
Fast, Parallel, and Cache-friendly Suffix Array
Construction
Jamshed Khan #Ñ

University of Maryland, College Park, USA

Tobias Rubel #Ñ

University of Maryland, College Park, USA

Laxman Dhulipala #Ñ

University of Maryland, College Park, USA

Erin Molloy #Ñ

University of Maryland, College Park, USA

Rob Patro #Ñ

University of Maryland, College Park, USA

Abstract
String indexes such as the suffix array (SA) and the closely related longest common prefix (LCP)
array are fundamental objects in bioinformatics and have a wide variety of applications. Despite their
importance in practice, few scalable parallel algorithms for constructing these are known, and the
existing algorithms can be highly non-trivial to implement and parallelize. In this paper we present
CaPS-SA, a simple and scalable parallel algorithm for constructing these string indexes inspired by
samplesort. Due to its design, CaPS-SA has excellent memory-locality and thus incurs fewer cache
misses and achieves strong performance on modern multicore systems with deep cache hierarchies.
We show that despite its simple design, CaPS-SA outperforms existing state-of-the-art parallel SA
and LCP-array construction algorithms on modern hardware. Finally, motivated by applications in
modern aligners where the query strings have bounded lengths, we introduce the notion of a bounded-
context SA and show that CaPS-SA can easily be extended to exploit this structure to obtain
further speedups. We make our code publicly available at https://github.com/jamshed/CaPS-SA.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases Suffix Array, Longest Common Prefix, Data Structures, Indexing, Parallel
Algorithms

Digital Object Identifier 10.4230/LIPIcs.WABI.2023.21

Funding Rob Patro: supported by the NIH under grant award numbers R01HG009937 and by NSF
awards CCF-1750472 and CNS-176368.

1 Introduction
Methods for aligning sequencing reads to reference genomes underlie some of the most
well-developed and widely-used tools in bioinformatics [2]. Modern read-to-reference aligners
typically employ an index over the reference text. A classic index for strings is the suffix
array (SA) [35], which is an array of indices of the lexicographically sorted suffixes of a
string. In alignment, the SA index is used by the popular STAR aligner [12] as well as
in other tools [48, 50]. The SA has also been used in short-read error correction [20] and
sequence clustering [19]. A related object frequently used in conjunction with the SA is
the Longest Common Prefix (LCP) array, which contains the lengths of the longest shared
prefixes between pairs of successive indices in the SA. For instance, the SA can be used
in concert with the LCP-array (and other auxiliary tables derived from these) in a data
structure called an enhanced suffix array [1] to mimic the functionality of a suffix tree [49],
but often more efficiently and using less space. An account of the pervasiveness of the SA
and the LCP-array in computational genomics is best left to a dedicated review (see e.g.
[46]).

Because of the utility of the SA (and the LCP-array) in string indexing, significant work
© Jamshed Khan, Tobias Rubel, Laxman Dhulipala, Erin Molloy, and Rob Patro;
licensed under Creative Commons License CC-BY 4.0

23rd International Workshop on Algorithms in Bioinformatics (WABI 2023).
Editors: Djamal Belazzougui and Aïda Ouangraoua; Article No. 21; pp. 21:1–21:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jamshed@cs.umd.edu
https://sites.google.com/view/jamshed/home
https://orcid.org/0000-0002-5129-9749
mailto:trubel@umd.edu
https://tobiasrubel.github.io
https://orcid.org/0000-0001-7658-4864
mailto:laxman@umd.edu
https://www.cs.umd.edu/~laxman/
https://orcid.org/0000-0003-0685-064X
mailto:ekmolloy@umd.edu
https://ekmolloy.com
https://orcid.org/0000-0001-5553-3312
mailto:rob@cs.umd.edu
https://combine-lab.github.io
https://orcid.org/0000-0001-8463-1675
https://github.com/jamshed/CaPS-SA
https://doi.org/10.4230/LIPIcs.WABI.2023.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 CaPS-SA

has been dedicated to developing practical algorithms for its construction. It is well-established
that SA and LCP-array construction can be performed sequentially in time linear to the
size of strings. However, as modern genomics pipelines produce ever more data—including
more complete reference genomes and pangenomes—there has been a concerted effort to
improve the practical efficiency and reduce the runtime of SA and LCP-array construction.
A host of efficient serial algorithms have been developed [30, 26, 29, 37, 14, 39, 33]. Likewise,
in an effort to take advantage of the increased parallelism of modern computer hardware, a
number of parallel algorithms have also been proposed; e.g. parallel DivSufSort [32], parallel
DC3 [31], and parallel divide-and-conquer based SA-construction [24]. External memory
algorithms [22, 25, 23] have also been a focus of recent research because of the memory
bottlenecks that arise when building the SA and the LCP-array on genomic datasets. Besides,
algorithms for GPU-settings [34] and distributed-memory [15, 16] have been developed. We
refer the interested reader to [43, 5, 6] for a comprehensive review. For our purposes, we note
that these increasingly advanced methods introduce new algorithmic techniques to enable
parallelism or improve the worst-case time complexity (so that it is sublinear). The trade-off,
often, is that these more complex algorithms may potentially be more difficult to implement,
optimize for modern hardware and cache layouts, and to maintain.

In this work, we address these issues by introducing CaPS-SA, a highly parallel method
for constructing the SA and the LCP-array. A core principle behind CaPS-SA is simplicity.
Our approach draws on several existing algorithms and techniques, and focuses on their
efficient combination for the problem of highly parallel SA construction. The algorithm
builds upon the parallel samplesort algorithm [17], and is easy to implement and optimize
for modern hardware.

A potential downside of our approach is that it is output-sensitive and as a result its
worst-case time complexity on adversarial inputs is quadratic. However, in practice we
find that the shared-memory implementation of CaPS-SA outperforms state-of-the-art
methods (specifically Parallel-divsufsort [32] and Parallel-DC3 [31, 3]) in terms
of runtime and scalability (although not in memory for Parallel-divsufsort). For
example, CaPS-SA can build the SA and the LCP-array for the telomere-to-telomere
human genome assembly (CHM13 v2) [40] in 141 seconds using 32 threads on a typical
shared-memory machine, whereas the leading method Parallel-divsufsort requires 199
seconds. Our experimental study demonstrates that this superior performance of CaPS-SA
can largely be attributed to two causes. First, CaPS-SA achieves better memory-locality
(fewer cache misses) than the other methods (likely thanks to its straightforward approach),
and second, the worst-case analysis of CaPS-SA does not represent a typical or real world
use case. Overall, our work demonstrates that as parallel resources increase combining
domain-specific optimizations (i.e. LCP-informed merging) with highly-efficient general
sorting strategies (i.e. samplesort [17]) can outperform more sophisticated but complex
algorithms. CaPS-SA is implemented in C++17 and is available under an open source
license at https://github.com/jamshed/CaPS-SA.

The remainder of this manuscript is organized as follows. We discuss the preliminary
concepts required for a formal treatment of the algorithm as well as the most relevant prior
work and the methods against which we compare CaPS-SA in Sec. 2. Then we discuss
CaPS-SA in Sec. 3, and provide an analysis of its asymptotic behavior. Sec. 4 describes the
experimental study for the proposed algorithm, and reports the results. We conclude with
discussion on the potential of the method and prospective future directions for building on
top of it.

https://github.com/jamshed/CaPS-SA

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:3

2 Preliminaries

A string (or text) T = a0a1 . . . an−1 is a finite ordered sequence of n symbols drawn from
a finite ordered alphabet Σ. |T | denotes the length n of T . The half-open interval [i, j) is a
shorthand for the closed interval [i . . . j− 1]. Ti denotes the i’th symbol in T . The substring
T[i,j) of T is the sequence of characters of T on the half-open interval [i, j). We call a substring
T[i,j) with i = 0 a prefix of T . Likewise, A substring T[i,j) with j = |T | is a suffix of T , denoted
by T[i:].

The ordering of Σ induces a lexicographical ordering of all possible strings over Σ. The
Suffix Array (SA) of a string T is an array of the starting indices of all suffixes of T ordered
by the suffixes’ lexicographical order. The Longest Common Prefix LCP(T1, T2) of two
strings T1 and T2 is the largest-sized prefix P of both T1 and T2, such that if |P| = k then
for all 0 < i < k, T1i = T2i, and T1k ̸= T2k. Given the suffix array SA of a string T , its
LCP-array is the array L such that Li = LCP(T[SAi:], T[SAi−1:]). 1 For instance, given the
string T = AACTGCGGAT$ the SA and LCP array are given by following data structure:

Index 0 1 2 3 4 5 6 7 8 9 10
T A A C T G C G G A T $

SA 10 0 1 8 5 2 7 4 6 9 3
LCP array 0 0 1 1 0 1 0 1 1 0 1

The work of an algorithm is the total number of operations it performs to compute the
result. The depth (or span) of an algorithm is the longest sequence of dependent computations
in its execution. In pseudo-code, we will use (||) as an infix operator to specify the parallel
execution of statements—so f(x) || g(y) denotes the parallel execution of f(x) and g(y). We
use O

(
f(n)

)
with high probability (whp) in n to mean O

(
cf(n)

)
with probability at least

1− n−c for c ≥ 1.
Prior Work. The SA can be constructed naively in O(n2 logn) work for an n-length text.
Efficient algorithms can operate in O(n) work and O(n) space, which is the theoretical
optimum, as it is the time and space required to record the SA and LCP array themselves.
A comprehensive discussion of work on SA construction is well beyond the scope of this
manuscript. As such, we here focus on several sequential and parallel algorithms which are
of particular interest due to their speed and wide use.

The state-of-the-art sequential program for SA construction is divsufsort [37, 14].
Subsequent work has elucidated the algorithm to be an efficient implementation of some
two-stage algorithms [21, 14].

Divsufsort has been parallelized by Labeit et. al. in 2017 [32], and is considered a state-
of-the-art tool in parallel SA construction. It has recently been used in several computational
genomics tools, including the CAMMiQ method for microbial abundance quantification [51]
and the macle tool for computing match complexity [42].

Another well-known strategy for SA construction is the Difference Cover modulo 3 (DC3)
method [27], which has also been effectively parallelized [31].
Relevant String Sorting Methods. String sorting is a well-studied algorithmic problem.
The main difficulty in string sorting is that comparing two strings T1 and T2 requires
O(min(|T1|, |T2|)) comparisons, which renders many traditional sorting algorithms for atomic
objects costly. Of particular relevance to our work is the problem of merging two sorted lists
of strings. Farach-Colton used an efficient merge-routine for building suffix trees in linear
time [13] (though the space overhead of suffix trees renders them impractical for most modern
applications). Ng and Kakehi analyzed an efficient merging strategy of sorted lists of strings

1 With the special case of L0 = 0.

WABI 2023

21:4 CaPS-SA

with associated LCP-information [38]. They show that given random strings with uniform
distribution of symbols, an LCP-informed merge-sort algorithm has an expected running
time of O(n logn) to sort n strings. The same merge procedure was used by Bingmann and
Sanders in several samplesorting algorithms for sorting collections of strings [8].

Bingmann and Sanders propose two merge-based string sorting algorithms of particular
interest to us here: Parallel Super Scalar String Sample Sort (pS5) and Parallel Multiway
LCP-Mergesort. pS5 makes use of the merge routine in a samplesort framework, much like
CaPS-SA. The algorithms differ in their inputs (a set of strings vs a single string) as well as
their approach to partitioning the data. pS5 uses machine-word-sized pivot keys to create a
binary search tree which can fit into the cache of each core, then divides up the input set
of strings evenly across the cores and bins them accordingly. As described in Section 3.1,
CaPS-SA divides up the input into evenly sized partitions, then samples pivots using a
two-step process and places them into each partition. Parallel Multiway LCP-Mergesort
generalizes the merge-algorithm to k-way merges [7].

3 Methods

The proposed algorithm, CaPS-SA, is based on the samplesort [17] algorithm. Samplesort
is a popular generalization of quicksort that achieves excellent performance on both shared-
memory and distributed-memory architectures [44, 4]. Instead of partitioning the input
array into two parts around a single pivot as in quicksort, it chooses a number of pivots
z1, z2, . . . , zp−1 along with two sentinel pivots z0 = −∞ and zp = +∞, and partitions
the data into p partitions such that an input element xi is assigned to partition j iff
zj−1 < xi ≤ zj. It then sorts each partition using another (usually sequential) sorting
algorithm (e.g., quicksort).

For constructing a suffix array, simply applying samplesort is costly since string compar-
isons in general require super-constant time. In more detail, first each suffix needs to be
assigned to its partition by binary searching over the pivots. Secondly, sorting the suffixes in
each partition may cost substantially more than linearithmic time due to string comparisons.

CaPS-SA addresses these issues using the following key idea of jointly leveraging merge
sort and LCP-arrays. Whenever two suffixes are compared, the comparison is always done
inside the operation of merging two sorted arrays of suffixes. Each sorted array is augmented
with its LCP-array, and the merge operations avoid repeated comparisons of common
prefixes among suffixes by exploiting these LCP-arrays. This approach has previously been
used in general string sorting algorithms [38, 8, 7], but to our knowledge has not been
leveraged for SA construction. The partitioning strategy for the suffixes is modified to
make better use of the merge operation and achieve good parallelism. In particular, instead
of randomly sampling pivots at the beginning of the algorithm, CaPS-SA partitions the
suffixes uniformly into p subarrays, sorts the subarrays locally, and only then selects the
pivots using oversampling. Once pivots are placed within each partition, the p partitions are
further subdivided into p − 1 subarrays each, for a total of p(p − 1) sub-subarrays. Since
each sub-subarray is flanked by two pivots, the partition that it should go to is known. Each
partition is thus a collection of sorted sub-subarrays, which can be merged efficiently. The
initial sorting of the uniform-sized subarrays is done using merge-sort to exploit the merge
operation. Thus CaPS-SA ends up exploiting an efficient merging procedure with associated
LCP-information to reduce expensive comparisons of suffixes, while not having to merge
large sub-arrays due to its pivoting strategy. We discuss the algorithm in more detail in the
following sections.

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:5

(

(

(

{
n /p

T a0, a1… …an−2, an−1

Step 1: partition T into p evenly sized partitions.

1. Sort the subarrays

2. Sample pivots, select global pivots and place in each subarraysp p − 1
Step 2:

Step 4: Merge sub-subarrays

Step 3: Collate sub-subarrays
within each partition

Initial array of suffixes

T

Figure 1 Overview of CaPS-SA. In the first step of the algorithm the input text T is partition
evenly across n partitions. Then each partition is sorted, pivots are sampled using the sampling
routine, and located within each partition to create sub-partitions. Subsequently each sub-partition
is collated. Finally the Merge routine is used to complete the suffix and the LCP-array construction.

3.1 Parallel SA and LCP-array construction: CaPS-SA

Next, we provide a high-level overview of the CaPS-SA(T, p) algorithm. The input to the
algorithm is a string T and a partition count (or, subproblem count) p, and as output it
produces the SA and the LCP-array of T . Conceptually, the algorithm executes in four
high-level steps which we illustrate in Figure 1.

CaPS-SA(T, p)

1 SA, SA ′, L, L ′ = arrays of size |T |

// populate the suffix array with some permutation of [0,n)
2 for i ∈ [0, |T |) in parallel
3 SAi = SA ′

i = i

// sort p subarrays of uniform size
4 m = |T|/p
5 for i ∈ [0, p) in parallel
6 b = im, e = (i + 1)m // range of the i’th subarray
7 Merge-Sort(SA ′

[b:e), SA[b:e), L[b:e), L
′
[b:e), T)

// sample (p − 1) pivots from SA
8 V = Sample-Pivots(SA, L, T, p)

// locate each vj ∈ V in each sorted subarray; for two successive pivots vj−1 and vj,
// place all suffixes k in each subarray s.t. T[vj−1:] < T[k:] ≤ T[vj:]

in partition j in SA ′

9 (S, R) = Collate-Partitions(SA, SA ′, L, L ′, V, T, p)
// Sj: index of partition j in SA ′, Rj,i: position of pivot vi in partition j

// merge the p sorted subarrays in each partition
10 Par-Copy(SA ′, SA), Par-Copy(L ′, L) // Par-Copy(X, Y) copies X to Y in parallel
11 for j ∈ [0, p) in parallel
12 b = Sj, e = Sj+1

13 Merge-Partition(SA ′
[b,e), SA[b,e), p, Rj, L

′
[b:e), L[b:e), T)

// compute LCP-values at the partition boundaries
14 Compute-Boundary-LCPs(SA,p, S, L, T)

15 return (SA, L)

First, it populates an unsorted SA. Then this initial SA is broken into p subarrays of
uniform size |T |/p, and each subarray is sorted with Merge-Sort, in parallel. Next, p− 1

global pivots are sampled from the sorted subarrays together. Then in each sorted subarray,
in parallel, each pivot is located with a binary search. The locations of the p− 1 pivots thus
found in each sorted subarray break the subarray into p sorted sub-subarrays. Besides, the
position of each pivot in the final SA is now defined by its location in each of the p subarrays.
The local ordering of the suffixes in each sorted subarray and the global position of the pivots

WABI 2023

21:6 CaPS-SA

Merge(X, Y, LX, LY , Z, LZ, T)

// merges the sorted arrays of suffixes (of T) X
// and Y with LCP arrays LX and LY resp.,
// into Z; also constructs Z’s LCP array in LZ

1 i = j = k = 0
2 m = 0 // LCP of the last compared pair
3 lx = 0 // LCP(Xi, Xi−1)
4 while i < |X| and j < |Y|
5 lx = LXi

6 if lx > m
7 Zk = Xi, LZk = lx, m = m
8 elseif lx < m
9 Zk = Yj, LZk = m, m = lx

10 else
11 n = m + LCP(T[Xi+m:], T[Yj+m:])

12 Zk =

{
Xi if TXi+n < TYj+n

Yj otherwise

13 LZk =

{
lx if Zk = = Xi

m otherwise
14 m = n

15 if Zk = = Xi

16 i = i + 1
17 else
18 j = j + 1
19 swap(X, Y), swap(LX, LY), swap(i, j)

20 k = k + 1

21 Copy(X[i:], Z[k:]), Copy(LX[i:], LZ[k:])

22 if j < |Y|
23 Zk = Yj, LZk = m
24 Copy(Y[j+1:], Z[k+1:]),

Copy(LY [j+1:], LZ[k+1:])

Merge-Sort(X, Y, L, L ′, T)

// sorts the array X of suffixes (of T) into Y;
// constructs the LCP array of sorted X in L
// using L ′ as working space;
// a necessary precondition is X = = Y

1 n = |X|
2 if n = = 1
3 L0 = 0
4 return

5 m = n/2
6 Merge-Sort(Y[0:m), X[0:m), L

′
[0:m), L[0:m), T) ||

Merge-Sort(Y[m:n), X[m:n), L
′
[m:n), L[m:n), T)

7 Merge(X[0:m), X[m:n), L
′
[0:m), L

′
[m:n), Y, L, T)

Merge-Partition(X, Y,n, R, LX, LY , T)

// merges the collection X of n sorted subarrays
// of suffixes into Y; R contains the ranges of the
// subarrays in X; LX is the collection of the
// LCP arrays of the subarrays, and the LCP array
// of Y is constructed in LY ;
// necessary preconditions are X = = Y and LX = = LY

1 if n = = 1
2 return

3 m = n/2
4 l = Sm − R0 // #suffixes in the first m subarrays
5 Merge-Partition(Y[0:l), X[0:l),m,R[0:m),

LY [0:l), LX[0:l), T) ||
Merge-Partition(Y[l:Rn), X[l:Rn), n − m,R[m:n),

LY [l:Rn), LX[l:Rn))
6 Merge(X[0:l), X[l:Rn), LX[0:l), LX[l:Rn), Y, LY , T)

thus define p partitions for the final SA, each of which is a collection of p sub-subarrays:
one from each of the p sorted subarrays. Then for each partition, in parallel, its p sorted
sub-subarrays are merged recursively into a fully sorted partition. Together, these sorted
partitions, in order, produce the final SA and the final LCP-array. The LCP-values for
pairs that cross partition boundaries are computed at the end.

The algorithm is presented as following, and its major steps are detailed in the following
subsections. Then we analyze the asymptotic characteristics of the algorithm.
The Merge operation. For efficient suffix comparisons, CaPS-SA utilizes the Merge
operation. A pair of suffixes is compared only when merging two sorted lists of suffixes,
with the only exception being the case when the algorithm performs a binary search using a
pivot suffix. When merging sorted suffixes, merging without any extra information about
the suffixes in its input lists can be costly due to super-constant time string comparisons. To
avoid comparing repeated prefixes of suffixes, the Merge procedure in CaPS-SA utilizes the
LCP-arrays of the input suffix lists, generated recursively in the Merge-Sort procedure.

The Merge(X, Y, LX, LY , Z, LZ, T) procedure takes two sorted arrays X and Y of suffixes,
their respective LCP-arrays LX and LY , and populates the array Z as the merged output for
X and Y. Also, the LCP-array of Z is produced in LZ. The procedure works exactly like the
classic merge routine, with the following modifications.

At a given moment, let Xi and Yj be the two suffixes being compared, and Zk be
the output of the comparison. Without loss of generality, say that Xi < Yj is found, i.e.
Zk = Xi. Let m denote the LCP-length of the the last compared pair in each step of the
merge. Then after the current step finishes comparing Xi, Yj, we have that m = LCP(Xi, Yj).
Xi < Yj implies that TXi+m < TYj+m. The next suffixes to compare are Xi+1 and Yj. Let
lx = LXi+1 = LCP(Xi+1, Xi). Xi+1 > Xi implies that TXi+1+lx > TXi+lx . There are three
possible outcomes when comparing lx and m (illustrated in Figure 2):

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:7

(((X

Case 1 : lx > m

Y

Xi Xi+1

Yj

lx = LCP(Xi+1, Xi)

m = LCP(Xi, Yj)

Case 2 : lx < m Case 3 : lx = m

Xi = AATAA…

Xi+1 = AATAC…
Yj = AATGA…

lx = 4

m = 3

Z Xi

LCP(Xi+1, Yj) = m

Xi+1

Xi = AATAA…

Xi+1 = AATCC…
Yj = AATAC…

lx = 3

m = 3

Z Xi

LCP(Xi+1, Yj) = lx

Yj

Merge step
Xi = AATAA…

Xi+1 = AATCCA…
Yj = AATCCT…

lx = 3

m = 3
n = m + LCP(T[Xi+1+m:], T[Yj+m:]) = 5

Z Xi

LCP(Xi+1, Yj) = n

Xi+1

to determine Zk+1

Figure 2 Figure illustrating the cases that can occur on the (k+ 1)’th step of the Merge routine,
which determines Zk+1. Cases 1 and 2 require O(1) work and simply compare the LCP-lengths of
the previous step and LCP(Xi+1, Xi), which are already available. Step 3 requires work proportional
to O(LCP(Xi+1, Yj) −m), since Xi+1, Yj already share a prefix of size m.

1. lx > m: It implies that TXi+1+m = TXi+m. Combining with TXi+m < TYj+m, we get
TXi+1+m < TYj+m. It follows that

Zk+1 = Xi+1, LZk+1 = LCP(Zk+1, Zk) = LCP(Xi+1, Xi) = lx,m = LCP(Xi+1, Yj)= m

2. lx < m: It implies that TXi+lx = TYj+lx . Combining with TXi+1+lx > TXi+lx , we get
TXi+1+lx > TYj+lx . It follows that

Zk+1 = Yj, LZk+1 = LCP(Zk+1, Zk) = LCP(Yj, Xi) = m,m = LCP(Xi+1, Yj) = lx

3. lx == m: We compute n = m+ LCP(T[Xi+1+m:], T[Yj+m:]), and set the following:

Zk+1 =

{
Xi+1 if TXi+1+n < TYj+n

Yj otherwise

LZk+1 = LCP(Zk+1, Zk) =

{
LCP(Xi+1, Xi) = lx if Zk+1 == Xi+1

LCP(Yj, Xi) = m otherwise

m = LCP(Xi+1, Yj) = n

The Merge procedure continues this way through X and Y. Finally, when either of X
and Y has been depleted, the rest of the entries at the other one are copied to the end of Z
and LZ.
Local sorting. CaPS-SA starts out with some permutation of [0, |T |), and sorts its p disjoint
subarrays, each of size |T |/p, in parallel using Merge-Sort. The Merge-Sort(X, Y, L, L ′, T)

procedure takes as input an array X of suffixes, and sorts it into Y. Besides, the LCP-array
of sorted suffixes is produced in L, using L ′ as working space. As typical Merge-Sort
implementation requires linear extra space in each invocation, CaPS-SA uses the arrays
X and Y in a back-and-forth manner to reuse the extra space in the invocations. For
such, Y needs to be equal to X before an invocation. The merge step in the sort uses the
Merge-procedure described earlier.
Pivot selection. CaPS-SA deviates from samplesort in its pivot selection strategy. In a
typical samplesort, pivots are to be sampled from the initial array and then partitioning would
be based on their intervals. Instead, in parallel, the Sample-Pivots(SA, T, p) procedure
(see Suppl.) in CaPS-SA samples s suffixes from each of the p subarrays, where s is the
sampling factor. Then these s×p sample suffixes are sorted using a sequential Merge-Sort.
Subsequently, p − 1 evenly-spaced pivots are selected from the sorted output to form the
pivot set V.

WABI 2023

21:8 CaPS-SA

These pivots define the ranges of the samplesort partitions, and are used to split each
of the subarrays in the next collation step. We show in Theorem 1 that with a sufficient
sampling factor s, the size of each partition is within a constant factor of |T |/p with high
probability, which ensures a balanced load for processing each partition in the last step of
the algorithm.
Collating partitions. Having finalized the pivot set V, the algorithm locates each pivot
suffix v ∈ V in each sorted subarray. Each subarray is searched for the p−1 pivots in parallel.

Consider a pivot v ∈ V and some sorted subarray A. The position of v in A is the last
index where v can be inserted without breaking the sorted order of A. This index is computed
using a binary search for the suffix v in A. During a binary search suffixes are compared
without any associated LCP array, contrary to the Merge procedure. As a practical speedup,
we skip some repeated character comparisons between v and the suffixes in A using the
simple accelerant idea [18].

After placing each pivot v into A, the index i of v in A implies that all the suffixes in A[0:i)

are ≤ v. Hence the sum Cv of these indices of v across all the p sorted subarrays provides
the total suffix count in the SA that are not lexicographically larger than v—the index of
v in the final SA is Cv − 1. Along with the sentinel pivot positions C0 = 0 and Cp = |T |,
these p− 1 pivots divide the final SA into p partitions. Consider two successive pivots vj−1

and vj. In each sorted subarray A, all the suffixes k such that T[vj−1:] < T[k:] ≤ T[vj:] will be
present in the index-range [Cj−1, Cj) of the final SA. That is, all the suffixes between the
locations for vj−1 and vj belong to the (j− 1)’th partition.

Thus the pivot locations in a sorted subarray A break A into p sub-subarrays, where
the j’th sub-subarray is known to be present in the j’th partition of the final SA. After the
binary searches, CaPS-SA moves these sub-subarrays in parallel to collate all sub-subarrays
for the same partition. The LCP-arrays of these sub-subarrays are also collated together.
The Collate-Partitions(SA, SA ′, L, L ′, V, T, p) procedure (see Suppl.) describes it in more
detail.
Merging partitions. Having grouped together the corresponding sub-subarrays for every
partition, CaPS-SA merges together the sorted sub-subarrays in each partition, in parallel.
A partition consists of p sorted collections of suffixes, with all of the collections stored
contiguously. The Merge-Partition(X, Y, n, R, LX, LY , T) procedure takes this collection X

of n sorted sub-subarrays, and produces the merged output in the same contiguous region of
memory Y recursively. LX is the collection of the LCP-arrays of the sorted groups in X, and
the merged LCP-array is produced in LY . The sorted groups in X (and LX) are delineated
by R.

The Merge-Partition procedure is same as the Merge-Sort procedure, except for
that it is more general—the sorted units where Merge-Sort bottoms out are single suffixes,
whereas Merge-Partition bottoms out earlier at sorted groups of suffixes. As noted earlier,
Merge-Partition also uses the space in X and Y back-and-forth to reuse the extra spaces
required.

3.2 Asymptotics

In this section, we analyze the computational complexity of the CaPS-SA(T, p) algorithm
executed on a text T with length n = |T |, given a subproblem-count p.

3.2.1 Work Analysis We start by analyzing the overall work of the algorithm and
providing self-contained proofs on the total work due to symbol comparisons made by our
algorithm.

Local sorting. This step executes the classic Merge-Sort on each subarray. For a
subarray A with m suffixes, this amounts to a total work of T(m) = 2T(m/2)+O(m)+C(A),

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:9

where C(A) denotes the number of symbol comparisons made in the execution in the third
case of the Merge procedure. We analyze the total amortized cost of these C(A) values
across all the recursion-trees of all the subarrays in Theorem 3. Omitting C(A) from T(m),
each local sort has n/p log n/p work.

Pivot selection. With a sampling factor s, there are s × p pivots sampled in total
across all the subarrays. CaPS-SA sorts these pivots with Merge-Sort and picks the p− 1

equidistant pivots from these as the global pivots. The Merge-Sort amounts to a total
work of O(sp log sp +

∑
Lpi), where Lp is the output LCP-array of the sort. This holds

from Theorem 3.
Collating partitions. The collation step first locates each of the p− 1 pivots in each

of the sorted subarrays using binary search. The length of a pivot suffix is O(n), and
the sorted subarrays are of size n/p. The work of each binary search is O(n + log n/p) in
practice (n = |T |) with the simple-accelerant [18] strategy. For adversarial inputs however,
the work can still be O(n log n/p) in the worst-case. Then the suffix indices are moved into
their appropriate final partitions. This step simply reorders the elements across the sorted
subarrays, and thus requires O(n) total work.

Merging partitions. The Merge-Partition procedure works similar to the Merge-
Sort procedure, except for that the recursion bottoms out at a sorted group of suffixes,
instead of at a single suffix. Unlike the Merge-Sort instances however, each of which
operate on n/p-sized subarrays, the Merge-Partition instances may work on various sizes
of partitions. Theorem 1 provides a bound on the partition sizes.
▶ Theorem 1. With a sampling factor s, every partition has size at most cn/p for some
constant c with high probability.
Proof. The algorithm samples s pivots from each subarray, for a total of sp samples. It then
picks p− 1 evenly spaced pivots (every s’th sample) from the sorted samples to use as global
pivots.

Consider the final location of these sp samples in the final suffix array. Every s’th of
them marks the boundary of a partition. Thus, a partition has size d ≥ cn/p only if fewer
than s of the samples fall into these d suffixes. Otherwise, at least one sample would be
picked as a final pivot and would thus break this partition.

Let SA be the final suffix array, and Xi be a random variable indicating whether SAi

is one of the sp samples. Then Pr[Xi = 1] = sp/n. Thus the random variable denoting
the number of samples picked from a region of size cn/p is X =

∑cn/p
i=1 Xi. By linearity of

expectation, we get E[X] =
∑cn/p

i=1 E[Xi] = cn/pPr[Xi = 1] = cn/p · sp/n = cs. Applying the
Chernoff bound we have:

Pr[X < s] ≤ Pr[X ≤ s] = Pr
[
X ≤ 1

c
E[X]

]
= Pr

[
X ≤

(
1− (1−

1

c
)
)
E[X]

]
≤ exp

(
− 1/2(1− 1/c)2E[X]

)
= exp(−1/2(1− 1/c)2cs) (1)

With s = 32 lnn and letting c ′ = c(1− 1/c)2,

Pr[X < s] ≤ exp
(
− 1/2(1− 1/c)2c · 32 lnn

)
= exp

(
ln(n−16c(1−1/c)2)

)
= 1/n16c ′

Since the event of a partition having size ≥ cn/p implies the event X < s, we get:
Pr[a given partition has size ≥ cn/p] ≤ Pr[X < s] ≤ 1/n16c ′ .⇒ Pr[at least one partition has size ≥ cn/p] ≤

∑p
i=1

1/n16c ′
= p/n16c ′ (by union-bound).⇒ Pr[no partition has size ≥ cn/p] ≥ 1− p/n16c ′ .

Since p is at most O(n), no partition has size ≥ cn/p whp. ◀

Thus each partition has size at most cn/p for some constant c whp. Merging a partition
A with m sorted subgroups has work T(m) = 2T(m/2) + O(m) + C(A), where C(A) is the

WABI 2023

21:10 CaPS-SA

number of symbol comparisons made in Merge. Omitting C(A) from T(m), this solves to
O(cn/p log p) = O(n/p log p) whp.
Total symbol comparisons. A subproblem in the algorithm is some subarray of the
SA that can be processed independently of the other subarrays in a given step. Let X be
some subproblem in either of the two steps: local-sorting and partition-merging. For the
local-sorting case, sorting X with Merge-Sort consists of log n/p recursion-levels. For the
partition-merging case, the Merge-Partition procedure for X executes in log p recursion-
levels. We label the bottom-most level as level 0, and count the levels upwards in the
recursion-tree.

Let x ∈ X be a suffix. At any given level i, x is present in exactly one Merge-Sort
(or Merge-Partition) instance executing on X. Let x ′

i be the suffix that immediately
precedes x in the output of that Merge-Sort (or Merge-Partition) instance, and let
Li(x) = LCP(x, x ′

i). If x is the first suffix in the output, then x ′
i is the empty suffix. We

prove the following.
▶ Theorem 2. In Merge-Sort and Merge-Partition, Li(x) ≤ Li+1(x) for a suffix x at
each recursion level i ∈ [0, d− 1), where d is the depth of the recursion-tree.

Proof. Let x be present in the Merge-Sort (or Merge-Partition) instance M at level
i+ 1, and say M spawns the two instances Ml and Mr. Ml and Mr are at level i, and x is
present in exactly one of them. Let it be Ml.

Now, x ′
i+1 is either x ′

i i.e. the same suffix preceding x in Ml, or some other suffix y from
Mr. If x ′

i+1 = xi, then Li+1(x) = Li(x), and the claim holds.
In the other case, the output array of M has the following form: [. . . , x ′

i, . . . , y, x, . . .].
Suppose that the claim is false, i.e. Li(x) > Li+1(x). Which is, LCP(x, x ′

i) > LCP(x, y).
LCP(x, y) < LCP(x, x ′

i) implies that x ′
i and y share the same prefix of length l = LCP(x, y),

and mismatch first at index l. Let cx, cx ′
i
, and cy be the l’th symbol in x, x ′

i, and y resp. As
y > x ′

i in the output, cy > cx ′
i
. Besides, since x and y first mismatch at the l’th symbol and

x > y, cx > cy. Thus cx > cx ′
i
. LCP(x, x ′

i) > l implies that the l’th symbols in x and x ′
i

are the same, i.e. cx = cx ′
i
. Thus we get cx > cx ′

i
and cx = cx ′

i
, resulting in a contradiction.

Hence, LCP(x, y) ≤ LCP(x, x ′
i). ◀

Theorem 3 provides a bound on the number of total comparisons made across all the
Merge-Sort and Merge-Partition instances in the algorithm execution.
▶ Theorem 3. The total number of symbol comparisons made across all the Merge-Sort
and Merge-Partition instances in CaPS-SA for an n-length text is O(n logn+

∑n−1
i=1 Li

)
w.h.p, where L is the output LCP-array.

Proof. Symbol comparisons occur only as part of the Merge procedure in both Merge-
Sort and Merge-Partition. Given two sorted lists of suffixes X and Y along with their
LCP-arrays, the Merge(X, Y, LX, LY , Z, LZ, T) procedure iterates through the Xi’s and Yj’s
and fills in the Zk’s in the sorted order, along with their LCP-values in LZk. Without loss of
generality, suppose that Xi < Yj is found at some iteration. Then the next iteration compares
Xi+1 and Y. Let lx = LCP(Xi+1, Xi) and m = LCP(Xi, Yj), LCP of the last compared pair.
Symbols from the suffixes Xi+1 and Yj will only be compared iff lx = m holds. In this case,
we compute n = LCP(Xi+1, Yj) with exactly n−m+ 1 symbol comparisons. The +1 term
is due to the first mismatching symbol pair. m is set to n for the next iteration. We argue
that before the new m = n value is assigned as the LCP-value in the output LCP-array LZ
in some future iteration, it remains unchanged.

In the next iteration, if case (1), i.e. lx > m holds, then m remains unchanged. If case
(2), i.e. lx < m holds, then m is assigned at output LZk+1. In the event of case (3), either
lx or m is assigned to LZk+1, and these are equal in this case. If X has been depleted during

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:11

the merge while Y still has remaining elements, the current m is assigned as the LCP-value
for the first of the remaining elements from Y.

Thus, whenever symbol comparisons are done in case (3) of merge, it results in a new
value m ′ ≥ m for the variable m. m = m ′ persists until m ′ has been assigned as the
LCP-value for some merged output. Thus the number of matching symbol comparisons
made in case (3) accumulates in the LCP-values at the output.

All the LCP-values start out with 0 at Merge-Sort. Theorem 2 states that the LCP-
value associated to a given suffix can never decrease while winding up the recursion-trees of
Merge-Sort and Merge-Partition. Thus the sum

∑n−1
i=1 Li of the final LCP-values in the

SA is the total number of matching symbol comparisons made across all the Merge-Sort
and Merge-Partition executions.

The extra mismatching comparison in case (3) of Merge costs O(1). In the worst case,
this case occurs in each iteration of Merge. Omitting the matching symbol comparisons,
a Merge-Sort or a Merge-Partition instance working on m elements incurs T(m) =

2T(m/2) + O(m) mismatches in the worst case. This solves to p × O(n/p log n/p) and
p×O(n/p log p) whp for the p Merge-Sorts and Merge-Partitions, resp. Thus O(n logn)
mismatching symbol comparisons are made whp.

◀

Total work. Locally sorting the p subarrays cost p × O(n/p log n/p) = O(n log n/p) = work
without the symbol comparisons. Omitting the symbol comparisons in sorting the sampled
pivots, the pivot selection step has O(sp log sp) work. In the collation step, there are p(p−1)

binary searches, costing O(p2n log n/p) work in the worst-case, and O(p2
(
n + log n/p)

)
in

practice. Merging the p partitions separately cost p× O(n/p log p) = O(n log p) whp without
the symbol comparisons.

The total number of symbol comparisons in the local-sort and the partitions-merge steps
is O(n logn+

∑n−1
i=1 Li) whp as per Theorem 3, where L is the output LCP-array. In sorting

the sampled suffixes, the number of symbol comparisons done is also bounded by this 2.
We note that the algorithm requires on the order of 4w|T | bytes of working space, where

w ∈ {4, 8} is the numerical size used to store SA and LCP values.

3.2.2 Parallelization Our implementation fully parallelizes the work across the different
partitions. Within a partition, we perform recursive calls to Merge-Sort in parallel, but
perform the Merge procedure serially. We show the following theorem about the depth of
our algorithm:
▶ Theorem 4. The overall depth of the algorithm is O

(
(n/p) logn

)
whp.

Proof. The dominant factor in the merge algorithm is the depth of the Merge routine,
which simply performs a linear number of comparisons in the input size. The depth of a
comparison is O(1) in cases 1 and 2 of Figure 2, and requires a string comparison in the final
case.

The string comparison can be parallelized work-efficiently (i.e., in the same work as a
serial character-by-character comparison) by using a simple prefix-doubling strategy. In
more detail, the comparison algorithm works in rounds comparing 2i characters in the i’th
round until a mismatch occurs. Clearly for strings of length O(n) only O(logn) rounds are
required, and thus the overall work is asymptotically the same as the serial algorithm, and
the depth is O(logn). Thus, for merging two sorted arrays in the algorithm, each of size k,
we require a depth of O(k logn).

2 O(sp log sp+
∑sp

i=1 Lpi) comparisons are performed, where Lp is the LCP-array of the sorted samples.

WABI 2023

21:12 CaPS-SA

Putting these facts together, for a single call to the Merge-Sort routine, we have a
recurrence of the form D(k) = D(k/2) + O(k logn), which is root dominated and solves to
O(k logn). Since our algorithm is parallelized across different partitions, and by Theorem 1
each partition has size at most O(n/p), the overall depth of the algorithm is O((n/p) logn)
whp. ◀

We note that the depth is not poly-logarithmic, as in the classic parallel Merge-Sort.
However, the amount of parallelism generated by our algorithm is more than enough to keep
the processors all busy in practice. Indeed, we note that many samplesort implementations
use a similar strategy in practice and use a serial sort within each partition, and thus also do
not have poly-logarithmic depth in practice. In our implementation, we exploit parallelism
using the parallel primitives and the work-stealing scheduler from ParlayLib [9].
3.2.3 Optimizations We applied a number of optimizations into the implementation of
the algorithm that provide practical speedups. We make use of vectorization support using
AVX instructions from modern processors to speed up the computation of the LCP(X, Y)

routine used in the Merge-procedure and in the binary searches in locating pivots.
In the proposed Merge-Sort and the Merge-Partition procedures in the algorithm, we

have nested parallelism for their recursive invocations. This is applied in the implementation
up-to some fixed granularity, due to the associated overhead of scheduling small tasks.

In the binary searches for the sampled pivots in each sorted subarray, instead of searching
for the appropriate position of an entire pivot suffix, we look for a fixed-length prefix of the
pivot. This helps reduce the total work associated to locating the pivots, with an associated
trade-off with the final partition sizes. With sufficiently large prefix lengths, the partition
sizes do not get significantly affected in our observation.

4 Results
We performed a number of experiments to characterize the performance of the CaPS-SA
algorithm and its implementation. We evaluated its performance compared to the available
implementations of two leading methods for SA construction: Parallel-divsufsort [32]
and Parallel-DC3 [3]. We assessed its ability to construct SA and LCP-arrays on a
number of genomic datasets.

Next, we evaluated the parallel scaling of the algorithm. Then we explore the idea of
Bounded-context suffix arrays, and the performance of CaPS-SA for various prefix-context
lengths.

A varied collection of datasets has been used in the experiments. Table 1 delineates
the pertinent characteristics of the datasets. We follow [46] by removing N-repeats, which
occur when the sequence underlying a region of the assembly cannot be resolved. We verified
the correctness of the implementation by cross-checking its output against from that of
Parallel-divsufsort.
Computation system. The experiments have been performed on a server having two Intel
Xeon E5-2699 2.20 GHz CPUs with 44 cores in total and 512 GB of 2.40 GHz DDR4 RAM.
The system is run with Ubuntu 20.04.4 (GNU/Linux 5.4.0-132-generic x86_64). The SA and
LCP-array construction times and the maximum memory usages of the tools were measured
with the GNU time command. For the large datasets Axolotl genome dataset, we used
machines with two AMD EPYC 7313 CPUs with 32 cores in total and 2 TB of DDR4 RAM,
running on Red Hat Enterprise Linux 8.7 (GNU/Linux 4.18.0-425.19.2.el8_7.x86_64).

4.1 Dataset characteristics

Table 1 provides some pertinent characteristics of the datasets used. The GRCh38 dataset
is the Human Build 38 patch release 13 version of the human genome reference from the

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:13

Genome Reference Consortium3, which is a chromosome-level assembly of the full genome.
The T2T dataset is the latest T2T CHM13v2.0 Telomere-to-Telomere assembly of the CHM13
cell line with chromosome Y from NA24385, from the T2T consortium, which is a complete
genome-level assembly of the genome [40]. Together, these two human datasets represent
what we imagine may be a typical use-case for genome construction in the context of a tool
like STAR [12]. Though largely similar, the CHM13 assembly has resolved telomeric and
centromeric regions, and more complete coverage, specifically in highly-repetitive regions.
Thus, we expect it represents a more challenging problem instance for suffix array construction.

The CdBG (Compacted de Bruijn Graph) dataset is the collection of the maximal unitigs
extracted from the de Bruijn graph (with k-mer size 27) of the human sequencing read
set NIST HG004 (SRA3440461—95) [52] by Cuttlefish 2 [28]. This dataset represents a
potential use-case where one may wish to build an index for the sequence stored in the CdBG
data structure. The ability to index the CdBG has proven useful in many contexts [10],
and the SA can provide one possible index for providing efficient lookup over the sequence
contained in the CdBG.

The great white shark dataset is the genome reference of Carcharodon carcharias [36] and
the axolotl dataset is the genome reference sequence of Ambystoma mexicanum [47]. These
represent large problem instances, where one may wish to build the SA on large reference
genomes.

Table 1 Dataset statistics: number of bases, mean LCP, and standard deviation (rounded to
nearest whole number) of the final LCP-array.

Dataset Size Mean LCP Std. Dev.
of LCP

Human (GRCh38) 2,945,849,068 3,807 72,678
Human (T2T) 3,117,292,071 2,518 61,987

CdBG (Human reads) 3,993,272,308 18 6
Great white shark 4,267,160,925 109 1,192

Axolotl 28,203,219,824 49 160

4.2 SA and LCP-array construction

We evaluate the performance of CaPS-SA in constructing the SA and the LCP-array
of a number of genomic datasets, compared to the SA construction performance of: 1.
Parallel-divsufsort [32] and 2. Parallel-DC3 [3]. Table 2 contains the results of the
benchmarking. As the state-of-the-art sequential benchmark, we note the performance of the
divsufsort implementation from PBBS [3].

We note that CaPS-SA executes significantly faster than the other parallel algorithms
in all the instances, whereas Parallel-divsufsort uses the least amount of memory.
Interestingly for the smaller datasets CaPS-SA does not require much more memory than
Parallel-divsufsort despite constructing both the SA and LCP. Memory usage could
be improved by bit-packing the indexes, or through the extension to an external memory
algorithm.

4.3 Parallel Scaling

In order to assess how sensitive runtime is to parallelism we evaluated CaPS-SA against
Parallel-DC3 and Parallel-divsufsort as the number of threads increased. We

3 https://www.ncbi.nlm.nih.gov/grc

WABI 2023

https://www.ncbi.nlm.nih.gov/grc

21:14 CaPS-SA

Table 2 Time- and memory-performance results for constructing SAs (and LCP-array in case
of CaPS-SA) with 32 threads. divsufsort is shown as a serial benchmark. Time is reported in
seconds, and the memory usages are reported in GBs in parentheses. Best performances among
the parallel algorithms in each instance are highlighted. Parallel-DC3 and divsufsort could not
be run on Axolotl because we could not modify the PBBS code-base to accommodate the large
numerical size.

Dataset CaPS-SA Parallel-divsufsort Parallel-DC3 divsufsort
Human (GRCh38) 131 (47) 173 (32) 250 (110) 273 (17)

Human (T2T) 141 (50) 199 (34) 261 (115) 319 (18)
CdBG (Human reads) 138 (64) 291 (44) 323 (126) 409 (23)

Great white shark 173 (71) 278 (48) 381 (135) 438 (24)
Axolotl 900 (910) 1068 (326) - -

report the results in Figure 3, which illustrated that CaPS-SA exploits parallelism better
— becoming the fastest method as the thread count becomes high despite doing more work
asymptotically.

4 8 12 16 20 24 28 32

200

400

600

800

1000

GRCh38

4 8 12 16 20 24 28 32

200

400

600

800

1000

1200
T2T

4 8 12 16 20 24 28 32

200

400

600

800

1000

1200

1400

CdBG

Av
er

ag
e

tim
e

(s
ec

on
ds

)

Number of Threads
Parallel DC3 Parallel DivSufSort CaPS-SA

Figure 3 Runtimes of CaPS-SA, Parallel-divsufsort, and Parallel-DC3 as thread count
increases for GRCh38, T2T, and CdBG. divsufsort runtime is in red.

On the GRCh38 and T2T datasets, CaPS-SA and Parallel-divsufsort become faster
than divsufsort at around the same number of threads, after which CaPS-SA becomes
faster. On CdBG, CaPS-SA sees gains from parallelism over the best serial program with
approximately half the number of threads. This may be because CdBG has fewer long
common-prefixes, and so CaPS-SA achieves closer to its best-case work.

4.4 Cache Performance

The samplesort-based design of CaPS-SA optimizes cache-performance. In order to evaluate
the empirical cache behavior of CaPS-SA as compared to other algorithms for SA construc-
tion, we profiled the programs on the GRCh38 and the T2T reference genomes. Because
cache-behavior can degenerate as parallelism increases, we evaluate it across 1, 16, and 32
threads. The results in Table 3 show that CaPS-SA outperforms other parallel SA indexing
programs by an order of magnitude. All measurements were taken with the Linux perf
command.

divsufsort is somewhat more cache-efficient than CaPS-SA, but interestingly its
parallelization in Parallel-divsufsort has significantly worse caching performance than
both divsufsort and CaPS-SA. It is possible that incorporating some of the implementation

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:15

Table 3 Cache-miss rates (in %) for compared methods on GRCh38 and T2T datasets with
respect to number of threads. Reported numbers are averaged over 5 runs to obviate operating
system jitter. Lower is better, and the best result is highlighted.

Human (GRCh38) Human (T2T)
Method 1 thr 16 thr 32 thr 1 thr 16 thr 32 thr
CaPS-SA 4.83 4.92 4.99 7.34 7.61 7.81

Parallel-divsufsort 21.98 25.03 26.31 37.38 37.98 38.68
Parallel-DC3 34.75 35.91 37.43 35.04 36.23 37.66

divsufsort 0.93 - - 0.99 - -

details of divsufsort could provide further improvements to the cache-performance of
CaPS-SA.

4.5 Bounded-context SA Construction

By virtue of organizing all suffixes of the underlying text T , the suffix array provides the
powerful ability to efficiently search for query patterns of any length in the text. While this
capability arises naturally from the definition of the SA, such flexibility is rarely needed in
the SA’s most common applications in genomics. Specifically, when used to efficiently find
seed sequences from a genomic read, the maximum length of the query is often very short.
Many modern aligners use seed lengths in the range of 15–31, and even with the maximum
mappable prefix concept used by STAR [12], the query length is bounded above by the
error-free prefix length of the remainder of the read (rarely more than ∼ 100 nucleotides).

As such, indices that can provide efficient lookup and locate queries for patterns less than
some maximum length, say k, are often very useful in this context. For example, the k-BWT
data structure [45, 41, 11] builds a transform of the text that organizes character occurrences
by their bounded context (in this case, their right context of length k). This allows the index
to be built efficiently, since rotations of the text need not have their relative orders resolved
beyond their initial length k contexts, while simultaneously allowing efficient and correct
query for any pattern length ≤ k.

Here, we experiment with an analogous version of the SA— the bounded-context SA.
Specifically, the bounded-context SA of order k resolves the lexicographic order of all suffixes
of the text up to (and including) their prefixes of length k. If a pair of suffixes share a prefix of
length ≥ k, then they may appear in an arbitrary relative order within the bounded-context
SA of order k. Without any meaningful modifications to the query algorithms, this variant
of the SA allows locating all occurrences of queries of any length ≤ k in the text. Such a
variant of the SA is very straightforward to construct using CaPS-SA, as we simply declare
equal any suffixes that are equal up to (or beyond) their length k prefixes. At the same time,
this variant can be more efficient to construct using our algorithm, as the context length k

places a strict upper bound on the number of comparisons we must perform when attempting
to determine the relative order of a pair of suffixes. Specifically, it follows directly from
Theorem 3 that CaPS-SA performs at most O (n logn+ nk) character comparisons, in the
worst case, when constructing the context-bounded SA of order k. In Table 4, we report the
time required to construct the context-bounded SA of orders 64 and 256 of the GRCh38 and
CHM13 human genome assemblies compared to the time required to construct the standard
(full-context) SA. As expected, the bounded-context SA can be constructed substantially
faster than the full-context SA.

5 Conclusion
In this manuscript, we introduced a new method, CaPS-SA, for parallel SA and LCP-
array construction. CaPS-SA displays very good cache performance (i.e. very low cache

WABI 2023

21:16 CaPS-SA

Table 4 Timings (in seconds) in constructing the bounded-context SA with various orders.

Dataset full-context 64 256
Human (GRCh38) 132 104 100

Human (T2T) 144 105 103

miss rate), and scales well to many threads. As a result, CaPS-SA is able to outperform
existing state-of-the-art parallel SA construction algorithms like Parallel-divsufsort and
Parallel-DC3 on genomic datasets. At the same time, CaPS-SA is substantially simpler
than existing state-of-the-art algorithms. This simplicity eases implementation, and leads
to many opportunities for further future improvements. Likewise, CaPS-SA provides the
LCP-array directly as a byproduct of SA construction, and does not require a separate
algorithm to produce this useful auxiliary data structure. We hope that will prove to be
useful in utilities where parallel SA construction is a core subproblem, and also hope that the
relatively straightforward algorithm will benefit from further optimizations, enhancements,
and alternative implementations within the community.

As CaPS-SA scales well with the level of available parallelism, and performs well for
large references, we expect that it will provide a useful option for tools that seek to build the
SA in parallel environments. In addition to the time taken to construct the SA or the LCP

array, another consideration is the memory (specifically the RAM) required for construction.
One approach to improve the memory-scalability of SA construction algorithms is to develop
external-memory construction algorithms. For example, pSAscan [24] is a state-of-the-art
external-memory algorithm for SA construction. Such approaches make use of external-
memory (i.e. disk) and algorithms that access and construct the SA in a structured way are
likely amenable to external-memory variants.

We note that, though we have not explored it in this manuscript, CaPS-SA is highly-
amenable to external memory implementation. This is because the initial partitioning
generates many small subproblems that can be solved independently — i.e. some subproblem
can be paged into RAM while others remain on disk. Pivot sampling from the subproblems can
be done through a similar paging process. Likewise, after pivot selection, many approximately
equal-sized partitions will be created, and these sub-problems, which target specific output
intervals of the final suffix array, can be solved independently and in parallel with the relevant
data for only a working subset of partitions paged into RAM with the remaining partitions
residing on disk. Further, given a sufficiently fine-grained partitioning, the algorithm can likely
provide tight controls on the required working memory. As more RAM use is allowed, a larger
number of partitions will be allowed in RAM at once, and our algorithm will be able to better
make use of available parallelism. On the other hand, as the maximum allowed RAM usage is
restricted, fewer partitions will be present in memory at once, potentially limiting parallelism,
but adhering to the requested RAM constraints. In practice, we believe that, so long as
a sufficiently fine-grained partitioning is used, external-memory variants of our algorithm
will still be able to efficiently make use of many threads while still substantially reducing
the required working memory. We leave the efficient implementation of an external-memory
variant of CaPS-SA to future work.

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. Journal of discrete algorithms, 2(1):53–86, 2004.
2 Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo Shi, Pelin Icer

Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda
Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky, Can Alkan, Onur Mutlu, and Serghei

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:17

Mangul. Technology dictates algorithms: recent developments in read alignment. Genome
Biology, 22(1):249, Aug 2021. doi:10.1186/s13059-021-02443-7.

3 Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and Yihan Sun.
The problem-based benchmark suite (PBBS), v2. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, page 445–447, New
York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3503221.3508422.

4 Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. In-Place Parallel Super
Scalar Samplesort (IPSSSSo). In 25th Annual European Symposium on Algorithms (ESA
2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:14.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.9.

5 Timo Bingmann. Scalable string and suffix sorting: Algorithms, techniques, and tools. arXiv
preprint arXiv:1808.00963, 2018.

6 Timo Bingmann, Patrick Dinklage, Johannes Fischer, Florian Kurpicz, Enno Ohlebusch, and
Peter Sanders. Scalable Text Index Construction, pages 252–284. Springer Nature Switzerland,
Cham, 2022. doi:10.1007/978-3-031-21534-6_14.

7 Timo Bingmann, Andreas Eberle, and Peter Sanders. Engineering parallel string sorting.
Algorithmica, 77:235–286, 2017.

8 Timo Bingmann and Peter Sanders. Parallel string sample sort. In Algorithms–ESA 2013:
21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings
21, pages 169–180. Springer, 2013.

9 Guy E Blelloch, Daniel Anderson, and Laxman Dhulipala. Parlaylib-a toolkit for parallel
algorithms on shared-memory multicore machines. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures, pages 507–509, 2020.

10 Rayan Chikhi, Jan Holub, and Paul Medvedev. Data structures to represent a set of k-long
DNA sequences. ACM Comput. Surv., 54(1), mar 2021. doi:10.1145/3445967.

11 J Shane Culpepper, Matthias Petri, and Simon J Puglisi. Revisiting bounded context block-
sorting transformations. Software: Practice and Experience, 42(8):1037–1054, 2012.

12 Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha,
Philippe Batut, Mark Chaisson, and Thomas R Gingeras. STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 29(1):15–21, 2013.

13 M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 137–143, 1997. doi:10.1109/SFCS.
1997.646102.

14 Johannes Fischer and Florian Kurpicz. Dismantling divsufsort. In Prague Stringology Confer-
ence 2017, page 62, 2017.

15 Johannes Fischer and Florian Kurpicz. Lightweight Distributed Suffix Array Construction, pages
27–38. Society for Industrial and Applied Mathematics, 2019. doi:10.1137/1.9781611975499.
3.

16 Patrick Flick and Srinivas Aluru. Parallel distributed memory construction of suffix and longest
common prefix arrays. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2807591.2807609.

17 W Donald Frazer and Archie C McKellar. Samplesort: A sampling approach to minimal
storage tree sorting. Journal of the ACM (JACM), 17(3):496–507, 1970.

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

19 Scott Hazelhurst and Zsuzsanna Lipták. KABOOM! a new suffix array based algorithm for
clustering expression data. Bioinformatics, 27(24):3348–3355, December 2011.

20 Lucian Ilie, Farideh Fazayeli, and Silvana Ilie. HiTEC: accurate error correction in high-
throughput sequencing data. Bioinformatics, 27(3):295–302, February 2011.

21 Hideo Itoh and Hozumi Tanaka. An efficient method for in memory construction of suffix
arrays. In 6th International Symposium on String Processing and Information Retrieval. 5th
International Workshop on Groupware (Cat. No. PR00268), pages 81–88. IEEE, 1999.

WABI 2023

https://doi.org/10.1186/s13059-021-02443-7
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.4230/LIPIcs.ESA.2017.9
https://doi.org/10.1007/978-3-031-21534-6_14
https://doi.org/10.1145/3445967
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1137/1.9781611975499.3
https://doi.org/10.1137/1.9781611975499.3
https://doi.org/10.1145/2807591.2807609
https://doi.org/10.1017/CBO9780511574931

21:18 CaPS-SA

22 Juha Kärkkäinen and Dominik Kempa. Engineering a lightweight external memory suffix
array construction algorithm. Mathematics in Computer Science, 11:137–149, 2017.

23 Juha Kärkkäinen and Dominik Kempa. Engineering external memory LCP array construction:
Parallel, in-place and large alphabet. In 16th International Symposium on Experimental
Algorithms (SEA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

24 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Parallel external memory suffix
sorting. In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors, Combinatorial Pattern
Matching, pages 329–342, Cham, 2015. Springer International Publishing.

25 Juha Kärkkäinen, Dominik Kempa, Simon J Puglisi, and Bella Zhukova. Engineering external
memory induced suffix sorting. In 2017 Proceedings of the Ninteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 98–108. SIAM, 2017.

26 Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In Automata,
Languages and Programming: 30th International Colloquium, ICALP 2003 Eindhoven, The
Netherlands, June 30–July 4, 2003 Proceedings 30, pages 943–955. Springer, 2003.

27 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
Journal of the ACM (JACM), 53(6):918–936, 2006.

28 Jamshed Khan, Marek Kokot, Sebastian Deorowicz, and Rob Patro. Scalable, ultra-fast, and
low-memory construction of compacted de bruijn graphs with Cuttlefish 2. Genome Biology,
23(1):190, Sep 2022. doi:10.1186/s13059-022-02743-6.

29 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction
of suffix arrays. In Combinatorial Pattern Matching: 14th Annual Symposium, CPM 2003
Morelia, Michoacán, Mexico, June 25–27, 2003 Proceedings 14, pages 186–199. Springer, 2003.

30 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In
Combinatorial Pattern Matching: 14th Annual Symposium, CPM 2003 Morelia, Michoacán,
Mexico, June 25–27, 2003 Proceedings, pages 200–210. Springer, 2003.

31 Fabian Kulla and Peter Sanders. Scalable parallel suffix array construction. Parallel Computing,
33(9):605–612, 2007.

32 Julian Labeit, Julian Shun, and Guy E Blelloch. Parallel lightweight wavelet tree, suffix array
and fm-index construction. Journal of Discrete Algorithms, 43:2–17, 2017.

33 Zhize Li, Jian Li, and Hongwei Huo. Optimal in-place suffix sorting. In String Processing
and Information Retrieval: 25th International Symposium, SPIRE 2018, Lima, Peru, October
9-11, 2018, Proceedings, pages 268–284. Springer, 2018.

34 Gang Liao, Longfei Ma, Guangming Zang, and Lin Tang. Parallel DC3 algorithm for suffix array
construction on many-core accelerators. In 2015 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pages 1155–1158, 2015. doi:10.1109/CCGrid.2015.56.

35 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam
Journal on Computing, 22(5):935–948, 1993.

36 Nicholas J. Marra, Michael J. Stanhope, Nathaniel K. Jue, Minghui Wang, Qi Sun, Paulina Pav-
inski Bitar, Vincent P. Richards, Aleksey Komissarov, Mike Rayko, Sergey Kliver, Bryce J.
Stanhope, Chuck Winkler, Stephen J. O’Brien, Agostinho Antunes, Salvador Jorgensen, and
Mahmood S. Shivji. White shark genome reveals ancient elasmobranch adaptations associated
with wound healing and the maintenance of genome stability. Proceedings of the National
Academy of Sciences, 116(10):4446–4455, 2019. doi:10.1073/pnas.1819778116.

37 Yuta Mori. divsufsort. https://github.com/y-256/libdivsufsort, 2015. Accessed on 1 May
2023.

38 Waihong Ng and Katsuhiko Kakehi. Merging string sequences by longest common prefixes.
IPSJ Digital Courier, 4:69–78, 2008.

39 Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix
array construction. IEEE transactions on computers, 60(10):1471–1484, 2010.

40 Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V Bzikadze, Alla
Mikheenko, Mitchell R Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman, et al. The
complete sequence of a human genome. Science, 376(6588):44–53, 2022.

https://doi.org/10.1186/s13059-022-02743-6
https://doi.org/10.1109/CCGrid.2015.56
https://doi.org/10.1073/pnas.1819778116
https://github.com/y-256/libdivsufsort

J. Khan, T. Rubel, L. Dhulipala, E. Molloy, and R. Patro 21:19

41 Matthias Petri, Gonzalo Navarro, J Shane Culpepper, and Simon J Puglisi. Backwards search
in context bound text transformations. In 2011 First International Conference on Data
Compression, Communications and Processing, pages 82–91. IEEE, 2011.

42 Anton Pirogov, Peter Pfaffelhuber, Angelika Börsch-Haubold, and Bernhard Haubold. High-
complexity regions in mammalian genomes are enriched for developmental genes. Bioinform-
atics, 35(11):1813–1819, 2019.

43 Simon J Puglisi, William F Smyth, and Andrew H Turpin. A taxonomy of suffix array
construction algorithms. acm Computing Surveys (CSUR), 39(2):4–es, 2007.

44 Peter Sanders and Sebastian Winkel. Super scalar sample sort. In Algorithms–ESA 2004:
12th Annual European Symposium, Bergen, Norway, September 14-17, 2004. Proceedings 12,
pages 784–796. Springer, 2004.

45 M. Schindler. A fast block-sorting algorithm for lossless data compression. In Proceedings
DCC ’97. Data Compression Conference, pages 469–, 1997. doi:10.1109/DCC.1997.582137.

46 Anish Man Singh Shrestha, Martin C Frith, and Paul Horton. A bioinformatician’s guide to
the forefront of suffix array construction algorithms. Briefings in bioinformatics, 15(2):138–154,
2014.

47 Jeramiah J Smith, Nataliya Timoshevskaya, Vladimir A Timoshevskiy, Melissa C Keinath,
Drew Hardy, and S Randal Voss. A chromosome-scale assembly of the axolotl genome. Genome
Res., 29(2):317–324, February 2019.

48 Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. essaMEM: finding
maximal exact matches using enhanced sparse suffix arrays. Bioinformatics, 29(6):802–804,
March 2013.

49 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory (swat 1973), pages 1–11, 1973. doi:10.1109/SWAT.1973.13.

50 Yuzhen Ye, Jeong-Hyeon Choi, and Haixu Tang. RAPSearch: a fast protein similarity search
tool for short reads. BMC Bioinformatics, 12(1):159, May 2011.

51 Kaiyuan Zhu, Alejandro A Schäffer, Welles Robinson, Junyan Xu, Eytan Ruppin, A Funda
Ergun, Yuzhen Ye, and S Cenk Sahinalp. Strain level microbial detection and quantification
with applications to single cell metagenomics. Nature Communications, 13(1):6430, 2022.

52 Justin M. Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend Sidow,
Ziming Weng, Yuling Liu, Christopher E. Mason, Noah Alexander, Elizabeth Henaff, Alexa B.R.
McIntyre, Dhruva Chandramohan, Feng Chen, Erich Jaeger, Ali Moshrefi, Khoa Pham, William
Stedman, Tiffany Liang, Michael Saghbini, Zeljko Dzakula, Alex Hastie, Han Cao, Gintaras
Deikus, Eric Schadt, Robert Sebra, Ali Bashir, Rebecca M. Truty, Christopher C. Chang,
Natali Gulbahce, Keyan Zhao, Srinka Ghosh, Fiona Hyland, Yutao Fu, Mark Chaisson, Chunlin
Xiao, Jonathan Trow, Stephen T. Sherry, Alexander W. Zaranek, Madeleine Ball, Jason Bobe,
Preston Estep, George M. Church, Patrick Marks, Sofia Kyriazopoulou-Panagiotopoulou,
Grace X.Y. Zheng, Michael Schnall-Levin, Heather S. Ordonez, Patrice A. Mudivarti, Kristina
Giorda, Ying Sheng, Karoline Bjarnesdatter Rypdal, and Marc Salit. Extensive sequencing
of seven human genomes to characterize benchmark reference materials. Scientific Data,
3(1):160025, June 2016. doi:10.1038/sdata.2016.25.

A Methods

Pseudo-codes for the procedures absent in the main text, Sample-Pivots, Collate-
Partitions, and Compute-Boundary-LCPs are provided in the following.

WABI 2023

https://doi.org/10.1109/DCC.1997.582137
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1038/sdata.2016.25

21:20 CaPS-SA

Sample-Pivots(SA, T, p)

1 s = 32 ln |T | // sampling factor
2 V,V ′,w1,w2 = arrays of size s × p

// sample pivots from each sorted subarray
3 for i ∈ [0, p) in parallel
4 b = im, e = (i + 1)m // range of the i’th subarray
5 sample s pivots from SA[b:e) into V[b:e) w/o replacement

6 V ′ = V
7 Merge-Sort(V,V ′,w1,w2, T)
8 sample (p − 1) pivots from V ′ into V
9 return V

Collate-Partitions(SA, SA ′, L, L ′, V, T, p)

1 P = 2-D array of size p × (p + 1) // Pi,j: location of j’th pivot in i’th subarray

2 m = |T|/p // size of the subarrays
3 for i ∈ [0, p) in parallel // for each sorted subarray
4 b = im, e = (i + 1)m // range of the i’th subarr
5 Pi,0 = 0, Pi,p = m // two sentinel pivots
6 for j ∈ [0, p − 1) // for each pivot
7 Pi,j+1 = Binary-Search(SA[b:e), Vj)

8 S = array of size p
9 for j ∈ [0, p) in parallel

10 Sj =
∑p−1

i=0
(Pi,j+1 − Pi,j) // sum size of the j’th sub-subarrays

11 S = Prefix-Sum-Scan(S) // Sj: index of the j’th partition in the final SA

12 R = 2-D array of size p × (p + 1) // Rj,i: index of the i’th sub-subarray in partition j
13 for j ∈ [0, p) in parallel // for each partition
14 let Y : SA ′

[Sj:Sj+1) // location for partition j

15 Rj,0 = 0
16 for i ∈ [0, p) // for each sorted subarray
17 let A : SA[im,(i+1)m) // i’th subarray
18 let X : A[Pi,j:Pi,j+1) // j’th sub-subarray in A

19 Copy(X, Y[Rj,0:))

20 Rj,i+1 = Rj,i + |X|
21 return (S, R)

Compute-Boundary-LCPs(SA,p, S, L, T)

1 for j ∈ [1, p) in parallel
2 s = SASj

, t = SASj−1

3 LSj
= LCP(T[s:], T[t:])

	1 Introduction
	2 Preliminaries
	3 Methods
	3.1 Parallel SA and LCP-array construction: CaPS-SA
	3.2 Asymptotics
	3.2.1 Work Analysis
	3.2.2 Parallelization
	3.2.3 Optimizations

	4 Results
	4.1 Dataset characteristics
	4.2 SA and LCP-array construction
	4.3 Parallel Scaling
	4.4 Cache Performance
	4.5 Bounded-context SA Construction

	5 Conclusion
	A Methods

