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search for more than three decades, starting with the seminal works of Agrawal et al. and Goemans and

Williamson on Steiner forest and prize-collecting problems. In this article, we propose and analyze a natural

deterministic algorithm for PCSF that achieves a 2-approximate solution in polynomial time. This represents

a significant improvement compared to the previously best known algorithm with a 2.54-approximation fac-

tor developed by Hajiaghayi and Jain in 2006. Furthermore, Könemann et al. have established an integrality

gap of at least 9/4 for the natural LP relaxation for PCSF. However, we surpass this gap through the utilization

of an iterative algorithm and a novel analysis technique. Since 2 is the best known approximation guarantee

for the Steiner forest problem, which is a special case of PCSF, our result matches this factor and closes the

gap between the Steiner forest problem and its generalized version, PCSF.
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1 Introduction

The Steiner forest problem, also known as the generalized Steiner tree problem, is a fundamental
NP-hard problem in computer science and a more general version of the Steiner tree problem. In
this problem, given an undirected graph G = (V ,E, c) with edge costs c : E → R≥0 and a set of
pairs of verticesD = {(v1,u1), (v2,u2), . . . (vk ,uk )} called demands, the objective is to find a subset
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of edges with the minimum total cost that connects vi to ui for every i ≤ k . In this article, our
focus is on the prize-collecting Steiner forest (PCSF) problem, which is a generalized version
of the Steiner forest problem.

Balas [6] first introduced general prize-collecting problems in 1989 and Bienstock et al. [9] devel-
oped the first approximation algorithms for these problems. In the prize-collecting version of the
Steiner forest problem, we are given an undirected graphG = (V ,E, c)with edge costs c : E → R≥0

and a set of pairs of vertices D = {(v1,u1), (v2,u2), . . . (vk ,uk )} called demands, along with non-
negative penalties πi j for each demand (i, j). The objective is to find a subset of edges and pay their
costs, while also paying penalties for the demands that are not connected in the resulting forest.
Specifically, we aim to find a subset of demands Q and a forest F such that if a demand (i, j) is not
in Q , its endpoints i and j are connected in F , while minimizing the total penalty of the demands
inQ and the sum of the costs of the edges in F . Without loss of generality, we assign a penalty of 0
to pairs that do not represent a demand, ensuring that there is a penalty associated with each pair
of vertices. This allows us to define the penalty function π : V ×V → R≥0, whereV ×V represents
the set of all unordered pairs of vertices with i � j. In this article, we significantly improve the
approximation factor of the best-known algorithm for PCSF.

For the Steiner forest problem, the first approximation algorithm was introduced by Agrawal
et al. [2]. Their algorithm addressed a more generalized version of the Steiner forest problem and
achieved a 2-approximation for Steiner forest. Later, Goemans and Williamson [16] provided a
simplified simulation of their algorithm, which yields a (2− 2

n
)-approximate solution for the Steiner

forest problem, where n is the number of vertices.1 However, no further advancements have been
made in improving the approximation factor of this problem since then. There has been a study
focused on analyzing a natural algorithm for the problem, resulting in a constant approximation
factor worse than 2 [18]. In this article, we close the gap between the Steiner forest problem and
its generalized version, PCSF, by presenting a 2-approximation algorithm for PCSF.

The Steiner tree problem is a well-studied special case of the Steiner forest problem. In the
Steiner tree problem, one endpoint of every demand is a specific vertex known as root . In con-
trast to the Steiner forest problem, the approximation factor of the Steiner tree problem has seen
significant progress since the introduction of the (2 − 2

n
)-approximation algorithm by Goemans

and Williamson [16]. Several improvements have been made [24, 26, 28], leading to a 1.39 approx-
imation factor achieved by Byrka et al. [12]. Lower bounds have also been established, with Karp
[23] proving the NP-hardness of the Steiner tree problem and consequently the Steiner forest prob-
lem, and Bern and Plassman [8] and Chlebík and Chlebíková [13] demonstrating that achieving
an approximation factor within 96/95 is NP-hard. These advancements, along with the established
lower bounds, underscore the extensive research conducted in the field of Steiner tree and Steiner
forest problems.

Regarding the previous works in the prize-collecting version of these problems, Goemans and
Williamson [16] provided a (2− 1

n−1 )-approximation algorithm for prize-collecting Steiner tree

(PCST) and the prize-collecting Travelling Salesman problem (PCTSP) in addition to their
work on the Steiner forest problem. However, they did not provide an algorithm specifically for
the PCSF problem, leaving it as an open problem. Later, Hajiaghayi and Jain [20] in 2006 proposed
a deterministic primal-dual (3− 2

n
)-approximation algorithm for the PCSF problem, which inspired

our work. They also presented a randomized LP-rounding 2.54-approximation algorithm for the

1Indeed, Goemans and Williamson [22] (Section 4.6.1) explicitly mention that “the primal-dual algorithm we have presented

simulates an algorithm of Agrawal, Klein, and Ravi [AKR95]. Their algorithm was the first approximation algorithm for

this [Steiner forest a.k.a. generalized Steiner tree] problem and has motivated much of the authors’ research in this area.”

The seminal work of Agrawal et al. [1, 2] recently received the 30-year STOC Test of Time Award.
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problem. In their paper, they mentioned that finding a better approximation factor, ideally 2, re-
mained an open problem. However, no improvements have been made to their result thus far.
Furthermore, other 3-approximation algorithms have been proposed using cost sharing [17] or
iterative rounding [19] (see, e.g., other works [7, 21, 27] for further studies on PCSF and its gener-
alizations). To the best of our knowledge, our article is the first work that improves the approxi-
mation factor of Hajiaghayi and Jain [20].

Moreover, advancements have been made in the PCST problem since the initial (2 − 1
n−1 )-

approximation algorithm by Goemans and Williamson [16]. The barrier of a 2-approximation fac-
tor was broken by Archer et al. [5], and subsequently, Ahmadi et al. [4] further improved upon
this problem, presenting a 1.799-approximation algorithm, which currently holds the best approx-
imation factor for this problem. Additionally, there have been significant advancements in prize-
collecting TSP, whose natural LP relaxation shares similarities with the natural LP relaxation of
PCST. Various works have been done in this area [5, 11, 14], and the currently best-known approx-
imation factor is 1.599 [10]. These works demonstrate the importance and interest surrounding
prize-collecting problems, emphasizing their significance in the research community.

For a while, the best-known lower bound for the integrality gap of the natural LP relaxation for
PCSF was 2. However, Könemann et al. [25] proved that the integrality gap of this LP is at least 9/4.
This result suggests that it is not possible to achieve a 2-approximation algorithm for PCSF solely
through primal-dual approaches based on the natural LP, similar to the approaches presented in
other works [19, 20]. This raises doubts about the possibility of achieving an algorithm with an
approximation factor better than 9/4.

However, in this article, we provide a positive answer to this question. Our main result, Theorem
1.1, demonstrates the existence of a natural deterministic algorithm for the PCSF problem that
achieves a 2-approximate solution in polynomial time.

Theorem 1.1. There exists a deterministic algorithm for PCSF that achieves a 2-approximate solu-

tion in polynomial time.

We address the 9/4 integrality gap by analyzing a natural iterative algorithm. In contrast to
previous approaches in the Steiner forest and PCSF fields that compare solutions with feasible
dual LP solutions, we compare our solution directly with the optimal solution and assess how
much the optimal solution surpasses the dual. While our algorithm incorporates a primal-dual
algorithm as a subroutine, relying solely on LP techniques would be insufficient to overcome the
integrality gap.

In addition, we analyze a general approach that can be applied to various prize-collecting prob-
lems. In any prize-collecting problem, an algorithm needs to decide which demands to pay penal-
ties for and which demands to satisfy. Let us assume that for a prize-collecting problem, we have a
base algorithmA. We propose a natural iterative algorithm that begins by runningA on an initial in-
stance and storing its solution as one of the options for the final solution. The solution generated
by algorithm A pays penalties for some demands and satisfies others. Subsequently, we assume
that all subsequent solutions generated by our algorithm will pay penalties for the demands that
A paid, set the penalties of these demands to zero, and run A again on the modified instance. We
repeat this procedure recursively until we reach a state where algorithm A satisfies every demand
with a non-zero penalty, meaning that further iterations will yield the same solution. This state is
guaranteed to be reached since the number of non-zero demands decreases at each step. Finally,
we select the solution with the minimum cost among the multiple solutions obtained for the initial
instance. This natural iterative algorithm could be effective in solving prize-collecting problems.
For example, since the appearance of the conference version of this article, the approximation fac-
tor for PCST has improved from 1.96 to 1.79 by utilizing this iterative method [4]. In this article,
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we analyze its application to the PCSF problem using a variation of the algorithm proposed in the
work of Hajiaghayi and Jain [20] as our base algorithm.

One interesting aspect of our findings is that the current best algorithm for the Steiner forest
problem achieves an approximation ratio of 2, and this approximation factor has remained un-
changed for a significant period of time. It is worth noting that the Steiner forest problem is a
specific case of PCSF, where each instance of the Steiner forest can be transformed into a PCSF in-
stance by assigning a sufficiently large penalty to each demand. Since our result achieves the same
approximation factor for PCSF, improving the approximation factor for the PCSF problem proves
to be more challenging compared to the Steiner forest problem. In future research, it may be more
practical to focus on finding a better approximation factor for the Steiner forest problem, which
has been an open question for a significant duration. Additionally, investigating the tightness of
the 2-approximation factor for both problems could be a valuable direction for further exploration.

1.1 Primal-Dual LP for Prize-Collecting Steiner Forest

Before explaining our algorithm, we discuss the natural LP of PCSF and its dual. We also provide
a brief explanation of the algorithm by Hajiaghayi and Jain [20] , with a detailed representation
deferred to Section 2. Note that we introduce a modification to their algorithm, which is essential
for the analysis of our 2-approximation algorithm.

The natural LP for PCSF is presented next.

Minimize
∑
e ∈E

cexe +
∑

(i, j)∈V×V

πi jzi j

Subject to
∑

e ∈δ (S )

xe + zi j ≥ 1 ∀S ⊆ V , (i, j) ∈ V ×V , S � (i, j)

xe ≥ 0 ∀e ∈ E
zi j ≥ 0 ∀(i, j) ∈ V ×V

Here, xe and zi j are relaxations of integral variables, where xe indicates the inclusion of edge
e in the solution, and zi j represents whether vertices i and j are not connected in the solution.
Additionally, δ (S) denotes the set of edges with exactly one endpoint in S , and S � (i, j) denotes
that |S ∩ {i, j}| = 1.

The dual of the preceding LP is given next, with ySi j as the dual variable, which we refer to as
the assignment variable in the subsequent parts of the article.

Maximize
∑
S ⊆V

S �(i, j)

ySi j

Subject to
∑

S :e ∈δ (S )
S �(i, j)

ySi j ≤ ce ∀e ∈ E

∑
S ⊆V

S �(i, j)

ySi j ≤ πi j ∀(i, j) ∈ V ×V

ySi j ≥ 0 ∀S ⊆ V , (i, j) ∈ V ×V
Hajiaghayi and Jain [20] introduced a modified version of this dual to enable applying the 2-

approximation algorithm for Steiner forest by Goemans and Williamson [16]. This modified ver-
sion is as follows.
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Maximize
∑
S ⊆V

yS

Subject to yS =
∑

(i, j)∈V×V
S �(i, j)

ySi j ∀S ⊆ V

∑
S :e ∈δ (S )

yS ≤ ce ∀e ∈ E
∑
S ⊆V

S �(i, j)

ySi j ≤ πi j ∀(i, j) ∈ V ×V

ySi j ≥ 0 ∀S ⊆ V , (i, j) ∈ V ×V
yS ≥ 0 ∀S ⊆ V

From now on, we refer to this version as the dual LP for PCSF. Next, we outline the 3-
approximation algorithm of Hajiaghayi and Jain [20] based on this dual. The complete details
of this algorithm are provided in Section 2.

A 3-Approximation Algorithm for Prize-Collecting Steiner Forest. The algorithm of Hajiaghayi and
Jain [20] constructs a forest while maintaining a valid instance of the dual LP. It ensures that the
forest’s cost is at most twice the dual LP objective, with penalties not exceeding this value. The
algorithm tracks only the variables yS for sets, where a configuration is valid if there exists an
assignment to ySi j satisfying all dual LP constraints. Initially, all yS are set to zero.

Starting with an empty forest, the algorithm iteratively builds the final forest. A connected
component is an active set if it must be extended to connect with other components and satisfy
demands it cuts (i.e., demands with one endpoint in the component).

In each iteration, the dual variables yS of active sets are increased uniformly until a dual LP
constraint becomes tight. If an edge constraint

∑
yS ≤ ce becomes tight, the corresponding edge

e is added to the forest, merging the components of its endpoints. If a pair constraint
∑
ySi j ≤ πi j

becomes tight, the algorithm deactivates all active sets where further increasing to their yS would
violate constraints. Any pairs cut by these deactivated sets are labeled as tight pairs because their
dual LP constraints are tight, and their penalties are paid.

This process continues until no active sets remain. At the end of the algorithm, all tight pairs
are identified, and their penalties are paid. Note that the tightness of a pair depends not only on
yS but also on how the values are assigned to ySi j . While Hajiaghayi and Jain [20] do not require
assigning values to ySi j , we add a step to carefully assign these values to minimize the number of
tight pairs.

Finally, the algorithm removes edges that are not part of paths connecting non-tight pairs and
returns the resulting forest along with the set of tight pairs for which penalties are paid. Although
this approach may result in more penalties than those in the work of Hajiaghayi and Jain [20],
it maintains the same approximation factor and enables the development of a 2-approximation
algorithm.

To analyze the 3-approximation algorithm, note that the algorithm always maintains a valid dual
LP solution. Thus, the sum ofyS provides a lower bound for the primal LP and the optimal solution.

Bounding the cost of the final forest follows the approach of Goemans and Williamson [16] for
the Steiner forest problem, showing each increase in yS raises the forest cost by at most twice the
corresponding amount. Additionally, penalties are bounded by the sum of yS , as pairs with tight
constraints satisfy

∑
ySi j = πi j . Since eachySi j contributes to one pair constraint, the total penalty

cannot exceed the sum of yS . This ensures a 3-approximation solution.
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1.2 Algorithm and Techniques

In Section 3, we present an iterative algorithm and prove its 2-approximation guarantee for PCSF.
Here, we provide a brief explanation of how our algorithm works.

Let us refer to our 3-approximation algorithm as PCSF3. Our goal is to construct a 2-
approximation algorithm called IPCSF, by iteratively invoking PCSF3. In IPCSF, we first invoke
PCSF3 and obtain a feasible solution (Q1, F

′
1), whereQ1 represents the pairs for which we pay their

penalty, and F ′1 is a forest that connects the remaining pairs. Next, we set the penalty for each pair
in Q1 to 0. We recursively call IPCSF with the updated penalties. Intuitively, this can be beneficial
because setting the penalties for certain pairs to 0 results in a smaller increase in the dual variables.
Consequently, this encourages other pairs to avoid connecting with each other and not rely on the
penalties associated with pairs in Q1, which can help avoid connecting pairs the optimal solution
would not connect.

Let us assume that (Q2, F
′
2) is the result of this recursive call to IPCSF for the updated penalties.

It is important to note that (Q2, F
′
2) is a feasible solution for the initial instance, as it either connects

the endpoints of each pair or places them inQ2. Furthermore, it is true thatQ1 ⊆ Q2, as the penalty
of pairs in Q1 is updated to 0, and they will be considered as tight pairs in further iterations of
PCSF3. By induction, we assume that (Q2, F

′
2) is a 2-approximation of the optimal solution for the

instance with the updated penalties. Now, we want to show that either (Q1, F
′
1) or (Q2, F

′
2) is a

2-approximation of the optimal solution for the initial instance. We will select the one with the
lower cost and return it as the output of the algorithm.

To analyze the algorithm, we focus on pairs inQ1 that are connected in a fixed optimal solution
and the value of dual variables achieved by PCSF3. Let CP denote the set of pairs (i, j) ∈ Q1 that
are connected in the optimal solution. We concentrate on this set because the optimal solution
connects these pairs, and we will pay their penalties in both (Q1, F

′
1) and (Q2, F

′
2). Let us assume cp

represents the sum of ySi j for pairs in CP in the dual solution determined by PCSF3. For any pair
(i, j) ∈ CP and set S such that ySi j > 0, since the pair (i, j) is connected in the optimal solution,
we know that S cuts at least one edge of the optimal solution. Let cp1 be the total value of ySi j for
pairs (i, j) ∈ CP where S cuts exactly one edge of the optimal solution, and cp2 be the total value
of ySi j for pairs (i, j) ∈ CP where S cuts at least two edges. It follows that cp1 + cp2 = cp.

We now consider the values of cp1 and cp2 to analyze the algorithm. If cp2 is sufficiently large,
we can establish a stronger lower bound for the optimal solution compared to our previous bound,
which was

∑
yS . The previous bound can be explained as follows: for each pair (i, j), the optimal

solution either pays its penalty, which is at least the sum of ySi j , or connects it. For each set S
where ySi j > 0 and the pair (i, j) is connected by the optimal solution, S cuts at least one edge
in the optimal solution. This implies that the total cost of the forest in the optimal solution is at
least the sum of ySi j for all pairs (i, j) connected by S . Given that cp2 is sufficiently large compared
to cp1, this indicates that a significant portion of the sets S cut at least two edges of the optimal
solution. Consequently, this leads to a better bound for the optimal solution. This improved lower
bound allows us to conclude that the output of PCSF3, (Q1, F

′
1), becomes a 2-approximate solution.

Alternatively, if cp1 is significantly large, we can show that the optimal solution for the updated
penalties is substantially smaller than the optimal solution for the initial instance. This is achieved
by removing the edges from the initial optimal solution that are cut by sets like S which cut exactly
one edge of the optimal solution and have ySi j > 0 for some pairs (i, j) ∈ CP. By minimizing the
number of tight pairs at the end of PCSF3, we ensure that no pair without a tight constraint in the
dual instance of PCSF3 is cut by any of these sets, and removing these edges will not disconnect
those pairs. Consequently, we can construct a feasible solution for the updated penalties without
utilizing any edges from the cutting edges of these sets in the initial optimal solution. In summary,
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since (Q2, F
′
2) is a 2-approximation of the optimal solution for the updated penalties, and the op-

timal solution for the updated penalties has a significantly lower cost than the optimal solution
for the initial instance, (Q2, F

′
2) becomes a 2-approximation of the optimal solution for the initial

input.
Last but not least, we conduct further analysis of our algorithm to achieve a more refined ap-

proximation factor of 2 − 1
n

, which asymptotically approaches 2.

1.3 Preliminaries

For a given set S ⊂ V , we define the set of edges that have exactly one endpoint in S as the cutting

edges of S , denoted by δ (S). In other words, δ (S) = {(u,v) ∈ E : |{u,v} ∩ S | = 1}. We say that S
cuts an edge e if e is a cutting edge of S—that is, e ∈ δ (S). We say that S cuts a forest F if there
exists an edge e ∈ F such that S cuts that edge.

For a given set S ⊂ V and pair {i, j} ∈ V ×V , we say that S cuts (i, j) if and only if |{i, j} ∩S | = 1.
We denote this relationship as S � (i, j).

For a forest F , we define c(F ) as the total cost of edges in F—that is, c(F ) =
∑

e ∈F ce .
For a set of pairs of verticesQ ⊆ V ×V , we define π (Q) as the sum of penalties of pairs inQ—that

is, π (Q) =
∑
(i, j)∈Q πi j .

For a given solution SOL to a PCSF instance I , the notation cost(SOL) is used to represent the
total cost of the solution. In particular, if SOL uses a forest F and pays the penalties for a set of
pairs Q , then the total cost is given by cost(SOL) = c(F ) + π (Q).

For a graph G = (V ,E) and a vertex v ∈ V , we define dG (v) as the degree of v in G. Similarly,
for a set S ⊂ V , we define dG (S) as the number of edges that S cuts—that is, |E ∩ δ (S)|.

Lemma 1.2. Let F be an arbitrary forest and S be a subset of vertices in F . If S cuts only one edge e
in F , then removing this edge will only disconnect pairs of vertices cut by S .

Proof. Consider a pair (i, j) that is disconnected by removing e . This pair must be connected
in forest F , so there is a unique simple path between i and j in F . This path must include edge e ,
as otherwise the pair would remain connected after removing e . Let the endpoints of e be u and v ,
where u ∈ S and v � S . Without loss of generality, assume that i is the endpoint of the path that
is closer to u than v . Then i is connected to u through the edges in the path other than e . As these
edges are not cut by S and u ∈ S , it follows that i must also be in S . Similarly, it can be shown that
j is not in S . Therefore, S cuts the pair (i, j). �

2 Representing a 3-Approximation Algorithm

In this section, we present the primal-dual algorithm of Hajiaghayi and Jain [20], which achieves
a 3-approximation solution, with slight modifications in selecting the pairs for paying the penalty.
Specifically, we pay for a superset of pairs compared to their approach. We also provide useful
properties of this algorithm in Corollaries 2.1, 2.2, and 2.9, along with Lemmas 2.15 and 2.16. These
properties are proved here and will be used in the analysis of our 2-approximation algorithm in
the next section. The pseudocode for this method is detailed in Algorithm 1. Additionally, the
algorithm can be understood through a coloring schema for better intuition, explained in the con-
ference version of this article [3].

The algorithm is based on the dual LP formulation described in Section 1.1. The dual LP intro-
duces two types of dual variables: the set variablesyS and the assignment variablesySi j . We define
the pair variables as yi j =

∑
S �(i, j) ySi j . Before describing the algorithm, we need to define edge

constraints and tightness, as well as pair constraints and tightness based on the dual LP.
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Definition 2.1 (Edge Constraint and Tightness). In the dual LP, the constraint for each edge e ∈ E
is given by

∑
S :e ∈δ (S ) yS ≤ ce , referred to as the edge constraint. If this constraint is tight for an

edge e (i.e.,
∑

S :e ∈δ (S ) yS = ce ), we say that edge e is a tight edge.

Definition 2.2 (Pair Constraint and Tightness). In the dual LP, the constraint for each pair (i, j) ∈
V × V is given by yi j =

∑
S �(i, j) ySi j ≤ πi j , referred to as the pair constraint. If this constraint is

tight for a pair (i, j) (i.e., yi j = πi j ), we say that pair (i, j) is a tight pair.

The algorithm increases the set variables while ensuring that the edge constraint is always sat-
isfied. The values of the set variables yS are divided and assigned to the assignment variables ySi j

such that yS =
∑

S �(i, j) ySi j , and the pair variables are then computed based on these assignment
variables. Additionally, we ensure that the pair constraint is never violated by carefully observing
the pair variables.

We introduce some variables used in Algorithm 1. Let F be an initially empty forest that we will
build upon to eventually form our final forest. We maintain the set of connected components of F
in FC and a subset of these connected components in ActS , which includes the active sets whose
dual variables yS are increasing. Initially, ActS is set to FC .

As the algorithm progresses, the dual variable of active sets increases uniformly. This increase
affects the edge constraint of edges between connected components, as yS influences the edge con-

straint for edges cut by S . The process continues until an edge connecting different connected
components becomes tight. When this happens, the edge is added to F , and FC is updated to re-
flect the new connected components. Since the edge connects two distinct components, F remains
a forest. We then update ActS by merging the sets containing the edge’s endpoints. This ensures
that the edge constraint for the edge remains satisfied as it will not be adjacent to an active set.
This leads to the following corollary.

Corollary 2.1. For any edge e ∈ E, the edge constraint will never be violated, which means∑
S :e ∈δ (S )

yS ≤ ce .

We will later explain the procedure FindDeltaE, which identifies the first moment when a new
edge becomes tight. Although our algorithm ensures that edge constraint is maintained, we must
also address pair constraint. First, we define the validity of set variables based on pair constraint,
assuming edge constraint is already handled.

Definition 2.3 (Valid Set Variables). The values of set variables are considered valid if there exists
a set of values for assignment variables and consequently for pair variables such that the following
conditions hold:

— For every set S ⊆ V , the value of the set variable for S can be distributed among pairs (i, j)
satisfying S � (i, j) such that

∑
(i, j):S �(i, j) ySi j = yS .

— For every pair (i, j) ∈ V ×V , the pair constraint is not violated—that is,yi j =
∑

S :S �(i, j) ySi j ≤

πi j .

If no such set of values satisfies these conditions, the set variables are considered invalid.

Using the validity of set variables, we define set tightness.

Definition 2.4 (Set Tightness). A set S ⊆ V is defined as tight if increasing the value of yS by any
ϵ > 0 without changing the yS of other sets would make the set variables invalid.

The procedure FindDeltaP determines the first moment, starting from the current moment,
when an active set becomes tight. This means we can increase the set variable of all active sets by
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Δp without violating any pair constraints, as the increase would not make the set variables invalid,
and otherwise we would have already had a tight set. We also use the procedure CheckSetIsTight
to detect when active sets become tight and deactivate them to ensure that the pair constraint is
not violated. This leads to the following corollary.

Corollary 2.2. For any pair (i, j) ∈ V ×V , the pair constraint will never be violated, which means

yi j =
∑
S ⊆V

S �(i, j)

ySi j ≤ πi j .

To explain how Algorithm 1 operates, we begin by describing its key steps. Initially, the function
FindDeltaE, called at Line 5, computes the maximum duration Δe for which the dual variables yS

of active sets can be increased without violating any edge constraint. Similarly, at Line 6, the algo-
rithm uses FindDeltaP to determine the maximum increment Δp that ensures no pair constraint

will be violated by increasingyS for active sets by Δp . These procedures are essential for executing
the algorithm in discrete steps.

In the next phase, the algorithm advances by min(Δe ,Δp ) at Line 9, resulting in at least one
new edge becoming tight or one new tight set. During the loop at Line 11, newly tight edges are
identified, and their endpoints’ sets are merged. Similarly, within the loop at Line 19, the algorithm
identifies and deactivates tight sets.

The process continues until no active sets remain. Finally, at Line 25, the function FindMini-
malAssignment is called to find values for pair variables such that the number of tight pairs is
minimal. This function is critical for ensuring that the final assignment of values to assignment and
pair variables meets the requirements of the analysis in Section 3. The set of tight pairs returned
by this function, denoted byQ , is the set of pairs for which penalties need to be paid. We derive our
final forest F ′ from F by removing redundant edges that are not necessary for connecting demands
in (V ×V ) \Q .

Before we explain the procedures FindDeltaE, FindDeltaP, CheckSetIsTight, and FindMin-
imalAssignment in more detail, we introduce the following lemma, which is essential in the anal-
ysis of these functions.

Lemma 2.3. In the PCSF3 algorithm, the number of sets that have been active at some point during

its execution is linear.

Proof. During the algorithm, new active sets are only created in Line 16 by merging existing
sets. Initially, we start with n active sets in ActS . Symmetrically, for each creation of a new active
set, we have one merge operation over sets in FC , which reduces the number of sets in FC by
exactly 1. Since we start with n sets in FC , the maximum number of merge operations is n − 1.
Therefore, the total number of active sets throughout the algorithm is at most 2n − 1. �

Finding the Maximum Value for Δe . In FindDeltaE, we determine the maximum value of Δe

such that increasing the set variables of active sets by Δe does not violate edge constraint for any
edge. We consider each edge e = (u,v) where u and v are not in the same connected component,
and at least one of them belongs to an active set. An edge e is tight when the sum of the dual
variables of the sets that cut e equals ce . Consequently, the remaining capacity for increasing the
dual variables before the edge becomes tight is ce −

∑
S :e ∈δ (S ) yS . Then, edge e becomes tight if we

increase the dual variables of all active sets by
ce−

∑
S :e∈δ (S ) yS

t
, where t is the number of endpoints

of e that are in active sets. To ensure that the edge constraint is not violated, we select Δe as the
minimum increment required for an edge to become tight among all edges. This selection leads to
the following corollary.

J. ACM, Vol. 72, No. 2, Article 17. Publication date: April 2025.



17:10 A. Ahmadi et al.

ALGORITHM 1: PCSF3(I = (G,π )): A 3-Approximation Algorithm

Input: An undirected graph G = (V ,E, c) with edge costs c : E → R≥0 and penalties π : V ×V → R≥0.

Output: A set of pairs Q with a forest F ′ that connects the endpoints of every pair (i, j) � Q .

1: Initialize F ← ∅
2: Initialize ActS, FC ← {{v} : v ∈ V }
3: Implicitly set yS ← 0 for all S ⊂ V
4: while ActS � ∅ do

5: Δe ← FindDeltaE(G,y,ActS, FC)
6: Δp ← FindDeltaP(G,π ,y,ActS)
7: Δ← min(Δe ,Δp )

8: for S ∈ ActS do

9: yS ← yS + Δ
10: end for

11: for e ∈ E do

12: Let Sv , Su ∈ FC be sets that contains each endpoint of e
13: if

∑
S :e ∈δ (S ) yS = ce and Sv � Su then

14: F ← F ∪ {e}
15: FC ← (FC \ {Sp , Sq }) ∪ {Sp ∪ Sq }

16: ActS ← (ActS \ {Sp , Sq }) ∪ {Sp ∪ Sq }

17: end if

18: end for

19: for S ∈ ActS do

20: if CheckSetIsTight(G,π ,y, S) then

21: ActS ← ActS \ {S}
22: end if

23: end for

24: end while

25: Q ← FindMinimalAssignment(G,π ,y)
26: Let F ′ be the subset of F obtained by removing unnecessary edges for connecting demands (V ×V ) \Q .

27: return (Q, F ′)

Corollary 2.4. After increasing the values of yS by Δe for active sets, at least one new edge

becomes tight.

Note that for the calculation of Δe for an edge, we assume the current active sets do not change
during this time.

It is clear that the operations for FindDeltaE can be performed in polynomial time, leading to
the following corollary.

Corollary 2.5. The runtime of FindDeltaE is polynomial.

Finding the Maximum Value for Δp . We employ an LP to determine the maximum value for Δp .
Recall that here we want to increase the values ofyS as much as possible without violating any pair

constraint and consequently ensuring the validity of set variables (Definition 2.3). The following
LP finds such a value for Δp .

Maximize Δp

Subject to yS + Δp =
∑

(i, j)∈V×V
S �(i, j)

ySi j ∀S ∈ ActS
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yS =
∑

(i, j)∈V×V
S �(i, j)

ySi j ∀S ⊆ V

∑
S ⊆V

S �(i, j)

ySi j ≤ πi j ∀(i, j) ∈ V ×V

ySi j ≥ 0 ∀S ⊆ V , (i, j) ∈ V ×V
Δp ≥ 0

In the preceding LP, Δp and ySi j are variables, and yS are constants. It is important to note that
the second and fourth constraints can be ignored for any set S with yS = 0, which is not active
since ySi j = 0 for such sets and any pair (i, j). Then, by Lemma 2.3, only a polynomial number of
sets are considered in the constraints, and the LP has polynomial size. This leads to the following
corollary.

Corollary 2.6. Throughout the algorithm, each call to the FindDeltaP function executes in poly-

nomial time.

Based on the constraints of the preceding LP, the set variables remain valid after increasing the
set variables of active sets by the value of Δp . Now, we show that after this increase, at least one
active set becomes tight.

Lemma 2.7. After increasing the value of yS by Δp for active sets, at least one active set becomes

tight.

Proof. We use proof by contradiction. Assume that no active set becomes tight. From Defini-
tion 2.4, there exists an ϵ > 0 such that for anyA ∈ ActS , increasingyA by ϵ independently does not
violate the validity of set variables. Now, increasingyA by ϵ

|ActS |
for allA ∈ ActS would not violate

the validity of the set variables, as we can determine feasible values for the assignment variables
by averaging the values of the assignment variables that we obtain by increasing independently.
This contradicts the maximality of Δp , which is the objective of the LP. �

Check If a Set Is Tight. To determine if a set is tight, we solve a similar LP for an active set
A ∈ ActS . The LP is formulated as follows.

Maximize ϵ

Subject to yS + ϵ =
∑

(i, j)∈V×V
S �(i, j)

ySi j S = A

yS =
∑

(i, j)∈V×V
S �(i, j)

ySi j ∀S ⊆ V

∑
S ⊆V

S �(i, j)

ySi j ≤ πi j ∀(i, j) ∈ V ×V

ySi j ≥ 0 ∀S ⊆ V , (i, j) ∈ V ×V
ϵ ≥ 0

In the LP described, ϵ and ySi j are variables, whereas yS are given constants. If ϵ > 0, then
based on Definition 2.4, the set A is not tight. Conversely, if ϵ = 0, the set A is tight. Using similar
arguments as for the FindDeltaP function, this LP is solvable in polynomial time.
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Corollary 2.8. Each call to the CheckSetIsTight function during the algorithm runs in polyno-

mial time.

Finding the Final Assignment with Minimal Tight Pairs. In the final step of the algorithm, we
seek a valid assignment for the dual variables ySi j that is consistent with the values yS , aiming to
minimize the number of tight pairs. We first find a feasible solution for the following system of
linear constraints.

yS =
∑

(i, j)∈V×V
S �(i, j)

ySi j ∀S ⊆ V

∑
S ⊆V

S �(i, j)

ySi j ≤ πi j ∀(i, j) ∈ V ×V

ySi j ≥ 0 ∀S ⊆ V , (i, j) ∈ V ×V
Note that theyS values in the constraints are not variables and correspond to the values obtained

using the primal-dual process. Additionally, for any set S with yS = 0, we can safely assume that
all ySi j values are also equal to 0. Therefore, we only care about sets with yS > 0, of which there
is only polynomially many by Lemma 2.3. To find a feasible solution, we can view the system as
an LP with an arbitrary bounded objective function and solve the LP in polynomial time.

We say that an assignment has minimal tight pairs if for any tight pair (i, j) and any set S
with ySi j > 0, any other pair (i ′, j ′) cut by S is also tight. Algorithm 2 provides a pseudocode for
procedure FindMinimalAssignment which obtains an assignment with minimal tight pairs. We
explain how this algorithm adjusts the ySi j values to satisfy this condition.

Assume there exists a pair (i, j) along with set S and pair (i ′, j ′) that violates the condition. Since
(i ′, j ′) is not tight and ySi j > 0, there must exist some ϵ > 0 such that yi′j′ + ϵ < πi′j′ and ySi j > ϵ .
Then, consider a new assignment with ϵ deducted from ySi j and added to ySi′j′ . This reduces yi j

by ϵ > 0, so the pair (i, j) will not be tight anymore. In addition, the pair constraint for (i ′, j ′) will
not be violated and (i ′, j ′) will not become tight as yi′j′ will remain strictly less than πi′j′ . Last, yS

remains equal to the sum of ySi j values as the net change in these variables is zero. So, we obtain
a new valid assignment with one fewer tight pair. We can repeat this process while there exists a
tight pair violating the minimality condition. Finally, we will be left with a minimal assignment
for the variables where the following lemma stands.

Corollary 2.9. In the final assignment obtained in FindMinimalAssignment, if a set S ⊆ V cuts

a tight pair (i, j) with ySi j > 0, then all pairs (i ′, j ′) satisfying S � (i ′, j ′) are also tight.

It can also be seen that Algorithm 2 can be implemented in polynomial time. First, as discussed
earlier, finding the initial assignment reduces to solving an LP with a polynomial number of vari-
ables and constraints. Additionally, the while loop can only be executed a polynomial number of
times, as each iteration reduces the number of tight pairs by 1. Last, as the number of sets S with
yS > 0 is polynomial by Lemma 2.3, finding the while condition, as well as the violating pairs and
sets, can be done in polynomial time.

Corollary 2.10. The FindMinimalAssignment function runs in polynomial time.

2.1 Analysis

In this section, we analyze some properties of the PCSF3 algorithm. We will show, in the next two
lemmas, that any inactive set remains tight and that every component of the final forest F will be
a tight set given the final yS values.
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ALGORITHM 2: FindMinimalAssignment(G,π ,y): Obtaining Minimal Set of Tight Pairs along
with Final Assignment

Input: An undirected graph G = (V ,E, c) with edge costs c : E → R≥0 and penalties π : V ×V → R≥0 and

set variables yS

Output: The set Q of tight pairs for which we will pay penalties.

1: Find a valid assignment for dual variables ySi j consistent with yS values

2: Calculate yi j values as yi j =
∑

S :S �(i, j) ySi j

3: while ∃(i, j), (i ′, j ′) ∈ V ×V and S ⊂ V that S � (i, j), S � (i ′, j ′), yi j = πi j , yi′j′ < πi′j′ , and yS ′i j > 0 do

4: ϵ ← min(ySi j ,πi′j′ − yi′j′ )/2

5: ySi j ← ySi j − ϵ
6: yi j ← yi j − ϵ
7: ySi′j′ ← ySi′j′ + ϵ
8: yi′j′ ← yi′j′ + ϵ
9: end while

10: Let Q ← {(i, j) ∈ V ×V :
∑

S :S �(i, j) ySi j = πi j }

11: return Q

Lemma 2.11. Once a set S becomes tight, it remains tight throughout the algorithm.

Proof. By Definition 2.4, a set S is considered tight if, for any ϵ > 0, the values of set variables
will not be valid if yS is increased by ϵ . Additionally, as seen in Definition 2.3, the constraints
for checking the validity of set variables only impose upper bounds on yS values. Therefore, if a
valuation of set variables is not valid, increasing the yS values will not lead to a valid valuation
either. As yS values only increase throughout the algorithm, any set that is tight will continue to
be tight. �

Lemma 2.12. At the end of PCSF3, all remaining sets in FC are tight.

Proof. In Line 2 of the algorithm, both ActS and FC are initialized with the same set of sets.
Additionally, in Lines 15 and 16, the same sets are removed from ActS and FC or added to both
data structures. The only difference occurs in Line 21, where tight sets are removed from ActS but
not from FC . These removed sets will remain tight by Lemma 2.11. Therefore, at the end of the
algorithm, since there are no sets remaining in ActS , all sets in FC are tight. �

Now we show that if a set is tight, all pairs with one endpoint in that set are tight.

Lemma 2.13. If a set S is tight, then any pair (i, j) such that S � (i, j) is also tight.

Proof. We prove this by contradiction. Assume there is a pair (i, j) such that S � (i, j), and this
pair is not tight. Let ϵ = πi j − yi j .

Consider increasing yS , ySi j , and yi j by ϵ . After this increase, for each set S ′, we have∑
(i′, j′):S ′ �(i′, j′) yS ′i′j′ = yS ′ , and for each pair yi′j′ =

∑
S ′:S ′ �(i′, j′) yS ′i′j′ ≤ πi′j′ . According to Defini-

tion 2.3, this adjustment maintains valid set variables.
Since S is tight, it means no valid assignment for the set variables exists ifyS is increased. There-

fore, the assumption that (i, j) is not tight contradicts the tightness of S , because the increase by ϵ
should not result in a valid assignment.

Hence, if a set S is tight, all pairs (i, j) where S � (i, j) must also be tight. �

The next lemma shows that the returned value (Q, F ′) forms a valid solution to the given
instance—that is, any pair not connected by the forest F ′ is in Q .

Lemma 2.14. The endpoints of any pair not in Q will be connected in the forest F ′.
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Proof. As all tight pairs are in Q , any such pair will not be tight. The forest F ′ is obtained
by removing redundant edges from F , which are edges that are not part of a path between the
endpoints of a pair that is not tight. Hence, it suffices to show that every pair that is not tight is
connected in F .

For the sake of contradiction, let us assume that there exists a pair (i, j) that is not tight and
the endpoints i and j are not connected in F . Consider the set S ∈ FC at the end of the algorithm
that contains i . Since i and j are not connected in F , and S is a connected component of F , it
follows that S cuts the pair (i, j). Since the algorithm is finished, S is tight by Lemma 2.12. This
contradicts Lemma 2.13 because we have a tight set S such that S � (i, j) is not tight. Therefore, our
assumption is false, and every pair that is not tight is connected in F . As a result, after executing
FindMinimalAssignment, the endpoints of any pair that is not tight will be connected in the
forest F ′. �

Next, we analyze the cost of the forest returned in the PCSF3 procedure.

Lemma 2.15. Forest F ′ has cost

c(F ′) ≤ 2
∑
S ⊂V

yS .

Proof. We can prove this similarly to the proof presented by Goemans and Williamson [16].
First, we note that the cost of F ′ can be expressed as follows:

c(F ′) =
∑
e ∈F ′

ce

=
∑
e ∈F ′

∑
S ⊂V

e ∈δ (S )

yS (Edges of F ′ are tight)

=
∑
S ⊂V

∑
e ∈F ′

e ∈δ (S )

yS (Change the order of summations)

=
∑
S ⊂V

dF ′ (S)yS .

Now, it suffices to prove the equivalent statement:∑
S ⊂V

dF ′ (S)yS ≤ 2
∑
S ⊂V

yS .

To prove this, we compare the increase in each side during each step of PCSF3. Since both sides are
initially equal to zero, showing that the increase in the left-hand side is no more than the increase
in the right-hand side establishes the desired inequality.

Now, let us consider a specific step of the procedure PCSF3 where the yS values of the active
sets in ActS are increased by Δ. In this step, the increase in the left-hand side can be written as∑

S ∈ActS dF ′ (S) · Δ while the increase in the right-hand side is 2Δ · |ActS |. Therefore, we want to
prove that ∑

S ∈ActS

dF ′ (S) ≤ 2 · |ActS |.

Consider the graph H formed from F ′ by contracting each connected component in FC at this
step in the algorithm. As the edges of forest F at this step and F ′ are a subset of the forest F at the
end of PCSF3, the graph H should be a forest. If H contains a cycle, it contradicts the fact that F at
the end of PCSF3 is a forest.
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In forest H , each vertex represents a set S ∈ FC , and the neighboring edges of this vertex are
exactly the edges in δ (S) ∩ F ′. We refer to the vertices representing active sets as active vertices,
and the vertices representing inactive sets as inactive vertices. To simplify the analysis, we remove
any isolated inactive vertices from H .

Now, let us focus on the inactive vertices inH . Each inactive vertex must have a degree of at least
2 in H . Otherwise, if an inactive vertex v has a degree of 1, consider the only edge in H connected
to this vertex. For this edge not to be removed in the final step of Algorithm 1 at Line 26, there must
exist a pair outside ofQ that would be disconnected after deleting this edge. However, since vertex
v is inactive, its corresponding set S becomes tight before this step. According to Lemma 2.11, S
will remain tight afterward. As a result, by Lemma 2.13, any pair cut by S will also be tight and
will be included in Q . By applying Lemma 1.2, we can conclude that the only pairs disconnected
by removing this edge would be the pairs cut by S , which we have shown to be inQ . Therefore, an
inactive vertex cannot have a degree of 1, and all inactive vertices in H have a degree of at least 2.
Let Va and Vi represent the sets of active and inactive vertices in H , respectively. We have∑

S ∈ActS

dF ′ (S) =
∑

v ∈Va

dH (v)

=
∑

v ∈Va∪Vi

dH (v) −
∑

v ∈Vi

dH (v)

≤ 2(|Va | + |Vi |) −
∑

v ∈Vi

dH (v) (H is a forest)

≤ 2(|Va | + |Vi |) − 2|Vi | (dH (v) ≥ 2 for v ∈ Vi )

≤ 2(|Va |) = 2|ActS |.

This completes the proof. �

Finally, we prove that the running time of PCSF3 is polynomial.

Lemma 2.16. The runtime of PCSF3 is polynomial.

Proof. By Corollary 2.4 and Lemma 2.7, we can conclude that the number of iterations of the
while loop is polynomial. In each iteration, Lemma 2.3, in addition to Corollaries 2.5, 2.6, and 2.8,
proves that the number of operations is polynomial. Last, FindMinimalAssignment is polynomial
due to Corollary 2.10. Therefore, PCSF3 runs in polynomial time. �

3 The Iterative Algorithm

In this section, we present our iterative algorithm which uses the PCSF3 procedure from
Algorithm 1 as a building block. We then provide a proof of its 2-approximation guarantee in
Section 3.1. Finally, in Section 3.2, we provide a brief overview of a more refined analysis to
establish a (2 − 1

n
)-approximation for an n vertex input graph.

Our algorithm, described in Algorithm 3, considers two solutions for the given PCSF instance
I . The first solution, denoted as (Q1, F

′
1), is obtained by invoking the PCSF3 procedure (Line 1). If

the total penalty of this solution, π (Q1), is equal to 0, the algorithm returns it immediately as the
solution.

Otherwise, a second solution, denoted as (Q2, F
′
2), is obtained through a recursive call on a sim-

plified instance R. The simplified instance is created by adjusting penalties: penalties are limited to
pairs that Algorithm 1 does not pay for, and the penalties for other pairs are set to 0 (Lines 6–14).
Essentially, we assume that penalties paid in the first solution will indeed be paid, and our objective
is to find a solution for the remaining pair connection demands. We note that setting the penalties
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ALGORITHM 3: IPCSF(I = (G, π )): Iterative PCSF Algorithm

Input: An undirected graph G = (V ,E, c) with edge costs c : E → R≥0 and penalties π : V ×V → R≥0.

Output: A set of pairs Q with a forest F ′ that connects the endpoints of every pair (i, j) � Q .

1: (Q1, F
′
1) ← PCSF3(I )

2: if π (Q1) = 0 then

3: return (Q1, F
′
1)

4: end if

5: cost1 ← c(F ′1) + π (Q1)

6: Initialize π ′ as a new all-zero penalty vector

7: for (i, j) ∈ V ×V do

8: if (i, j) ∈ Q1 then

9: π ′i j ← 0

10: else

11: π ′i j ← πi j

12: end if

13: end for

14: Construct instance R of the PCSF problem consisting of G and π ′

15: (Q2, F
′
2) ← IPCSF(R)

16: cost2 ← c(F ′2) + π (Q2)

17: if cost1 ≤ cost2 then

18: return (Q1, F
′
1)

19: else

20: return (Q2, F
′
2)

21: end if

for these pairs to 0 guarantees their inclusion in Q2. This is because Q2 represents the set of tight
pairs for a subsequent invocation of PCSF3, and any pair with a penalty of 0 is trivially tight.

To compare the two solutions, the algorithm computes the values cost1 = c(F ′1) + π (Q1) and
cost2 = c(F

′
2) + π (Q2), which represent the costs of the solutions (Lines 5 and 16). In the final step,

the algorithm simply selects and returns the solution with the lower cost.

3.1 Analysis

We now analyze the approximation guarantee of Algorithm 3. In the following, we consider an
arbitrary instance I = (G,π ) of the PCSF problem, and analyze the solutions found by the IPCSF
algorithm. In our analysis, we focus on the first call of IPCSF. By the output of PCSF3, we refer
to the result of the first call of PCSF3 on instance I at Line 1. Similarly, when we mention the
output of the recursive call, we are referring to the output of IPCSF on instance R at Line 15. We
compare the output of IPCSF on I , which is the minimum of the output of PCSF3 and the output
of the recursive call, with an optimal solutionOPT of the instance I . We denote the forest selected
in OPT as F ∗ and use Q∗ to refer to the set of pairs not connected in F ∗, for which OPT pays the
penalties. Then, the cost of OPT is given by cost(OPT ) = c(F ∗) + π (Q∗). The values yS , ySi j , and
yi j used in the analysis all refer to the corresponding values in the call to PCSF3 on instance I .
In particular, the yS values are the final values of the set variables in the primal-dual algorithm,
the ySi j values refer to the final assignment in the call to FindMinimalAssignment, and the yi j

values are calculated from ySi j values.

Definition 3.1. For an instance I , we define four sets to categorize the pairs based on their con-
nectivity in both the optimal solution OPT of I and the result of PCSF3(I ), denoted as (Q1, F

′
1):
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— Set CC contains pairs (i, j) that are connected in the optimal solution and are not in the set
Q1 returned by PCSF3.

— Set CP contains pairs (i, j) that are connected in the optimal solution and are in the set Q1

returned by PCSF3.
— Set PC contains pairs (i, j) that are not connected in the optimal solution and are not in the

set Q1 returned by PCSF3.
— Set PP contains pairs (i, j) that are not connected in the optimal solution and are in the set
Q1 returned by PCSF3.

Based on the final dual assignment of PCSF3(I ), we define the following values to represent the
sum of dual values for each set.

cc =
∑

(i, j)∈CC

yi j , cp =
∑

(i, j)∈CP

yi j

pc =
∑

(i, j)∈PC

yi j , pp =
∑

(i, j)∈PP

yi j

The following table illustrates the connectivity status of pairs in each set.

PCSF3

Connect Penalty

Optimal Solution
Connect CC CP

Penalty PC PP

Next, we categorize sets that cut the optimal forestOPT into two categories based on the number
of edges cut: sets that cut exactly one edge of the optimal solution, and those that cut at least two.
Since pairs in CP are connected in the optimal solution, any set cutting these pairs must cut at
least one edge ofOPT . Based on this, we allocate the value of cp between cp1 and cp2, representing
the contribution from each category.

Definition 3.2 (Single-Edge and Multi-Edge Sets). For an instance I , we define a set S ⊂ V as a
single-edge set if it cuts exactly one edge of OPT (i.e., dF ∗ (S) = 1) and as a multi-edge set if it cuts
at least two edges of OPT (i.e., dF ∗ (S) > 1). Let cp1 and cp2 denote the contribution to cp from
ySi j values corresponding to single-cut and multi-cut sets, respectively. These values are formally
defined as follows:

cp1 =
∑

(i, j)∈CP

∑
S :S �(i, j),
dF ∗ (S )=1

ySi j

cp2 =
∑

(i, j)∈CP

∑
S :S �(i, j),
dF ∗ (S )>1

ySi j .

Figure 1 displays a single-edge set on the left and a multi-edge set on the right.

Lemma 3.1. For an instance I , we have cp1 + cp2 = cp.

Proof. Since pairs in CP are connected by the optimal solutionOPT , any set S cutting a pair in
CP must cut at least one edge ofOPT . Therefore, any set S contributing to cp is either a single-edge
set or a multi-edge set. Hence, we have cp1 + cp2 = cp. �
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Fig. 1. A comparison between a single-cut set (left) and a multi-cut set (right).

Now, we use these definitions and categorizations to analyze our algorithm. All of the following
lemmas are based on the assumption that IPCSF is executed on instance I . First, in Lemma 3.2,
we provide a lower bound on the cost of the optimal solution, which is cost(OPT ) ≥ cc + cp +
cp2 + pc + pp. Next, in Lemma 3.3, we present an upper bound on the output of PCSF3(I ), which
is cost1 ≤ 2cc + 2pc + 3cp + 3pp. Moreover, in Lemma 3.4, we show that this value is at most
2cost(OPT ) + cp1 − cp2 + pp.

Next, we want to upper bound the output of the recursive call within IPCSF. In Lemma 3.6, we
initially prove that costR(OPTR ) ≤ cost(OPT ) − pp − cp1, where costR(OPTR ) represents the cost
of the optimal solution for the instance R defined at Line 14. Finally, in Theorem 3.7, we employ
induction to demonstrate that cost(IPCSF) ≤ 2cost(OPT ). Here, cost(IPCSF) denotes the cost of the
output produced by IPCSF on instance I . To accomplish this, we use the same induction to bound
the cost of the solution obtained through the recursive call at Line 16 by cost2 ≤ 2costR(OPTR ) +

cp +pp, and by utilizing Lemma 3.6, we can then conclude that cost2 ≤ 2cost(OPT )−cp1 +cp2 −pp.
Taking the average of cost1 and cost2 results in a value that is at most 2cost(OPT ). Consequently,
the minimum of these two values, corresponding to the cost of IPCSF(I ), is at most 2cost(OPT ).

Lemma 3.2. For an instance I , we can derive a lower bound for the cost of the optimal solutionOPT
as follows:

cost(OPT ) ≥ cc + cp + cp2 + pc + pp.

Proof. The optimal solution pays penalties for pairs with labels PC and PP as it does not
connect them. Since yi j ≤ πi j for each pair (i, j) by Corollary 2.2, we can lower bound the penalty
paid by OPT as

π (Q∗) =
∑

(i, j)∈(PC∪PP)

πi j ≥
∑

(i, j)∈(PC∪PP)

yi j = pc + pp.

Now, we want to lower bound the cost of the forest in the optimal solution by cc + cp + cp2. We
show this using the properties of the primal-dual algorithm.

c(F ∗) =
∑
e ∈F ∗

ce

≥
∑
e ∈F ∗

∑
S ⊂V

e ∈δ (S )

yS (Corollary 2.1)

=
∑
S ⊂V

∑
e ∈F ∗

e ∈δ (S )

yS (Change the order of summations)
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=
∑
S ⊂V

dF ∗ (S) · yS

=
∑
S ⊂V

∑
(i, j):S �(i, j)

dF ∗ (S) · ySi j (yS =
∑
(i, j):S �(i, j) ySi j )

=
∑

(i, j)∈V×V

∑
S :S �(i, j)

dF ∗ (S) · ySi j (Change the order of summations)

≥
∑

(i, j)∈CC

∑
S �(i, j)

dF ∗ (S) · ySi j +
∑

(i, j)∈CP

∑
S �(i, j)

dF ∗ (S) · ySi j . (CC ∩ CP = ∅)

For each pair (i, j) ∈ (CC ∪ CP), we know that i and j are connected in the optimal solution
OPT . This implies that for every set S satisfying S � (i, j), the set S cuts the forest of OPT—that
is, dF ∗ (S) ≥ 1. Based on this observation, we bound the two terms in the preceding summation
separately. For pairs in CC, we have∑

(i, j)∈CC

∑
S �(i, j)

dF ∗ (S) · ySi j ≥
∑

(i, j)∈CC

∑
S �(i, j)

ySi j =
∑

(i, j)∈CC

yi j = cc .

For pairs in CP, we have∑
(i, j)∈CP

∑
S �(i, j)

dF ∗ (S) · ySi j =
∑

(i, j)∈CP

∑
S �(i, j),

dF ∗ (S )=1

dF ∗ (S) · ySi j +
∑

(i, j)∈CP

∑
S �(i, j),

dF ∗ (S )>1

dF ∗ (S) · ySi j

≥
∑

(i, j)∈CP

∑
S �(i, j),

dF ∗ (S )=1

ySi j +
∑

(i, j)∈CP

∑
S �(i, j),

dF ∗ (S )>1

2ySi j

= cp1 + 2cp2

= cp + cp2. (Lemma 3.1)

Summing up all the components, we have

cost(OPT ) = c(F ∗) + π (Q∗) ≥ cc + cp + cp2 + pc + pp.

�

Lemma 3.3. For an instance I , during the first iteration of IPCSF(I ) where PCSF3(I ) is invoked, we

can establish an upper bound on the output of PCSF3 as follows:

cost1 ≤ 2cc + 2pc + 3cp + 3pp.

Proof. Since cost1 is the total cost of PCSF3(I ), we should bound π (Q1) + c(F ′1). First, let us
observe that PCSF3 pays the penalty for exactly the pairs (i, j) in CP∪PP, where CP∪PP = Q1.
Since every pair in Q1 is tight, we have πi j = yi j for these pairs. Therefore, the total penalty paid
by PCSF3 can be bounded by

π (Q1) =
∑

(i, j)∈(CP∪PP)

πi j =
∑

(i, j)∈(CP∪PP)

yi j = cp + pp.

Now, it suffices to show that c(F ′1) ≤ 2(cc + cp +pc +pp). Since each pair belongs to exactly one
of the sets CC, CP, PC, and PP, we can observe that

cc + cp + pc + pp =
∑

(i, j)∈V×V

yi j =
∑
S ⊂V

yS .

Therefore, the desired statement is implied by Lemma 2.15. �
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Lemma 3.4. For an instance I , during the first iteration of IPCSF(I ) where PCSF3(I ) is invoked, we

can establish an upper bound on the output of PCSF3 as follows:

cost1 ≤ 2cost(OPT ) + cp1 − cp2 + pp.

Proof. We can readily prove this by referring to the previous lemmas:

cost1 ≤ 2cc + 2pc + 3cp + 3pp (Lemma 3.3)

= 2(cc + cp + cp2 + pc + pp) + cp − 2cp2 + pp

≤ 2cost(OPT ) + (cp − cp2) − cp2 + pp (Lemma 3.2)

= 2cost(OPT ) + cp1 − cp2 + pp. (Lemma 3.1)

�

Lemma 3.5. For an instance I , it is possible to remove a set of edges from F ∗ with a total cost of at

least cp1 while ensuring that the pairs in CC remain connected.

Proof. Consider a single-edge set S that cuts some pair (i, j) in CP with ySi j > 0. Since (i, j)
is in CP, it is also in Q1 and therefore tight. By Corollary 2.9, any other pair cut by S will also
be tight. Consequently, the pairs in CC will not be cut by S since they are not tight. Furthermore,
according to Lemma 1.2, if S cuts only one edge e of F ∗, then the only pairs that will be disconnected
by removing edge e from F ∗ are the pairs that are cut by S . However, we have already shown that
no pair in CC is cut by S . Therefore, all pairs in CC will remain connected even after removing
edge e . This is illustrated in Figure 2.

For any single-edge set S that cuts a pair (i, j) in CP with ySi j > 0, we can safely remove the
single edge of F ∗ that is cut by S . Let Dsinдle denote the collection of such single-edge sets and
Esinдle be the set of removed edges attached to sets in Dsinдle . Then we have

c(Esinдle ) =
∑

e ∈Esinдle

ce

≥
∑

e ∈Esinдle

∑
S ⊂V

e ∈δ (S )

yS (Corollary 2.1)

=
∑
S ⊂V

∑
e ∈Esinдle

e ∈δ (S )

yS (Change the order of summations)

=
∑
S ⊂V

|δ (S) ∩ Esinдle |yS (Simplified)

≥
∑

S ∈Dsinдle

yS (δ (S) ∩ Esinдle � ∅ for S ∈ Dsinдle )

=
∑

S ∈Dsinдle

∑
(i, j):S �(i, j)

ySi j (yS =
∑
(i, j):S �(i, j) ySi j )

≥
∑

S :dF ∗ (S )=1

∑
(i, j)∈CP
S �(i, j)
ySi j >0

ySi j

=
∑

S :dF ∗ (S )=1

∑
(i, j)∈CP
S �(i, j)

ySi j

= cp1.

Therefore, the total length of the removed edges will be at least cp1. �
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Fig. 2. The figure shows the graph of F ∗ with pairs (i, j) and (i ′, j ′), and a single-edge set S with ySi j > 0.

Tightness of (i, j) implies tightness of (i ′, j ′), and removing edge e does not disconnect pairs in CC.

Now, we introduce some useful notation to analyze the output of the recursive call. During
the execution of IPCSF on an instance I , it generates a modified instance R at Line 14, where the
penalties for pairs in Q1 are set to 0. We use the notation π ′ to represent the penalties in the
instance R as they are defined in Lines 6 through 11. Since Line 2 ensures that π (Q1) � 0, we can
conclude that R is a reduced instance compared to I , meaning that the number of pairs with non-
zero penalties is smaller in R than in I . Given that we recursively call IPCSF on instance R, we can
bound the output of the recursive call by the optimal solution of R using induction. Let OPTR be
an optimal solution for R. We denote the forest ofOPTR as F ∗R and the set of pairs not connected by
F ∗R as Q∗R . The cost ofOPTR is given by costR(OPTR ) = c(F

∗
R)+ π

′(Q∗R ). We will use these notations
in the following lemmas.

Lemma 3.6. For an instance I and the instance R constructed at Line 14 during the execution of

IPCSF(I ), we have

costR(OPTR ) ≤ cost(OPT ) − pp − cp1.

Proof. To prove this lemma, we first provide a solution for the instance R given the optimal
solution of the instance I , denoted as OPT , and we show that the cost of this solution is at most
cost(OPT ) − pp − cp1. Since OPTR is a solution for the instance R with the minimum cost, we can
conclude that costR(OPTR ) ≤ cost(OPT ) − pp − cp1.

To provide the aforementioned solution for the instance R, we start with the solution OPT con-
sisting of the forest F ∗ and the set of pairs for which penalties were paid, denoted asQ∗. We create
a new setQ ′R = Q

∗ ∪ CP = PC∪PP ∪CP and a forest F ′R initially equal to F ∗. Since F ∗ connects
pairs in CC and CP, but we add pairs in CP to Q ′R and pay their penalties, we can remove edges
from F ′R that do not connect pairs in CC.

Let us focus on Q ′R first. Since the penalties for pairs in CP and PP are set to 0 in π ′, we have

π ′(Q ′R ) = π ′(CP) + π ′(PC) + π ′(PP) (Q ′R = CP ∪ PC ∪ PP)

= π ′(PC) (π ′(CP) = π ′(PP) = 0)

= π (PC)
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= π (Q∗) − π (PP) (Q∗ = PC ∪ PP)

= π (Q∗) −
∑

(i, j)∈PP

πi j

= π (Q∗) −
∑

(i, j)∈PP

yi j (Pairs in PP are tight)

= π (Q∗) − pp.

Moreover, using Lemma 3.5, we construct F ′R from F ∗ by removing a set of edges with a total
length of at least cp1, while ensuring that the remaining forest still connects all the pairs in CC.
Therefore, we can bound the cost of F ′R as

c(F ′R) ≤ c(F ∗) − cp1.

Summing it all together, we have

costR(OPTR ) ≤ c(F ′R) + π
′(Q ′R ) ≤ (c(F

∗) − cp1) + (π (Q
∗) − pp) = cost(OPT ) − pp − cp1,

where the first inequality comes from the fact that OPTR is the optimal solution for the instance
R, whereas (Q ′R , F

′
R ) gives a valid solution—that is, F ′R connects every pair that is not in Q ′R . �

Finally, we can upper bound the cost of the output of IPCSF. For an instance I , let us denote the
cost of the output of IPCSF(I ) as cost(IPCSF). In Theorem 3.7, we prove that the output of IPCSF
is a 2-approximate solution for the PCSF problem.

Theorem 3.7. For an instance I , the output of IPCSF(I ) is a 2-approximate solution to the optimal

solution for I , meaning that

cost(IPCSF) ≤ 2cost(OPT ).

Proof. We will prove the claim by induction on the number of pairs (i, j) with penalty πi j > 0
in instance I .

First, the algorithm makes a call to the PCSF3 procedure to obtain a solution (Q1, F
′
1). If π (Q1) = 0

for this solution, which means no cost is incurred by paying penalties, the algorithm terminates
and returns this solution at Line 3. This will always be the case in the base case of our induction
where for all pairs (i, j) ∈ Q1, penalties πi j are equal to 0. Since every pair (i, j) ∈ Q1 is tight, we
have yi j = πi j = 0. Given that CP and PP are subsets of Q1, we can conclude that cp = cp1 =

cp2 = pp = 0. Now, by Lemma 3.4, we have

cost1 ≤ 2cost(OPT ) + (cp1 − cp2) + pp = 2cost(OPT ).

Therefore, when IPCSF returns at Line 3, we have

cost(IPCSF) = cost1 ≤ 2cost(OPT ),

and we obtain a 2-approximation of the optimal solution.
Now, let us assume that PCSF3 pays penalties for some pairs—that is, π (Q1) � 0. Therefore,

since we set the penalty of pairs in Q1 equal to 0 for instance R at Line 9, the number of pairs with
non-zero penalty in instance R is less than in instance I . By induction, we know that the output of
IPCSF on instance R, denoted as (Q2, F

′
2), has a cost of at most 2costR(OPTR ). That means

c(F ′2) + π
′(Q2) ≤ 2costR(OPTR ).

In addition, we have

π (Q2) = π (Q2 \Q1) + π (Q2 ∩Q1) ≤ π ′(Q2 \Q1) + π (Q1) ≤ π ′(Q2) + π (Q1),
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where we use the fact that π ′i j = πi j for (i, j) � Q1. Now we can bound the cost of the solution

(Q2, F
′
2), denoted as cost2, by

cost2 = c(F
′
2) + π (Q2)

≤ c(F ′2) + π
′(Q2) + π (Q1)

≤ 2costR(OPTR ) + π (Q1) (By induction)

≤ 2 (cost(OPT ) − pp − cp1) +
∑
(i, j)∈Q1

πi j (Lemma 3.6)

= 2 (cost(OPT ) − pp − cp1) +
∑
(i, j)∈Q1

yi j (Pairs in Q1 are tight)

= 2cost(OPT ) − 2pp − 2cp1 + cp + pp

= 2cost(OPT ) − cp1 + cp2 − pp. (Lemma 3.1)

Furthermore, according to Lemma 3.4, the cost of the solution (Q1, F
′
1), denoted as cost1, can be

upper bounded by

cost1 ≤ 2OPT + cp1 − cp2 + pp.

Finally, in Line 17, we return the solution with the smaller cost between (Q1, F
′
1) and (Q2, F

′
2).

Based on the upper bounds above on both solutions, we know that

cost(IPCSF) = min(cost1, cost2) ≤
1

2
(cost1 + cost2)

≤
1

2
(2cost(OPT ) + cp1 − cp2 + pp + 2cost(OPT ) − cp1 + cp2 − pp)

=
1

2
(4cost(OPT )) = 2cost(OPT ),

and we obtain a 2-approximation of the optimal solution. This completes the induction step and
the proof of the theorem. �

It is interesting to note that as we use the average of cost1 and cost2 as an upper bound for the
smaller one, the same analysis can be applied to a similar algorithm that chooses between the two
solutions uniformly at random instead of choosing the one with the minimum cost.

Theorem 3.8. The runtime of the IPCSF algorithm is polynomial.

Proof. Letn be the number of vertices in the input graph. There areO(n2) pairs of vertices in to-
tal. Whenever IPCSF calls itself recursively, the number of pairs with non-zero penalties decreases
by at least 1, and otherwise IPCSF will return at Line 3. Thus, the recursion depth is polynomial
in n. At each recursion level, the algorithm only runs PCSF3 on one instance of the problem and
performs O(n2) additional operations. By Lemma 2.16, we know that PCSF3 runs in polynomial
time. Therefore, the total runtime of IPCSF will also be polynomial. �

3.2 Improving the Approximation Ratio

In this section, we briefly explain how a tighter analysis can be used to show that the approximation
ratio of the IPCSF algorithm is at most 2− 1

n
, where n is the number of vertices in the input graph

G. This approximation ratio more closely matches the approximation ratio of 2− 2
n

for the Steiner
forest problem.

We first introduce an improved version of Lemmas 3.3 and 3.4.
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Lemma 3.9. For an instance I , during the first iteration of IPCSF(I ) where PCSF3(I ) is invoked, we

have the following upper bound:

cost1 ≤

(
2 −

2

n

)
· cc +

(
2 −

2

n

)
· pc +

(
3 −

2

n

)
· cp +

(
3 −

2

n

)
· pp.

Proof. We proceed similarly to the proof of Lemma 3.3 and make a slight change. In one of the
last steps of that proof, we use the following inequality:∑

v ∈Va∪Vi

dH (v) −
∑

v ∈Vi

dH (v) ≤ 2(|Va | + |Vi |) −
∑

v ∈Vi

dH (v).

This is true, as H is a forest and its number of edges is less than its number of vertices. However,
as the number of edges in a forest is strictly less than the number of vertices, we can lower the
right-hand side of this inequality to 2(|Va |+ |Vi | − 1) −

∑
v ∈Vi

dH (v). Rewriting the main inequality
in this step with this change gives us∑

S ∈ActS

dF ′1
(S) ≤ 2(|Va | + |Vi | − 1) −

∑
v ∈Vi

dH (v)

≤ 2(|Va | + |Vi | − 1) − 2|Vi | (dH (v) ≥ 2 for v ∈ Vi )

≤ 2(|Va | − 1) = 2|ActS | − 2 (|Va | = |ActS |)

=

(
2 −

2

|ActS |

)
|ActS |

≤ (2 −
2

n
)|ActS |. (|ActS | ≤ n)

Based on the steps in the proof of Lemma 3.3, this leads to the desired upper bound. �

Lemma 3.10. For an instance I , during the first iteration of IPCSF(I ) where PCSF3(I ) is invoked, we

can establish an upper bound on the output of PCSF3 as follows:

cost1 ≤

(
2 −

2

n

)
· cost(OPT ) + cp1 −

(
1 −

2

n

)
· cp2 + pp.

Proof. We prove this lemma similarly to Lemma 3.4, except we use Lemma 3.9 instead of
Lemma 3.3:

cost1 ≤

(
2 −

2

n

)
· cc +

(
2 −

2

n

)
· pc +

(
3 −

2

n

)
· cp +

(
3 −

2

n

)
· pp (Lemma 3.9)

=

(
2 −

2

n

)
(cc + cp + cp2 + pc + pp) + cp −

(
2 −

2

n

)
· cp2 + pp

≤

(
2 −

2

n

)
· cost(OPT ) + (cp − cp2) −

(
1 −

2

n

)
cp2 + pp (Lemma 3.2)

=

(
2 −

2

n

)
· cost(OPT ) + cp1 −

(
1 −

2

n

)
· cp2 + pp. (Lemma 3.1)

�

Finally, we improve Theorem 3.7.

Theorem 3.11. For an instance I , the output of IPCSF(I ) is a (2 − 1
n
)-approximate solution to the

optimal solution for I , meaning that

cost(IPCSF) ≤

(
2 −

1

n

)
· cost(OPT ).
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Proof. Similarly to the proof of Theorem 3.7, we use induction on the number of non-zero
penalties. If the algorithm terminates on Line 3, then by Lemma 3.10 we have

cost1 ≤

(
2 −

2

n

)
· cost(OPT ) + cp1 −

(
1 −

2

n

)
· cp2 + pp =

(
2 −

2

n

)
· cost(OPT )

since cp1, cp2, and pp are all 0 in this case. As 2 − 2
n
≤ 2 − 1

n
, the desired inequality holds in this

case. This establishes our base case for the induction.
Using the same reasoning as the proof of Theorem 3.7, based on the induction we have

cost2 ≤

(
2 −

1

n

)
· costR(OPTR ) + π (Q1)

=

(
2 −

1

n

)
· costR(OPTR ) + cp + pp

≤

(
2 −

1

n

)
(cost(OPT ) − cp1 − pp) + cp + pp (By Lemma 3.6)

≤

(
2 −

1

n

)
· cost(OPT ) −

(
1 −

1

n

)
· cp1 + cp2 −

(
1 −

1

n

)
· pp.

We can combine this with the following upper bound from Lemma 3.10:

cost1 ≤

(
2 −

2

n

)
· cost(OPT ) + cp1 −

(
1 −

2

n

)
· cp2 + pp.

As the algorithm chooses the solution with the lower cost between cost1 and cost2, we have

cost(IPCSF) = min(cost1, cost2) ≤
1

2
(cost1 + cost2)

≤
1

2

[(
2 −

2

n

)
· cost(OPT ) + cp1 −

(
1 −

2

n

)
· cp2 + pp

+

(
2 −

1

n

)
· cost(OPT ) −

(
1 −

1

n

)
· cp1 + cp2 −

(
1 −

1

n

)
· pp

]

=
1

2

((
4 −

3

n

)
· cost(OPT ) +

2

n
cp2 +

1

n
cp1 +

1

n
pp

)

≤
1

2

((
4 −

2

n

)
· cost(OPT ) +

1

n
[2cp2 + cp1 + pp − cost(OPT )]

)

≤
1

2

(
4 −

2

n

)
· cost(OPT ) (cost(OPT ) ≥ 2cp2 + cp1 + pp by Lemma 3.2)

=

(
2 −

1

n

)
· cost(OPT ).

Therefore, the algorithm obtains a (2 − 1
n
)-approximation of the optimal solution. �
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