2)
1 − X

(1)
1 X

(2)
1 . Similar to the

spherical case, because the inner product is invariant under isometry, this equation applies to any two points in the hyperbolic
surface.

One special feature of the hyperbolic plane is that given the values of the three angles A,B,C of a triangle, its sides are
unambiguously determined. This is not the case for the sphere or the Euclidean plane. Let the length of the sides opposite the
the corresponding angles be a, b, c, we have

cosha = cosA + cosB cosC

sinB sinC
, cosh b = cosB + cosC cosA

sinC sinA
, cosh c = cosC + cosA cosB

sinA sinB
. (A5)

To calculate the resolution, which is one-half of the minimal distance among any pair of points, we need to get an expression
of the distance between points before and after rotating around a point. This can be calculated using Eq. (A2) and (A4). For a
point p0 on the sphere, if rotated around a point j by angle α to get p0j , then X⃗(p0) ⋅ X⃗(p0j) = sin2 d0j cosα + cos2 d0j , where
d0j = d(p0, pj), the distance between p0 and pj . A similar expression in the hyperbolic case is X⃗(p0) ⋅ X⃗(p0j) = cosh2 d0j −
sinh2 d0j cosα. To obtain the resolution, it is enough to evaluate the distances of the point pi in Eq. (9) with respect to its rotated
points after the rotation around A,B,C. Therefore,

dx =
1

2
min{d(pi, pA), d(pi, pB), d(pi, pC)}. (A6)

Here A,B,C are the vertices of the triangle and are usually identified with the rotation vertices of the logical operations in
specific code constructions.

For a fixed tessellation, one may optimize the choice of the state ∣i⟩ in the code construction to maximize the resolution. This
is achieved by solving the optimization problem

p
(o)
i = argmax

pi

min{d(pi, pA), d(pi, pB), d(pi, pC)}. (A7)

For the cases of our interest, the optimal p(o)i is a solution of d(p(o)i , pA) = d(p(o)i , pB) = d(p(o)i , pC).
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Appendix B: Analysis of the momentum error

We denote the position basis of the two-dimensional surfaces as ∣x⟩, which is normalized to ⟨x∣x′⟩ = δ(x1−x′1)δ(x2−x′2)√
h(x) ≡

δ(2)(x − x′). Here h(x) is the determinant of the metric evaluated at the point x. For the sphere, this is ⟨θ, ϕ∣θ′, ϕ′⟩ =
δ(θ−θ′)δ(ϕ−ϕ′)

sin θ
. For the Euclidean plane, this is the usual ⟨x, y∣x′, x′⟩ = δ(x − x′)δ(y − y′). For the hyperbolic plane, this is

⟨η, θ∣η′, θ′⟩ = δ(θ−θ′)δ(η−η′)
sinhη

. If transformed by an isometry ρ(g) of the surface, the delta function is invariant under the isometry,

δ(2)(x − x′) = δ(2)(ρ(g)x − ρ(g)x′). Under the position basis, we can write the error operator as

Êr,n = ∫ d2x
√
h(x)⟨x∣r, n⟩∣x⟩⟨x∣. (B1)

Here r labels the representation while n labels the basis in the representation. We match this notation with the momentum errors
in Table I. For the sphere, r is the l and n is the m in Y m

l . For the Euclidean plane, r is {kx, ky} and no n is needed as the
representations are one dimensional. For the hyperbolic plane, r is the s and n corresponds to the n in Pn

− 1
2+is
(cosh ρ̂)einϕ̂. We

can write the error correction condition as

⟨̄i∣Ê†
r1,n1

Êr2,n2 ∣j̄⟩ = ∫ d2x
√
h(x)⟨x∣r2, n2⟩⟨r1, n1∣x⟩⟨̄i∣x⟩⟨x∣j̄⟩. (B2)

Following Eq. (9), we obtain

⟨x∣j̄⟩ = ∑
γ∈Γ
∑
g∈G
⟨Σ∣ρ†

L(g)∣j⟩⟨x∣ρ(γg0)∣pi⟩ = ∑
γ∈Γ
∑
g∈G
⟨Σ∣ρ†

L(g)∣i⟩δ
(2)(x − ρ(γg0)pi),

⟨x∣j̄⟩⟨̄i∣x⟩ = ∑
γ1,γ2∈Γ

∑
g1,g2∈G

⟨Σ∣ρ†
L(g1)∣j⟩⟨i∣ρL(g2)∣Σ⟩δ

(2)(x − ρ(γ1g01)pi)δ(2)(x − ρ(γ2g02)pi)

= ∑
γ∈Γ

∑
g1,g2∈G

⟨Σ∣ρ†
L(g1)∣j⟩⟨i∣ρL(g2)∣Σ⟩δ

(2)(x − ρ(γ1g01)pi)δ(2)(ρ(γg01)pi − ρ(γg02)pi)

= ∑
γ∈Γ

∑
g1,g2∈G

⟨Σ∣ρ†
L(g1)∣j⟩⟨i∣ρL(g2)∣Σ⟩δ

(2)(x − ρ(γg01)pi)δ(2)(pi − ρ(g−101 g02)pi)

= ∑
γ∈Γ
∑
g1∈G

∑
gp∈Fpi

⟨Σ∣ρ†
L(g1)∣j⟩⟨i∣ρL(g1)ρL(gp)∣Σ⟩δ

(2)(x − ρ(γg01)pi)δ(2)(pi − pi)

(B3)

Here in the second equality the γ1,γ2 sums reduces to one because different unit cells do not overlap. The third equality follows
from the covariance of the δ(2) function under an isometry of the surface. The fourth equality follows from a change of summing
variable from g2 to gp. The sum over gp further reduces from G to a subgroup which keeps pi invariant, denoted as Fpi . If Fpi is
non trivial, because ρ(gp)pi = pi, the delta function δ(2)(pi − ρ(gp)pi) = δ(2)(pi − pi). The sum∑gp∈Fpi

ρL(gp) is proportional
to the projector onto the common eigenvalue 1 subspace of all the group elements ρL(gp). As mentioned in Section III A, in this
case, we choose ∣Σ⟩ to be in this subspace and

⟨x∣j̄⟩⟨̄i∣x⟩ = ∣Fpi ∣δ(2)(pi − pi) ∑
γ∈Γ
∑
g1∈G
⟨Σ∣ρ†

L(g1)∣j⟩⟨i∣ρL(g1)∣Σ⟩δ
(2)(x − ρ(γ1g01)pi). (B4)

If Fpi is trivial, then ∣Fpi ∣ = 1 and the above equation also applies, but for an arbitrary ∣Σ⟩.
Getting back to Eq. (B2), we obtain

⟨̄i∣Ê†
r1,n1

Êr2,n2 ∣j̄⟩ = ∣Fpi ∣δ(2)(pi − pi) ∑
γ∈Γ
∑
g∈G
⟨Σ∣ρ†

L(g)∣j⟩⟨i∣ρL(g)∣Σ⟩⟨ρ(γg0)pi∣r2, n2⟩⟨r1, n1∣ρ(γg0)pi⟩. (B5)

If Γ is trivial, then there is no further simplification to perform and we need to evaluate Eq. (B5) with explicit data of the
specific codes. This is the case of Example 1, the calculation of which is in Section B 1. If Γ is nontrivial, then it is a discrete
subgroup of the full isometry group of the surface. Recall that ∣r1, n1⟩, ∣r2, n2⟩ are the basis of the unitary irreducible repre-
sentation of the full isometry group. The representations r1, r2 are also unitary representations for the subgroup Γ, though they
might not be irreducible. Fortunately, in the cases of our interests, when Γ is the translation group on the Euclidean or hyperbolic
surface, the representations r1, r2 are also irreducible. Therefore, we can first evaluate VΓ ≡ ∑γ∈Γ ρ(γ)−1∣r2, n2⟩⟨r1, n1∣ρ(γ),
utilizing the Schur’s lemma. There are 3 cases. The first case is r1 = r2 and n1 = n2, then VΓ = c(r1, n1)1. Eq. (B5) is now

⟨̄i∣Ê†
r1,n1

Êr1,n1 ∣j̄⟩ = ∣Fpi ∣δ(2)(pi − pi)c(r1, n1) ∑
g∈G
⟨Σ∣ρ†

L(g)∣j⟩⟨i∣ρL(g)∣Σ⟩δ
(2)(ρ(g0)pi − ρ(g0)pi)

= ∣Fpi ∣∣G∣(δ(2)(pi − pi))
2
c(r1, n1)δi,j .

(B6)
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In the second equality, we use the invariance of the δ(2) function and the Schur’s lemma for the logical group G. Therefore, the
KL condition is satisfied. The second case is that r1, r2 are the nonequivalent representations or n1, n2 are nonequivalent bases.
In this case, the Schur’s lemma guarantees that ⟨̄i∣Ê†

r1,n1
Êr2,n2 ∣j̄⟩ = 0 for any i, j. Therefore, the error correction condition is

also satisfied. The third case is what may produce the violation of error correction condition. Because Γ is a subgroup of the full
isometry group, it is possible that ∣r1, n1⟩, ∣r2, n2⟩ different bases for nonequivalent representations for the full isometry group,
but become equivalent for the subgroup Γ. In this case, we can formally write Eq. (B5) as

⟨̄i∣Ê†
r1,n1

Êr1,n1 ∣j̄⟩ = ∣Fpi ∣(δ(2)(pi − pi))
2
∑
g∈G

c(r1, n1, r2, n2, g0pi)⟨Σ∣ρ†
L(g)∣j⟩⟨i∣ρL(g)∣Σ⟩. (B7)

We need to put in data of the specific codes to evaluate whether the error correction condition is violated for particular choices
of ∣r1, n1⟩, ∣r2, n2⟩.

In the following, we evaluate the error correction condition explicitly for Examples 1,2, and 3. Because the error operators
are diagonal in the position basis, the two logical states have no spatial overlaps in the above examples, all the terms of the form
⟨̄i∣Ê†

r1,n1
Êr2,n2 ∣j̄⟩ with i ≠ j are zero. We focus on the evaluation of terms ⟨̄i∣Ê†

r1,n1
Êr2,n2 ∣̄i⟩.

1. Momentum error analysis of Example 1

For a generic logical state in Eq. (C1), we can calculate

⟨0̄∣Y m2†
l2

Y m1

l1
∣0̄⟩ = 1

4
(Pm1

l1
(cos θ0)Pm2

l2
(cos θ0)ei(m2−m1)ϕ0 + Pm1

l1
(cos θ0)Pm2

l2
(cos θ0)ei(m2−m1)(ϕ0+π)

+ Pm1

l1
(cos(π − θ0))Pm2

l2
(cos(π − θ0))e−i(m2−m1)ϕ0 + Pm1

l1
(cos(π − θ0))Pm2

l2
(cos(π − θ0))ei(m2−m1)(π−ϕ0))

= 1

4
(Pm1

l1
(cos θ0)Pm2

l2
(cos θ0)(1 + (−1)m1+m2)(ei(m2−m1)ϕ0 + e−i(m2−m1)ϕ0(−1)l1+l2)),

⟨1̄∣Y m2†
l2

Y m1

l1
∣1̄⟩ = 1

4
(Pm1

l1
(cos θ0)Pm2

l2
(cos θ0)(1 + (−1)m1+m2)(ei(m2−m1)(ϕ0+π

2 ) + e−i(m2−m1)(ϕ0+π
2 )(−1)l1+l2)).

(B8)

We used the property of the associated Legendre polynomials Pm
l (x) = (−1)l+mPm

l (−x) to get the final expression. The
expression for ∣1̄⟩ is different from that of ∣1̄⟩ by ϕ0 → ϕ0 + π

2
. We immediately see because of the factor (1 + (−1)m1+m2) and

the phase difference π
2

, ⟨0̄∣Y m2†
l2

Y m1

l1
∣0̄⟩ ≠ ⟨1̄∣Y m2†

l2
Y m1

l1
∣1̄⟩ may only occur when (m2 −m1) mod 4 = 2. In this case, we have

⟨0∣Y m2†
l2

Y m1

l1
∣0⟩ = −⟨1∣Y m2†

l2
Y m1

l1
∣1⟩ = 1

2
(Pm1

l1
(cos θ0)Pm2

l2
(cos θ0)(ei(m2−m1)ϕ0 + e−i(m2−m1)ϕ0(−1)l1+l2)), (B9)

In the case we illustrated in Figure 2, we take θ0 = arccos 1√
3

and ϕ0 = π
4

. In this case, we get ⟨0∣Y m2†
l2

Y m1

l1
∣0∝ (1−(−1)l1+l2).

Therefore, it is only non-zero when l1 + l2 is odd. In summary, the KL condition is only violated when l1 + l2 is odd and
(m2 −m1) mod 4 = 2. Hence, Y 0

1 Y
±2
2 is the undetectable error with the smallest ∣l1∣ + ∣l2∣ + ∣m1∣ + ∣m2∣ = 5 .

2. Momentum error analysis of Example 2

For the code of Example 2, we calculate the KL condition for a generic code state in Eq. (C2) as

⟨0∣V̂ †
k⃗2
V̂k⃗1
∣0⟩

= ∑
nx,ny∈Z

e4i(nx∆kx+ny∆ky)(4 cos (∆kx +∆ky)( cos (∆kx −∆ky + x0∆ky − y0∆kx) + cos (∆kx +∆ky − x0∆kx − y0∆ky)))

=δπ/2(∆kx)δπ/2(∆ky)(4 cos (∆kx +∆ky)( cos (∆kx −∆ky + x0∆ky − y0∆kx) + cos (∆kx +∆ky − x0∆kx − y0∆ky))),

cos (∆kx +∆ky)⟨1∣V̂ †
k⃗2
V̂k⃗1
∣1⟩ = cos (∆kx −∆ky)⟨0∣V̂ †

k⃗2
V̂k⃗1
∣0⟩,

(B10)

where ∆kx = kx1 − kx2,∆ky = ky1 − ky2, δπ/2(x) = ∑l∈Z δ(x − lπ
2
). Because of the delta functions, these two values are

non-zero only if ∆kx,∆ky are multiplicities of π
2

. Further evaluating the expression when ∆kx,∆ky are multiplicities of π
2

, we
see that the KL condition is violated only when ∆kx,∆ky are both odd multiplicities of π

2
. These circumstances correspond to

the logical Pauli Z operator.
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3. Momentum error analysis of Example 3

For the codewords of Example 3 in Eq. (C6), the KL condition is written as

⟨0∣V̂ †
k⃗2
V̂k⃗1
∣0⟩ = (ei∆kx + e−2i∆kx + ei(−

1
2∆kx+ 3

√
3

2 ∆ky)) ∑
m,n∈Z

ei[(
9
2∆kx+ 3

√
3

2 ∆ky)m+3
√
3n∆ky],

= (ei∆kx + e−2i∆kx + ei(−
1
2∆kx+ 3

√
3

2 ∆ky))δ2π(
9

2
∆kx +

3
√
3

2
∆ky)δ2π(3

√
3∆ky),

⟨1∣V̂ †
k⃗2
V̂k⃗1
∣1⟩ = ei(

3
2∆kx−

√
3

2 ∆ky)⟨0∣V̂ †
k⃗2
V̂k⃗1
∣0⟩,

⟨2∣V̂ †
k⃗2
V̂k⃗1
∣2⟩ = ei(−

√
3∆ky)⟨0∣V̂ †

k⃗2
V̂k⃗1
∣0⟩.

(B11)

Because of the periodic delta function, ⟨0̄∣V̂ †
k⃗2
V̂k⃗1
∣0̄⟩ ≠ 0 only when 9

2
∆kx + 3

√
3

2
∆ky = 2mπ and 3

√
3∆ky = 2nπ, m,n ∈ Z.

In these cases ⟨1̄∣V̂ †
k⃗2
V̂k⃗1
∣1̄⟩ = ei

2π
3 (m−n)⟨0̄∣V̂ †

k⃗2
V̂k⃗1
∣0̄⟩ and ⟨2̄∣V̂ †

k⃗2
V̂k⃗1
∣2̄⟩ = e−i

2π
3 n⟨0̄∣V̂ †

k⃗2
V̂k⃗1
∣0̄⟩. Therefore, the KL condition is

violated when either m or n is not a multiple of 3. They are equivalent to the cases when both 3∆kx and
√
3∆ky are multiplicities

of 2π
3

but not multiplicities of 2π, as stated in the main text.

Appendix C: Further discussion of code examples

In this section, we present and compare other examples of codes based on the same tessellation groups as in Example 1, 2 and
3.

1. Codes on {2,2,4} tessellation

For the code constructed in Example 1, if we choose an arbitrary ∣pi⟩ = ∣(θ0, ϕ0)⟩ in the construction Eq. (9), the most general
form of the logical states are

∣0⟩ =1
2
(∣θ0, ϕ0⟩ + ∣π − θ0,−ϕ0⟩ − ∣θ0, π + ϕ0⟩ − ∣π − θ0, π − ϕ0⟩),

∣1⟩ =1
2
(∣θ0, ϕ0 +

π

2
⟩ + ∣π − θ0,−ϕ0 +

π

2
⟩ − ∣θ0,−

π

2
+ ϕ0⟩ − ∣π − θ0,−

π

2
− ϕ0⟩).

(C1)

Here the logical Z rotates around the x axis, the logical XZ rotates around the z axis and the logical X rotates around the
bisector of the x and yaxes.

Example 7. Here we show another natural choice in which θ0 = π
2

, ϕ0 = 0. The logical state configuration is illustrated in Fig.
5. The logical operations are implemented in the same manner as that in Example 1. The resolution, which is half of the minimal
distance between the configuration points is π

4
. Therefore, this code can correct any rotation with a rotation angle less than π

4
.

However, the error correction condition will be violated for those rotations whose axis passes through the states’ configuration
points, unlike the code in Example 1. For momentum errors, we use Eq. (B8) with θ0 = π

2
, ϕ0 = 0. It is straightforward to find

that the lowest error pair that violates the error correction condition is Y 0†
0 Y ±22 . So this code can also correct any error with l = 1.

Example 8. If we exclude the cases in which ∣pi⟩ is put on the vertices of rotation, we can solve for the maximal resolution

choice of ∣pi⟩ of Eq. A7. The solution is θ0 = arccos
√ √

2

4+√2
, ϕ0 = π

8
. We depict the codeword configuration of this choice of

∣pi⟩ in the right panel of Figure 5. The resolution turns out to be dx = 1
2
arccos

√
2

4+√2
≈ 0.6533, which is slightly larger than the

case in Example 1, where dx = 1
2
arccos 1

3
≈ 0.6155. This code corrects any rotation error whose rotation angle is less than the

resolution dx ≈ 0.6533. But similar to Example 7, it does not correct the errors when the rotation axis of R†
2R1 passes through

any codeword configuration point. For the momentum error, plugging θ0 = arccos
√ √

2

4+√2
, ϕ0 = π

8
into Eq. (B9), we see that

the error correction condition is violated when (m2 −m1) mod 4 = 2.
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(a) (θ0 = arccos 1√
3
, ϕ0 =

π
4
) (b) (θ0 = π

2
, ϕ0 = 0) (c) (θ0 = arccos

√ √
2

4+√2
, ϕ0 =

π
8
)

FIG. 5. This figure compares the code constructed from the same encoding map but with a different initial state ∣pi⟩. The constellation of the
spherical code in Example 1, 7 and 8 are shown in subfigures (a), (b) and (c) respectively. The points represent the same as those in Figure 2.

2. Codes on {2,4,4} tessellation

For the code construction in Figure 2, if we take the (XZ)−1 rotation vertex as (0,0), for a generic ∣p1⟩ = ∣(x0, y0)⟩, the
unnormalized codewords are

∣0̄⟩ = ∑
m,n∈Z

∣(4m + x0,4n + y0)⟩ + ∣(4m + 2 − y0,4n + x0)⟩ + ∣(4m + y0,4n + 2 − x0)⟩ + ∣(4m + 2 − x0,4n + 2 − y0)⟩

−∣(4m − x0,4n − y0)⟩ − ∣(4m − 2 + y0,4n − x0)⟩ − ∣(4m − y0,4n − 2 + x0)⟩ − ∣(4m − 2 + x0,4n − 2 + y0)⟩,
∣1̄⟩ = ∑

m,n∈Z
∣(4m + x0,4n + y0 − 2)⟩ + ∣(4m + 2 − y0,4n + x0 − 2)⟩ + ∣(4m + y0,4n − x0)⟩ + ∣(4m + 2 − x0,4n − y0)⟩

−∣(4m − x0,4n − y0 + 2)⟩ − ∣(4m − 2 + y0,4n − x0 + 2)⟩ − ∣(4m − y0,4n + x0)⟩ − ∣(4m − 2 + x0,4n + y0)⟩.

(C2)

As mentioned in the main text, each mode in the x or y direction is a one-dimensional GKP code. Its code words are

∣k⟩GKP = ∑
n∈Z
∣4n + 2k + 1

2
⟩ + ∣4n + 2k + 3

2
⟩, k ∈ {0,1}. (C3)

The GKP stabilizers for each mode are Ŝq = ei2π(q̂−
1
2 ) and Ŝp = ei4p̂. The GKP logical operators are XGKP = ei2p̂, ZGKP =√

2 sin π
2
q̂. The codewords in Eq. (C2) can be written as

∣0̄⟩ = 1√
2
(∣0⟩(x)GKP∣0⟩

(y)
GKP − ∣1⟩

(x)
GKP∣1⟩

(y)
GKP), ∣1̄⟩ =

1√
2
(∣0⟩(x)GKP∣1⟩

(y)
GKP − ∣1⟩

(x)
GKP∣0⟩

(y)
GKP). (C4)

This is a 2 -to-1 concatenated GKP code with stabilizers and logical operators

S = −X(x)GKPX
(y)
GKP, LX = −X(x)GKP =X

(y)
GKP, LZ = Z(x)GKPZ

(y)
GKP. (C5)

3. Codes on {3,3,3} tessellation

Taking the origin at the vertex of (ZX)−1, the two vectors generating the translation symmetry of the lattice are v⃗1 = (0,3
√
3)

and v⃗2 = ( 92 ,
3
√
3

2
). The codewords can be written as
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∣0̄⟩ = ∑
m,n∈Z

(∣(1,0)⟩ + ω∣(−1
2
,
3
√
3

2
)⟩ + ω2∣(−2,0)⟩)(mv⃗1 + nv⃗2),

∣1̄⟩ = ∑
m,n∈Z

(∣(1,
√
3)⟩ + ω∣(−1

2
,−
√
3

2
)⟩ + ω2∣(5

2
,−
√
3

2
)⟩)(mv⃗1 + nv⃗2),

∣2̄⟩ = ∑
m,n∈Z

(∣(−1
2
,

√
3

2
)⟩ + ω∣(−2,−

√
3)⟩ + ω2∣(1,−

√
3)⟩)(mv⃗1 + nv⃗2),

(C6)

where ω = ei 2π
3 . By (mv⃗1 + nv⃗2) we mean translating the points in the previous parenthesis by mv⃗1 + nv⃗2. This code has

GKP-like stabilizer operators. The stabilizers are

Ŝp,1 = ei3
√
3p̂y , Ŝp,2 = ei(

9
2 p̂x+ 3

√
3

2 p̂y), Ŝq,1 = ei
4π√
3
ŷ
, Ŝq,1 = ei(

2π
3 (x̂−1)+ 2π√

3
ŷ)
. (C7)

The GKP-like logical Z operator is LZ = e
i 4π

3
√

3
ŷ and its stabilizer equivalence. However, the logical X operator cannot be

realized by real space displacement.

Appendix D: Figures of code state constellations

In this section, we collect the figures (Figures 6, 7 and 8) which illustrate the code state constellation configurations in
Examples 4, 5 and 6, respectively.
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FIG. 8. The upper and lower graphs illustrate the codeword configuration of the logical ∣0̄⟩ and ∣1̄⟩ states Example 6 respectively.
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