Improved Semidefinite Programming Hierarchy for h_{Sep}
with tools from Algebraic Geometry

Aram W. Harrow 1 Anand Natarajan 1 Xiaodi Wu 2

1MIT
2University of Oregon

QMA(2) Workshop, QuICS, Aug 3rd 2016
arXiv:1506.08834
The problem \(h_{\text{Sep}} \)

Definition (Separable states)
A bipartite state \(\rho \in \mathcal{D}(\mathcal{X} \otimes \mathcal{Y}) \) is **separable** if

\[
\rho \in \text{conv}(\{ \sigma_X \otimes \sigma_Y : \sigma_X \in \mathcal{D}(\mathcal{X}), \sigma_Y \in \mathcal{D}(\mathcal{Y}) \}).
\]

Let \(\text{Sep} \overset{\text{def}}{=} \{ \text{separable states} \} \).

Definition (\(h_{\text{Sep}} \))
Given a Hermitian operator \(M \) over \(\mathcal{X} \otimes \mathcal{Y} \),

\[
h_{\text{Sep}}(M) := \max_{\rho \in \text{Sep}} \text{Tr}[M\rho].
\]

The problem \(\text{WOpt}(M, \epsilon) \) is to compute an \(\epsilon \)-additive approximation of \(h_{\text{Sep}}(M) \).
Entanglement Testing

Definition (Weak Membership)

\(\text{WMem}(\epsilon, \|\cdot\|) : \) for any \(\rho \in \text{D}(\mathcal{X} \otimes \mathcal{Y}) \), decide whether \(\rho \in \text{Sep} \) or \(\| \rho - \text{Sep} \| \geq \epsilon \).

- By “GLS theorems” in convex optimization, can solve \(\text{WMem}(\epsilon, \|\cdot\|_1) \) efficiently with an oracle to \(\text{WOpt}(M, \epsilon) \). (Uses ellipsoid method)
- Any \(M \) with \(h_{\text{Sep}}(M) \leq \lambda_{\text{max}}(M) \) is an entanglement witness.
Applications

- Finding the maximum acceptance probability of a QMA(2) machine ⇔ solving $\text{WMem}(\epsilon, \|\cdot\|_1)$ for M arising from poly-time quantum circuit.
- Many more (mean-field approximations, output entropies of channels, etc.)
Algorithms and Hardness

- Complexity is a function of dimension n and accuracy ϵ.
- Algorithms based on Sum-of-Squares [DPS] and ϵ-nets, [SW, BH, ...].
- **When $\epsilon = \Omega(1)$:**
 - Need time $n^{\Omega(\log n)}$ assuming Exponential-Time Hypothesis [HM]. (Unconditionally for SoS hierarchy [HNW]).
 - Exists $n^{O(\log(n)/\epsilon^2)}$ algorithm for 1-LOCC M [BCY, BH].
- **When $\epsilon = 1/\text{poly}(n)$:**
 - $\text{WOpt}(\cdot, \epsilon)$ is NP-hard. [Gur, Ioa, Gha]
 - Exist $(n/\sqrt{\epsilon})^{O(n)}$ algorithms based on SDPs. [NOP]

- What about scaling with ϵ?
Why care about ϵ scaling?

- Surprising jumps in complexity in high-accuracy regime:
 - QIP jumps from PSPACE to EXP with inverse doubly exponential ϵ. [IKW]
 - QMA equals PSPACE for inverse-exponential ϵ. [FL]
 - QMA(2) equals NEXP for inverse-exponential ϵ. [Per]
- Better understand “brute-force algorithms” for quantum problems
 - Ex: no known algorithm to approximate entangled value of non-local game to constant factor.
- Could lead to algorithms that perform better in practice
Results

Theorem (Main)

There exists an algorithm that estimates \(h_{\text{Sep}(n)}(M) \) to error \(\epsilon \) in time \(\exp(\text{poly}(n)) \text{poly log}(1/\epsilon) \). similar for the multi-partite case.

- One algorithm based on quantifier elimination—less conceptually interesting, so skip for this talk.
- Other algorithm based on SoS hierarchy with added constraints, inspired by [Nie, NR].
- Algorithm is exact: only approximation comes from numerical error in SDP solver
- As a complexity result:

\[
\text{QMA}_{\log(2)}[c, s = c-1/\exp(\exp(n))] \subseteq \text{DTIME}(\exp(\text{poly}(n))).
\]
Comparison with DPS

Advantages

- **Primal of SDP** leads to new monogamy relations relative to particular observables.

- **Dual of SDP** leads to a new class of entanglement witness.

- Analog of the exact convergence achievable for discrete optimization, e.g., SoS for Boolean CSPs. (Note: DPS does not converge at any finite level)

Disadvantages

- Unlike [DPS], set of entanglement witnesses could be non-convex.

- Hence, cannot solve WMem directly (need to use GLS reduction).
Proof Outline

- Treat WOpt as a constrained polynomial optimization problem.
- Use **Karush-Kuhn-Tucker conditions** to restrict to *critical set* (technique from [Nie, NR])
- **Claim 1**: For generic M, critical set consists of $\exp(n)$-many discrete points. (From Bertini’s thm)
- Algorithm: use SoS to approximately optimize over critical points by searching for **certificates of positivity**.
- **Claim 2**: For generic M, optimum has SoS certificate of degree $\exp(n)$. (From Claim 1 and Gröbner basis theory)
- (Continuity argument to handle non-generic M).
Simplification: the symmetric real case

By simple reductions [HM], we can restrict to states of the form $|\psi\rangle \otimes |\psi\rangle$, $|\psi\rangle \in \mathbb{R}^n$.

$$h_{\text{ProdSym}(n)}(M) := \max_{x \in \mathbb{R}^n} f_0(x) := \sum_{i_1,i_2,j_1,j_2} M(i_1,i_2),(j_1,j_2)x_{i_1}x_{i_2}x_{j_1}x_{j_2}$$

subject to $f_1(x) := ||x||^2 - 1 = 0$. (1)

REMARK: this is a polynomial optimization problem with a homogenous degree 4 objective and a degree 2 constraints.
Principle of Sum-of-Squares

One way to show that a polynomial \(f(x) \) is nonnegative could be

\[
f(x) = \sum a_i(x)^2 \geq 0.
\]

Example

\[
f(x) = 2x^2 - 6x + 5
\]
\[
= (x^2 - 2x + 1) + (x^2 - 4x + 4)
\]
\[
= (x - 1)^2 + (x - 2)^2 \geq 0.
\]

Such a decomposition is called a sum of squares (SoS) certificate for the non-negativity of \(f \).
Principle of SoS : constrained domain

Definition (Variety)
A set $V \subseteq \mathbb{C}^n$ is called an algebraic variety if
$V = \{ x \in \mathbb{C}^n : g_1(x) = \cdots = g_k(x) = 0 \}$.

Non-negativity of $f(x)$ on V can be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \geq 0.$$

Question: do all nonnegative polynomials on certain variety have a SoS certificate?
Putinar’s Positivstellensatz

Definition (Ideal)
The polynomial ideal I generated by $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]$ is

$$I = \{ \sum a_i g_i : a_i \in \mathbb{C}[x_1, \ldots, x_n] \} := \langle g_1, \cdots, g_k \rangle.$$

Theorem (Putinar’s Positivstellensatz)
Under the Archimedean condition, if $f(x) > 0$ on $V(I) \cap \mathbb{R}^n$, then

$$f(x) = \sigma(x) + g(x),$$

for some choice of SoS polynomial $\sigma(x)$ and $g(x) \in I$.
max \ f(x)
subject to \ g_i(x) = 0 \ \forall i

is equivalent to (under Archimedean condition)

\[
\begin{align*}
\min \nu \\
\text{such that} \quad \nu - f(x) &= \sigma(x) + \sum_i b_i(x)g_i(x),
\end{align*}
\]

where \(\sigma(x) \) is SoS and \(b_i(x) \) is any polynomial.
SoS hierarchy

- If $\sigma(x)$ and $b_i(x)$ can have *arbitrarily high* degrees, then the optimization problem (3) is equivalent to problem (2).
- By bounding the degrees, i.e., $\deg(\sigma(x))$, $\deg(b_i(x)g_i(x)) \leq 2D$ for some integer D, we get SoS hierarchy at level D.

$$\min \nu$$

such that $\nu - f(x) = \sigma(x) + \sum_i b_i(x)g_i(x)$,

where $\sigma(x)$ is SoS and $b_i(x)$ is any polynomial and $\deg(\sigma(x))$, $\deg(b_i(x)g_i(x)) \leq 2D$.

DPS algorithm is SoS applied to h_{Sep}
Why is it an SDP?

Observation

- Any \(p(x) \) (of degree \(2D \)) = \(m^T Q m \), where \(m \) is the vector of monomials of degree up to \(2D \) and \(Q \) is the coefficients.
- \(p(x) \) is a SoS iff \(Q \geq 0 \).

\[
\min_{\nu, b_{i\alpha} \in \mathbb{R}} \nu \\
\text{such that} \quad \nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \geq 0. \tag{5}
\]

Complexity: \(\text{poly}(m) \text{ poly log}(1/\epsilon) \), where \(m = \binom{n+D}{D} \).
Karush-Kuhn-Tucker Conditions

For any optimization problem

\[
\max f(x) \text{ s.t. } g_i(x) \leq 0, \ h_j(x) = 0, \forall i, j,
\]

if \(x^* \) is a \textit{local} optimizer, then \(\exists \mu_i, \lambda_j, \)

\[
\nabla f(x^*) = \sum \mu_i \nabla g_i(x^*) + \sum \lambda_j \nabla h_j(x^*)
\]

\[
g_i(x^*) \leq 0, \ h_j(x^*) = 0,
\]

\[
\mu_i \geq 0, \mu_i g_i(x^*) = 0.
\]

Remark: for convex optimization \textbf{(our case)}, any global optimizer satisfies KKT.
Our case

Recall our optimization problem is

\[
\max f_0(x) \text{ s.t. } f_1(x) = 0.
\]

The KKT condition is \(\nabla f_0(x) = \lambda \nabla f_1(x)\), which is equivalent to

\[
\text{rank } \begin{pmatrix}
\frac{\partial f_0(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_1} \\
\vdots & \vdots \\
\frac{\partial f_0(x)}{\partial x_{2n}} & \frac{\partial f_1(x)}{\partial x_{2n}}
\end{pmatrix} < 2.
\]

\[
g_{ij}(x) := \frac{\partial f_0(x)}{\partial x_i} \frac{\partial f_1(x)}{\partial x_j} - \frac{\partial f_0(x)}{\partial x_j} \frac{\partial f_1(x)}{\partial x_i} = 0, \quad \forall i, j
\]
DPS+: Optimization with KKT constraints

\[
\begin{align*}
\min & \quad \nu \\
\text{such that} & \quad \nu - f_0(x) \geq 0 \\
& \quad f_1(x) = 0 \\
\text{KKT} & \quad g_{ij}(x) = 0 \quad \forall 1 \leq i \neq j \leq 2n
\end{align*}
\]

▶ **DPS+ hierarchy**: SoS applied to above optimization problem

▶ Will show finite convergence when \(D = \exp(\text{poly}(n)) \). Then \(m = \binom{n+D}{D} = \exp(\text{poly}(n)) \). Thus the final time is \(\exp(\text{poly}(n)) \text{ poly log}(1/\epsilon) \).
KKT Ideal

Definition (KKT Ideal & Variety)

\[
l_K = \left\{ v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) \right\} = \langle f_1(x), g_{ij}(x) \rangle .
\]

\[
V(l_K) = \left\{ x \in \mathbb{C}^{2n} : \forall p(x) \in l_K, p(x) = 0 \right\}
\]

Definition (KKT Ideal to degree \(m\))

\[
l_K^m = \left\{ v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \leq m, \right.
\]
\[
\forall i, j, \deg(h_{ij}g_{ij}) \leq m \right\}.
\]
Main Technical Theorems

Theorem (Zero-dimensionality of generic I_K)
For a generic M, $|V(I_K)| < \infty$ and I_K is zero-dimensional.

Theorem (Degree bound)
There exists $m = O(\exp(\text{poly}(n)))$, s.t. for a generic M, $\epsilon > 0$,

$$v - f_0(x) + \epsilon = \sigma(x) + g(x),$$

where $\sigma(x)$ is SoS and $\deg(\sigma(x)) \leq m$, $g(x) \in I_K^m$.

Corollary (SDP solution)
For a generic M, $h_{\text{ProdSym}(n)}(M)$ can be estimated to error ϵ in time $\exp(\text{poly}(n))\text{poly log}(1/\epsilon)$.

From generic to arbitrary M

Observations

- Generic Ms are *dense*, and value of SDP should be a continuous function of M.
- Issue: SDP might be *infeasible* for non-generic M.

Solution

- Switch to the dual SDP: satisfies Slater’s condition, i.e., strictly feasible.
- For a generic M, by strong duality,
 \[h_{\text{ProdSym}(n)}(M) = OPT_{\text{mom}}(M). \]
- For non-generic inputs M, use the continuity of the dual SDP.
Proof of Theorem 1

Let $\mathcal{U} = \{ f_1(x) = 0 \}$, $\mathcal{W} = \{ \forall i, j, g_{ij} = 0 \}$. then $V(I_K) \subseteq \mathcal{U} \cap \mathcal{W}$. It suffices to show $|\mathcal{U} \cap \mathcal{W}| < \infty$. Construct $\mathcal{A} = \mathcal{X} \cap \mathcal{U}$ s.t.

$\mathcal{A} \cap \mathcal{W} = \emptyset$ and $\dim(\mathcal{X}) = n - 1$. Note $\mathcal{W} \cap \mathcal{A} = (\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.

By Bézout’s theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

$$\dim(\mathcal{W} \cap \mathcal{U}) + \dim(\mathcal{X}) = \dim(\mathcal{W} \cap \mathcal{U}) + n - 1 < n.$$

This implies $\dim(\mathcal{W} \cap \mathcal{U}) = 0$ and thus $|V(I_K)| < \infty$.
Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X} = \{ f_0(x) = \mu \}$ for generic (μ, M). $\dim(\mathcal{X}) = n - 1$. By Bertini’s theorem, $\dim(A) = \dim(U \cap \mathcal{X}) = n - 2$.

The Jacobian matrix $J_A = \begin{pmatrix}
\frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\
\vdots & \vdots \\
\frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n}
\end{pmatrix}$ has $\text{rank}(J_A) = 2$.

\mathcal{W} by definition says $\text{rank}(J_A) = 1$. Thus no intersection!

Subtleties: varieties over \textit{projective space}, so need to consider point at infinity
Proof of Theorem 2

- Goal: given SoS certificate

\[\nu - f_0(x) = \sigma(x) + g(x), \sigma(x) \in \text{SoS}, g(x) \in I_K^m, \]

upper bound \(\text{deg}(\sigma(x)), \text{deg}(g(x)) \).

- Idea: start from any SoS certificate and lower degree of \(\sigma(x) \) using Gröbner basis.

- Then, show that remaining high-degree terms in \(g(x) \) vanish

- Gröbner basis: set of polynomials generating \(I_k \) such that leading term of any poly in \(I_k \) is divisible by leading term of a basis element.

- [MR]:

\[|V(I_K)| < \infty \implies \max \text{deg}\{\gamma_i\} \leq D = \exp(\text{poly}(n)). \]
Proof of Theorem 2: SoS term

- Let \(\{\gamma_i\} \) be a Gröbner basis for \(l_K \).
- Take any SoS certificate:
 \[
 \nu - f_0(x) = \sigma(x) + g(x). \text{ s.t. } \sigma(x) \text{ SoS, } g(x) \in l_K^m.
 \]
- Let \(\sigma(x) = \sum s_a(x)^2 \). By properties of Gröbner basis
 \[
 s_a(x) = g_a(x) + u_a(x), \text{ s.t. } g_a(x) \in l_K, \deg(u_a(x)) \leq nD.
 \]
- Thus
 \[
 \nu - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \leq \exp(\text{poly}(n)), g' \in l_K.
 \]
Proof of Theorem 2: Ideal term

Suffices to show \(g' \in l^m_K, m = \exp(\text{poly}(n)) \).

- Since \(f_0(x) \) and \(\sigma(x) \) have degree at most \(m \), \(\deg(g'(x)) \leq m \). Remains to show that \(g'(x) \) can be obtained as sum of degree-\(m \) multiples of original generators \(g_{ij} \).

- First step: decompose \(g'(x) \) in Gröbner basis:
 \[g'(x) = \sum t_k \gamma_k(x) \text{ with } \deg(t_k \gamma_k(x)) \leq m. \]

- Second step: decompose Gröbner basis in terms of original generators:
 \[\gamma_k(x) = \sum u_{ij}(x) g_{ij}(x) \text{ with } \deg(u_{ij}) \leq m. \]

- Thus
 \[g'(x) = \sum t_k u_{ij} g_{ij}(x), \deg(t_k u_{ij}) \leq m, \implies g'(x) \in l^m_K. \]
Numerical Results

DPS+ beats DPS at very high levels, but what about low levels of the hierarchy?

- DPS+ beats DPS at level 2, $n = 3$ for a family of measurements introduced by [DPS].

$$M_\gamma = \text{Id} - (A_\gamma \otimes \text{Id})Z(A_\gamma \otimes \text{Id})$$

$$A_\gamma = \text{diag}(1, 1/\gamma, \ldots, 1/\gamma).$$

- For all $\gamma \in [0, 1]$, $h_{\text{Sep}}(M_\gamma) = 1$.
Open Questions

DPS+
- Analyze the low levels of DPS+.
- Advantages of adding KKT conditions other than presented here.

Nonlocal games
- What is the correct version of KKT conditions for non-commutative polynomials?
- Can we have finite convergence for the commuting-operator game value? Would imply an upper bound on commuting-operator version of MIP* (none known so far)

SoS hierarchy
- Any other applications to quantum information?
Thank you!
Q & A