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QMA(2) protocols and related problems

A verifier requires states α,β from two (unentangled) provers and performs a binary POVM
(M+,M−) on the state α⊗β. The provers pass the test iff the verifier obtains outcome +.
→ Goal of the provers : Maximize their passing probability Tr(M+α⊗β).

Equivalent formulation : Given a Hermitian M on A⊗B, satisfying 0 6 M 6 Id, determine its
maximum overlap with S(A:B), the set of separable states on A⊗B, i.e.

hsep(M) := max
σ∈S(A:B)

Tr(Mσ).

Remark : In the case where M = VV ∗ for V : C ↪→ A⊗B an isometry, define the quantum
channel N : ρ ∈D(C) 7→ TrB(VρV ∗) ∈D(A). Then,

Smin
∞ (N ) =− loghsep(M), where Smin

∞ (N ) := min
ρ∈D(C)

− log‖N (ρ)‖∞.

Many other related problems (Harrow/Montanaro) :

Determine ‖ψ‖inj for ψ ∈ A⊗B⊗C s.t. ‖ψ‖2 6 1, i.e. max
α∈A,β∈B,γ∈C

〈ψ|α⊗β⊗ γ〉
‖α‖2‖β‖2‖γ‖2

.

Determine ‖T‖2→4 for T : C→ A⊗B s.t. ‖T‖∞ 6 1, i.e. max
ϕ∈C

‖Tϕ‖4

‖ϕ‖2
.
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Parallel repetition of QMA(2) protocols

If two provers cannot pass 1 instance of a given test with probability 1, does their probability of
passing simultaneously n instances of it go to 0 exponentially with n ?
More generally, does their probability of passing t amongst the n instances already decay
exponentially as soon as t/n is larger than their 1-instance passing probability?
And if so, at which rate?

Equivalent question : Does hsep , resp. Smin
∞ , exhibit a multiplicative, resp. additive, behavior

under tensoring ?
Clearly, for any n ∈ N, (hsep(M))n 6 hsep(M⊗n) 6 hsep(M), but what is the true asymptotic
behavior of hsep(M⊗n) as n→+∞?

Known : In general, hsep is strictly super-multiplicative (Holevo/Werner).
However, all known extreme examples s.t. hsep(M⊗2)' hsep(M)� (hsep(M))2, namely M
projector onto either the anti-symmetric subspace (Grudka/Horodecki/Pankowski) or a random subspace
(Hayden/Winter), are also s.t. hsep(M⊗n) 6 (hsep(M))λn, for some 0 < λ < 1 (Christandl/Schuch/Winter,

Montanaro).
→ Does such multiplicativity without dimensional dependence actually hold for any M ?

If this were true : Possibility of amplifying the soundness gap of any QMA(2) protocol from δ to
1−e−δλn by performing it n times in parallel.
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Outline

1 Multiplicativity of hsep under tensoring via de Finetti approach

2 Multiplicativity of hsep under tensoring via entanglement measure approach

3 Further comments and generalizations
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De Finetti reductions (aka Post-selection techniques)

Motivation : Reduce the study of an exchangeable scenario to that of i.i.d. ones, in a setting
where being able to upper bound a permutation-invariant object by product ones is enough.

Theorem [Universal quantum de Finetti reduction (Christandl/König/Renner) ]

Let ρ(n) be a permutation-invariant state on H⊗n. Then,

ρ
(n) 6 (n + 1)|H|

2
∫

σ

σ
⊗ndµ(σ), µ : uniform p.d. over the set of states on H.

Drawback : All permutation-invariant states are upper bounded by the same mixture of tensor
power states.→ Any additional information on ρ(n) is lost.

Theorem [Flexible quantum de Finetti reduction ]

Let ρ(n) be a permutation-invariant state on H⊗n. Then,

ρ
(n) 6 (n + 1)3|H|2

∫
σ

F
(

ρ
(n),σ⊗n

)2
σ
⊗ndµ(σ), µ : uniform p.d. over the set of states on H.

Advantage : State-dependent upper bound.→ Amongst states of the form σ⊗n, only those

which have a high fidelity with ρ(n) (hence “similar properties”) are given an important weight.
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Filtered by measurements distance measures

M a set of POVMs, K a set of states on H.
For any state ρ on H, its measured by M fidelity and trace-norm distance to K are

FM (ρ,K ) := sup
σ∈K

inf
M ∈M

F (M (ρ),M (σ)) and ‖ρ−K ‖M := inf
σ∈K

sup
M ∈M

∥∥M (ρ)−M (σ)
∥∥

1 .

Observation : FALL (ρ,K ) = F (ρ,K ) and ‖ρ−K ‖ALL = ‖ρ−K ‖1.

Relationship between both : 1−FM (ρ,K ) 6
1
2
‖ρ−K ‖M 6

(
1−FM (ρ,K )2

)1/2
.

Theorem [Distinguishing power of separable POVMs ]

For any Hermitian ∆ on A⊗B, we have

‖∆‖SEP(A:B) > ‖∆‖2.

Theorem [Weakly multiplicative behavior of F(·,S) under tensoring ]

For any state ρ on A⊗B, we have

F
(
ρ
⊗n,S(An:Bn)

)
6 FSEP(A:B)

(
ρ,S(A:B)

)n
.
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Multiplicativity of hsep under tensoring

Theorem

Let M be a Hermitian on A⊗B, satisfying 0 6 M 6 Id, and set r := ‖M‖2. Then,

hsep(M) 6 1−δ ⇒ ∀ n ∈ N, hsep(M⊗n) 6

(
1− δ2

5r2

)n

6

(
1− δ2

5|A||B|

)n

.

Main steps in the proof :

Let ρ ∈ S(An:Bn), w.l.o.g. permutation-invariant so that ρ 6 poly(n)
∫

σ
F
(
ρ,σ⊗n

)2
σ⊗n dµ(σ).

Hence, Tr
(
M⊗n

ρ
)
6 poly(n)

∫
σ

F
(
ρ,σ⊗n)2

Tr(Mσ)n dµ(σ).

Fix 0 < ε < 1 and set Kε := {σ : ‖σ−S(A:B)‖2 6 ε/r}.
Then, σ ∈Kε ⇒ Tr(Mσ) 6 1−δ + ε and σ /∈Kε ⇒ F

(
ρ,σ⊗n

)2 6
(
1− ε2/4r2

)n
.

Thus, Tr
(
M⊗nρ

)
6 poly(n)

(
(1−δ + ε)n +

(
1− ε2/4r2

)n
)

.

So choosing ε = 2r2
(
(1 + δ/r2)1/2−1

)
, we get hsep(M⊗n) 6 poly(n)

(
1−δ2/5r2

)n
.

To remove the polynomial pre-factor :
Assume that ∃ N ∈ N,C > 0 : hsep(M⊗N) > C

(
1−δ2/5r2

)N
.

Then, ∀ n ∈ N, hsep
(
M⊗Nn

)
> Cn

(
1−δ2/5r2

)Nn
and hsep

(
M⊗Nn

)
6 poly(Nn)

(
1−δ2/5r2

)Nn
.

C 6 1 is the only option to make these two inequalities compatible as n→+∞.
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Is the relaxation to filtered by measurements quantities truly needed to get
multiplicativity?

Question : Does there exist a universal function f s.t., for any state ρ on A⊗B,

F
(
ρ,S(A:B)

)
6 1−δ ⇒ ∀ n ∈ N, F

(
ρ
⊗n,S(An:Bn)

)
6 (1− f (δ))n ?

Known :
Perfect multiplicativity of F(·,S) for pure states.
Dimension-free multiplicativity of F(·,S) for the anti-symmetric state (Christandl/Schuch/Winter).
→ Does it generalize to any entangled Werner state?

Would be enough : If this were true w.h.p. for uniformly distributed mixed states...
Difficulty : Understanding properties of random tensor power states is hard, because they form a
random matrix model with less invariances and less concentration (cf. Ambainis/Harrow/Hastings).
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Squashed entanglement

Squashed entanglement (Christandl/Winter) :

Esq (ρAB) := inf

{
1
2

I(A:B|E)ρ : TrE (ρABE) = ρAB

}

Theorem [Weak faithfulness property of squashed entanglement (Li/Winter) ]

For any state ρ on A⊗B and any ε > 0, we have

Esq(ρ) 6 ε ⇒ ‖ρ−S(A:B)‖1 6 (128 ln2)1/4 min(|A|, |B|)ε
1/4.

Theorem [Disturbance induced by a global measurement on a product state ]

Let MAB be a Hermitian on A⊗B, satisfying 0 6 MAB 6 Id, and let αAn ,βBn be states on
A⊗n,B⊗n respectively. Next, fix 1 6 k 6 n−1, and define

pk := TrAnBn

[
M⊗k

AB⊗ Id⊗n−k
AB αAn ⊗βBn

]
, τ

(k)
An−k Bn−k :=

1
pk

TrAk Bk

[
M⊗k

AB⊗ Id⊗n−k
AB αAn ⊗βBn

]
.

Then,
n

∑
j=k+1

Esq

(
τ
(k)
Aj Bj

)
6

1
2

log
1
pk

.
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Multiplicativity of hsep under tensoring

Theorem

Let M be a Hermitian on A⊗B, satisfying 0 6 M 6 Id. Then,

hsep(M) 6 1−δ ⇒ ∀ n ∈ N, hsep
(
M⊗n)6 (1− δ4

512 ln2 min(|A|, |B|)4

)n

.

Main steps in the proof :

Let ρ ∈ S(An:Bn), w.l.o.g. of the form αAn ⊗βBn .

Set p0 = 1, τ
(0)
AnBn = αAn ⊗βBn . Then, given Ik ⊂ [n] s.t. |Ik |= k , define M(Ik )

AnBn := M⊗Ik
AB ⊗ Id⊗Ic

k
AB ,

and build recursively pk = TrAnBn

[
M(Ik )

AnBn αAn ⊗βBn

]
, τ

(k)
AIck

BIck

= TrAIk BIk

[
M(Ik )

AnBn αAn ⊗βBn

]
/pk ,

where Ik = Ik−1∪{ik} with ik chosen in Ic
k−1 s.t. Esq

(
τ
(k−1)
Aik Bik

)
6 1

n−k+1
1
2 log 1

pk−1
.

The p′k s are related by the recursion formula pk+1 = pk TrAik+1 Bik+1

(
MAik+1 Bik+1

τ
(k)
Aik+1 Bik+1

)
.

So pk+1 6 pk

[(
128 ln2 min(|A|,|B|)4

n−k log 1
pk

)1/4
+ hsep(MAB)

]
.

It follows that Tr
(
M⊗n

AB αAn ⊗βBn
)

= pn 6

(
1− (1−hsep(MAB))

4

512 ln2 min(|A|,|B|)4

)n

.
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In search of a “‘magical” measure of entanglement (cf. Aaronson/Beigi/Drucker/Fefferman/Shor)

Question : Does there exist a measure of entanglement E satisfying the two properties :

1 E (ρA:B) + E (ρA′:B′) 6 I(AA′:BB′)ρ (monogamy-type),
2 E(ρ) 6 ε ⇒ ‖ρ−S(A:B)‖1 6 g(ε), with g a universal function (strong faithfulness)?

The existence of such “‘magical” measure of entanglement E would imply that, for any Hermitian
M on A⊗B, satisfying 0 6 M 6 Id,

hsep(M) 6 1−δ ⇒ ∀ n ∈ N, hsep(M⊗n) 6

(
1− g−1(δ)

4

)n

.

Difficulty : Monogamy and faithfulness are two features of entanglement measures which usually
exclude one another (Adesso/Di Martino/Huber/Lancien/Piani/Winter)

Candidate : Conditional entanglement of mutual information (Horodecki/Wang/Yang)

EI (ρAB) := inf

{
1
2

(
I(AA′:BB′)ρ− I(A′:B′)ρ

)
: TrA′B′ (ρABA′B′) = ρAB

}
EI satisfies (1), like Esq , and may satisfy (2), unlike Esq . To show the latter : make use of
“small conditional mutual information⇒ existence of good recovery map”... ?
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Cases where these results are already interesting as they are

De Finetti approach :

For any Hermitian M on A⊗B, we have

∀ n ∈ N, hsep(M⊗n) 6

(
1−

(1−hsep(M))2

5 rk(M)

)n

.

→ Interesting for low-rank M ’s.

Entanglement measure approach :

For each q ∈ N, denote by Eq(A:B) the set of q-extendible states on A⊗B. We know that

Esq(ρ) 6 ε ⇒ ∀ q ∈ N,‖ρ−Eq(A:B)‖1 6 q
√

2 ln2ε.

Consequently, for any Hermitian M on A⊗B, for each q ∈ N, we have

∀ n ∈ N, hsep
(
M⊗n)6(1−

(1−hq−ext (M))2

8 ln2q2

)n

.

→ Interesting for M ’s s.t. hq−ext (M)' hsep(M) for small q’s.
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Concentration bound

Question : What is the probability that the two unentangled provers pass at least t amongst the n
instances of the test that the verifier is subjecting them to?
Equivalently, given a Hermitian M on A⊗B, satisfying 0 6 M 6 Id, how does hsep

(
M(t/n)

)
behave, where M(t/n) := ∑

I⊂[n], |I|>t

M⊗I ⊗ (Id−M)⊗Ic
?

Clearly, if t/n < hsep(M), then hsep
(
M(t/n)

)
is asymptotically 1. But what about the case

t/n > hsep(M), does hsep
(
M(t/n)

)
go exponentially to 0 with n, like in the extreme case t = n ?

Theorem

Let M be a Hermitian on A⊗B, satisfying 0 6 M 6 Id. If hsep(M) 6 1−δ, then for any n, t ∈ N
s.t. t > (1−δ + α)n, we have

hsep
(
M(t/n))6 exp

(
−n

α2

5|A||B|

)
and hsep

(
M(t/n))6(1− α5

2048 ln2 min(|A|, |B|)4(2δ−α)

)n

.

Key ingredients in the proofs :

De Finetti reduction approach : Hoeffding’s inequality.
Entanglement measure approach : Conditioned on the event “the provers have already
passed k instances of the test”, the probability is high that they do not pass in most (and not
just 1) of the n− k remaining instances.
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Multiplicativity under tensoring of support functions of other sets of states

Sequence of convex sets of states K (n) on H⊗n, n ∈ N, s.t.

K (n) ⊃
(

K (1)
)⊗̂n

:= conv
{

ρ1⊗·· ·⊗ρn : ρ1, . . . ,ρn ∈K (1)
}
.

Assumptions : Stability under permutation and partial trace.

Simplest example : K set of states on H, and for each n ∈ N, K (n) = K ⊗̂n.

In that case, (quantitative) equivalence between the multiplicative behavior under tensoring of (a)
the maximum fidelity function F

(
·,K (n)

)
and (b) the support function hK (n)(·).

To show (a) ⇒ (b) : use the flexible de Finetti reduction.
To show (b) ⇒ (a) : design a discrimination test whose failure probability decays
exponentially under parallel repetition.

Question : How differently do S(An:Bn) and S(A:B)⊗̂n behave from the point of view of
maximum fidelity or support functions, on tensor power inputs?
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