
Fulgor: A fast and compact k-mer index for
large-scale matching and color queries
Jason Fan #�

Department of Computer Science, University of Maryland, College Park, MD 20440, USA

Noor Pratap Singh # �

Department of Computer Science, University of Maryland, College Park, MD 20440, USA

Jamshed Khan #�

Department of Computer Science, University of Maryland, College Park, MD 20440, USA

Giulio Ermanno Pibiri # �

DAIS, Ca’ Foscari University of Venice, Venice, Italy
ISTI-CNR, Pisa, Italy

Rob Patro #�

Department of Computer Science, University of Maryland, College Park, MD 20440, USA

Abstract
The problem of sequence identification or matching — determining the subset of reference

sequences from a given collection that are likely to contain a short, queried nucleotide sequence — is
relevant for many important tasks in Computational Biology, such as metagenomics and pan-genome
analysis. Due to the complex nature of such analyses and the large scale of the reference collections a
resource-efficient solution to this problem is of utmost importance. This poses the threefold challenge
of representing the reference collection with a data structure that is efficient to query, has light
memory usage, and scales well to large collections.

To solve this problem, we describe how recent advancements in associative, order-preserving,
k-mer dictionaries can be combined with a compressed inverted index to implement a fast and
compact colored de Bruijn graph data structure. This index takes full advantage of the fact that
unitigs in the colored de Bruijn graph are monochromatic (all k-mers in a unitig have the same set
of references of origin, or “color”), leveraging the order-preserving property of its dictionary. In fact,
k-mers are kept in unitig order by the dictionary, thereby allowing for the encoding of the map from
k-mers to their inverted lists in as little as 1 + o(1) bits per unitig. Hence, one inverted list per
unitig is stored in the index with almost no space/time overhead. By combining this property with
simple but effective compression methods for inverted lists, the index achieves very small space.

We implement these methods in a tool called Fulgor. Compared to Themisto, the prior state of
the art, Fulgor indexes a heterogeneous collection of 30,691 bacterial genomes in 3.8× less space, a
collection of 150,000 Salmonella enterica genomes in approximately 2× less space, is at least twice
as fast for color queries, and is 2 − 6× faster to construct.

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases k-mers, Colored de Bruijn Graph, Compression, Read-mapping

Related Version bioRxiv version
bioRxiv Version: https://www.biorxiv.org/content/10.1101/2023.05.09.539895v2

Supplementary Material Software (Source Code): https://github.com/jermp/fulgor
Software (Source Code): https://github.com/jermp/fulgor-benchmarks

Funding This work is supported by the NIH under grant award numbers R01HG009937 to R.P.; the
NSF awards CCF-1750472 and CNS-1763680 to R.P., and DGE-1840340 to J.F. Funding for this
research has also been provided by the European Union’s Horizon Europe research and innovation
programme (EFRA project, Grant Agreement Number 101093026).
Conflicts of interest. R.P. is a co-founder of Ocean Genomics Inc.

mailto:jasonfan@umd.edu
https://orcid.org/0000-0000-0000-0000
mailto:npsingh@umd.edu
https://orcid.org/0000-0000-0000-0000
mailto:jamshed@umd.edu
https://orcid.org/0000-0000-0000-0000
mailto:giulioermanno.pibiri@unive.it
https://orcid.org/0000-0003-0724-7092
mailto:rob@cs.umd.edu
https://orcid.org/0000-0001-8463-1675
https://www.biorxiv.org/content/10.1101/2023.05.09.539895v2
https://github.com/jermp/fulgor
https://github.com/jermp/fulgor-benchmarks

Fan et al. 1

1 Introduction

At the core of many metagenomic and pan-genomic analyses is read-mapping, the atomic
operation that assigns observed sequence reads to putative genome(s) of origin. A wide range
of methods have been developed for mapping reads to large collections of reference genomes.
Of note, alignment-based methods, though accurate [20, 23], are relatively computationally
intensive as they must provide the ability to locate the read on each genome. A queried read
must, with low edit-distance, be matched with a sub-string of some reference genome in the
collection. For alignment, the index is also required to report the position of this match. As
a matter of fact, alignment against hundreds or even tens of thousands of reference genomes
can be impractically slow and simply require too much space in practice.

Fortunately, alignment-free techniques have become popular and widespread for metagen-
omic analyses [43, 27, 42, 35, 40, 36]. These methods generally work by avoiding alignment
altogether, and replacing it with strategies for matching (exactly or approximately) sub-
strings, signatures, or sketches between the queries and the referenced sequences. Ideally,
good matching heuristics can assign or match a query against the correct reference with
high precision while also retaining high recall (i.e., being sensitive to sequencing error or
small divergence between the query and the reference). One particular type of alignment-free
method for assigning reads to compatible references that has recently gained substantial
traction is pseudoalignment [6, 39, 37, 21]. While tremendous progress has been made in
supporting alignment-free methods for metagenomic analyses, continued development of ever
more efficient indexing methods is required for such analyses to scale to tens, even hundreds,
of thousands of bacterial reference genomes.

A practical data structure that is suitable for alignment-free matching methods is the
colored de Bruijn graph, a graph where each node corresponds to a k-mer in a reference
collection and is annotated with a color, the set of references in which it occurs. Bifrost [15]
and Metagraph [17] are two efficient approaches that index the colored de Bruijn graph and
support the k-mer-to-color query. Recently, Alanko et al. [2] developed Themisto, an index for
alignment-free matching (and specifically pseudoalignment) that substantially outperforms
these prior methods in the context of indexing and mapping against large collections of
genomes. Compared to Bifrost, Themisto uses practically the same space, but is faster to
build and query. Compared to the fastest variant of Metagraph, Themisto offers similar query
performance, but is much more space-efficient; on the other hand, Themisto is much faster to
query than Metagraph-BRWT, the most-space efficient variant of Metagraph.

1.1 Contributions
We describe how recent advancements in associative, order-preserving, k-mer dictionaries [30,
29] can be combined with a compressed inverted index to implement a fast index over the
colored compacted de Bruijn graph (ccdBG). Leveraging the order-preserving property of its
dictionary, our index takes full advantage of the fact that unitigs in this variant of the ccdBG
are monochromatic — i.e., all k-mers in a unitig have the same set of references of origin, or
“colors”. In fact, k-mers are kept in unitig order, and our index takes advantage of the ability
of our associative dictionary to store the unitigs in any order. Reordering the unitigs so that
all unitigs with the same color are adjacent in the index allows the construction of a map
from k-mers to their corresponding colors that uses only 1 + o(1) bits per unitig. Our index
combines this property with a simple but effective hybrid compression scheme for inverted
lists (colors) to require little space. By storing unitigs and keeping k-mers in unitig order,
our index also supports very fast streaming queries for consecutive k-mers in a read, and

2 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

additionally allows efficient implementation of skipping heuristics that have previously been
suggested to speed up pseudoalignment [6]. We implemented our index in a C++17 tool
called Fulgor, which is available at https://github.com/jermp/fulgor.

Compared to Themisto [2], the prior state of the art, Fulgor indexes a heterogeneous
collection of 30,691 bacterial genomes in 3.8× less space, a collection of 150,000 Salmonella
enterica genomes in approximately 2× less space, is at least twice as fast at query time, and
even 2 − 6× faster to construct.

Perhaps unsurprisingly, the rapid development of novel indexing data structures has been
accompanied by novel and custom strategies for matching and assigning reads to colors
(i.e., reference sets) and algorithms that each make different design choices and trade-offs.
Many of these strategies can be considered as a form of pseudoalignment. Having been
iterated on since its introduction [6], the term “pseudoalignment” has come to describe a
family of efficient heuristics for read-to-color assignment, rather than a single concept or
algorithm. Prior methods have taken either exhaustive approaches that queries every k-mer
on a read (previously termed exact pseudoalignment [21, 2]) or have implemented skipping
based approaches that skip the query of “redundant” consecutive k-mers that likely map to
the same set of reference genomes [6, 13]. To our knowledge, the precise details of the types
of skipping heuristics used in the latter methods — including those adopted by the initial
pseudoalignment method — have been discussed only in passing. Complete details, instead
exist only in the source code of the corresponding tools. To shed light on these algorithms,
we provide a more structured discussion of how these algorithms are designed. Using Fulgor,
we implement two previously proposed variants and benchmark them.

2 Preliminaries

In this section, we first formalize the problem under study here. We then describe a modular
indexing layout that solves the problem using the interplay between two well-defined data
structures. Lastly we describe the properties induced by the problem and how these are
elegantly captured by the notion of colored compacted de Bruijn graph.

2.1 Problem definition
▶ Problem 1 (Colored k-mer indexing problem). Let R = {R1, . . . , RN } be a collection of
references. Each reference Ri is a string over the DNA alphabet Σ = {A, C, G, T}. We
want to build a data structure (referred to as the index) that allows us to retrieve the set
Color(x) = {i|x ∈ Ri} as efficiently as possible for any k-mer x ∈ Σk. Note that Color(x) = ∅
if x does not occur in any reference.

Hence, we call the set Color(x) the color of the k-mer x.

2.2 Modular indexing layout
In principle, Problem 1 could be solved using an old but elegant data structure: the inverted
index [45, 34]. The inverted index, say L, stores explicitly the ordered set Color(x) for each
k-mer x ∈ R. What we want is to implement the map x → Color(x) as efficiently as possible
in terms of both memory usage and query time. To this end, all the distinct k-mers of R
are stored in an associative dictionary data structure, D. Suppose the dictionary D stores n

k-mers. To implement the map x → Color(x), the operation that D is required to support
is Lookup(x) which returns ⊥ if k-mer x is not found in the dictionary or a unique integer
identifier in [n] = {1, . . . , n} if x is found. Problem 1 can then be solved using these two

https://github.com/jermp/fulgor

Fan et al. 3

data structures — D and L — thanks to the interplay between Lookup(x) and Color(x):
logically, the index stores the sets {Color(x)}x∈R in compressed format in the order given by
Lookup(x).

To our knowledge, all prior solutions proposed in the literature that fall under the
“color-aggregative” classification [22], are incarnations of this modular indexing framework
and, as such, require an efficient k-mer dictionary joint with a compressed inverted index.
For example, Themisto [2] makes use of the spectral BWT (or SBWT) data structure [1]
for its k-mer dictionary, whereas Metagraph [17] implements a general scheme to compress
metadata associated to k-mers which is, in essence, an inverted index.

2.3 The colored compacted de Bruijn graph and its properties
Problem 1 has some specific properties that one would like to exploit to implement as
efficiently as possible the modular indexing framework described in Section 2.2. First,
consecutive k-mers share (k − 1)-length overlaps; second, co-occurring k-mers have the same
color. A useful, standard, formalism that describes these properties is the colored compacted
de Bruijn graph (abbreviated “ccdBG”).

Given the collection of references R, the (node-centric) de Bruijn graph (dBG) of R is a
directed graph whose nodes are all the distinct k-mers of R and there is an edge connecting
node u to node v if the (k − 1)-length suffix of u is equal to the (k − 1)-length prefix of v.
We refer to k-mers and nodes in a (node-centric) dBG interchangeably; likewise, a path in a
dBG spells the string obtained by “glueing” together all the k-mers along the path. Thus,
unary (i.e., non-branching) paths in the graph can be collapsed into single nodes spelling
strings that are referred to as unitigs. The dBG arising from this compaction step is called
the compacted dBG (cdBG). Lastly, the colored compacted dBG is obtained by logically
annotating each k-mer x with its color, Color(x), and only collapsing non-branching paths
with nodes having the same color.

Below, we notate n to be the number of distinct k-mers of R and m to be the number of
unitigs {u1, . . . , um} of the ccdBG induced by the k-mers of R. The unitigs of the ccdBG
that we consider have the following key properties.

1. Unitigs are contiguous subsequences that spell references in R. Each distinct k-mer of R
appears once, as sub-string of some unitig of the cdBG. By construction, each reference
Ri ∈ R can be a tiling of the unitigs — a sequence of unitig occurrences that spell
out Ri [11]. Joining together k-mers into unitigs reduces their storage requirements.
In Sections 3.1 and 3.2, we show how this property can be exploited to make indexes
compact. In Section 4, we show how this property can be exploited to make queries fast.

2. Unitigs are monochromatic. The k-mers belonging to the same unitig ui all have the same
color. Thus, we shall use Color(ui) to denote the color of each k-mer x ∈ ui. We note that
this property holds only if one considers k-mers appearing at the start or end of reference
sequences to be sentinel k-mers that must terminate their containing unitig [24, 19, 18],
and that such conventions are not always adopted [15, 8].

3. Unitigs co-occur and share colors. Unitigs often have the same color (i.e., occur in the same
set of references) because they derive from conserved sequences in indexed references that
are longer than the unitigs themselves. We indicate with M the number of distinct color
sets C = {C1, . . . , CM }. Note that M ≤ m and that in practice there are dramatically
more unitigs than there are distinct colors. We use ColorID(ui) = j to indicate that unitig
ui has color Cj . As a consequence, each k-mer x ∈ ui has color Cj .

In this work our goal is to design an index that takes full advantage of these key properties.

4 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

:

<latexit sha1_base64="TDOExPpnSNx7+DOP8BX+V95GB+s=">AAACbXicbVHbSsNAEN3GW623qvikSLCKPkhJRNSXguiLjypWhRrKZjvRpZtN3J1Va/AbfNVP8yv8BTexiK0OLBzOnJk9MxOmgmv0vI+SMzI6Nj5RnqxMTc/MzlXnFy51YhSDJktEoq5DqkFwCU3kKOA6VUDjUMBV2D3O81cPoDRP5AX2Ughieit5xBlFSzXXTdtfb1drXt0rwv0L/D6okX6ctudL5zedhJkYJDJBtW75XopBRhVyJuClcmM0pJR16S20LJQ0Bh1khdsXd8MyHTdKlH0S3YL9XZHRWOteHFplTPFOD+dy8r9cy2B0EGRcpgZBsu+PIiNcTNx8dLfDFTAUPQsoU9x6ddkdVZShXdBAJ8RGRIWG7aLQb6AyEGSCh2AnlEMDPlB1b4Lsme8O8j/yIJPwiE+F7wHFhR9k+Q5ytxV7BX9453/B5U7d36vvnu3UDo/69yiTZbJGtohP9skhOSGnpEkY4eSVvJH30qez5Kw4q99Sp9SvWSQD4Wx+AcAZvkc=</latexit>D1

<latexit sha1_base64="efgeuN2Fq7mcxQrrSoBbR6WGX08=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPUpJS1BdB9MVHFatCDWWzndTFzSbuzlZr8Bt81U/zK/wFN7GIrQ4sHM6cmT0zE6aCa/S8j5IzMjo2PjE5VZ6emZ2bX1hcutKJUQwaLBGJugmpBsElNJCjgJtUAY1DAdfh/Umev+6C0jyRl9hLIYhpR/KIM4qWamyaVm2ztVDxql4R7l/g90GF9OOstVi6uG0nzMQgkQmqddP3UgwyqpAzAS/lW6MhpeyedqBpoaQx6CAr3L64W5Zpu1Gi7JPoFuzviozGWvfi0Cpjind6OJeT/+WaBqODIOMyNQiSfX8UGeFi4uaju22ugKHoWUCZ4tary+6oogztggY6IR5GVGjYLQr9Q1QGgkzwEOyEcmjALlUPJsieeX2Q/5EHmYRHfCp8Dygu/SDLd5C7Ldsr+MM7/wuualV/r1o/r1WOjvv3mCSrZIPsEJ/skyNySs5IgzDCySt5I++lT2fFWXPWv6VOqV+zTAbC2f4Cwh++SA==</latexit>D2
<latexit sha1_base64="AWphupaeUDbhaGDV2uaJdddwxNc=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJJoUV8E0RcfVawKNZTNdlIXN5u4O6vW4Df4qp/mV/gLbmIRWx1YOJw5M3tmJkwF1+h5HyVnaHhkdGx8ojw5NT0zO1eZv9SJUQwaLBGJug6pBsElNJCjgOtUAY1DAVfh3XGev3oApXkiL7CbQhDTjuQRZxQt1VgzrZ211lzVq3lFuH+B3wNV0ovTVqV0ftNOmIlBIhNU66bvpRhkVCFnAl7KN0ZDStkd7UDTQklj0EFWuH1x1y3TdqNE2SfRLdjfFRmNte7GoVXGFG/1YC4n/8s1DUb7QcZlahAk+/4oMsLFxM1Hd9tcAUPRtYAyxa1Xl91SRRnaBfV1QjyIqNCwVRT6B6gMBJngIdgJ5cCAD1TdmyB75vV+/kceZBIe8anw3ae48IMs30Hutmyv4A/u/C+43K75u7X62Xb18Kh3j3GyRFbJJvHJHjkkJ+SUNAgjnLySN/Je+nQWnWVn5VvqlHo1C6QvnI0vxCW+SQ==</latexit>D3

<latexit sha1_base64="cIv6VPfrBI4r7CCcFbbSgYiSz0s=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJJIUV8E0RcfVawKNZTNdlIXN5u4O1utwW/wVT/Nr/AX3MQitjqwcDhzZvbMTJgKrtHzPkrOyOjY+MTkVHl6ZnZufqGyeKUToxg0WCISdRNSDYJLaCBHATepAhqHAq7D+5M8f90FpXkiL7GXQhDTjuQRZxQt1dgwrfpGa6Hq1bwi3L/A74Mq6cdZq1K6uG0nzMQgkQmqddP3UgwyqpAzAS/lW6MhpeyedqBpoaQx6CAr3L64m5Zpu1Gi7JPoFuzviozGWvfi0Cpjind6OJeT/+WaBqODIOMyNQiSfX8UGeFi4uaju22ugKHoWUCZ4tary+6oogztggY6IR5GVGjYKQr9Q1QGgkzwEOyEcmjALlUPJsieeX2Q/5EHmYRHfCp8Dygu/SDLd5C7Ldsr+MM7/wuudmv+Xq1+vls9Ou7fY5KskHWyTXyyT47IKTkjDcIIJ6/kjbyXPp1lZ9VZ+5Y6pX7NEhkIZ+sLxiu+Sg==</latexit>D4

<latexit sha1_base64="Nm2CVrqxHdR8N8+RuxbfF19Sing=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJJIvbwIoi8+qlgVaiib7aQubjZxd1atwW/wVT/Nr/AX3MQitjqwcDhzZvbMTJgKrtHzPkrO0PDI6Nj4RHlyanpmdq4yf6kToxg0WCISdR1SDYJLaCBHAdepAhqHAq7Cu+M8f/UASvNEXmA3hSCmHckjzihaqrFmWjtrrbmqV/OKcP8CvweqpBenrUrp/KadMBODRCao1k3fSzHIqELOBLyUb4yGlLI72oGmhZLGoIOscPvirlum7UaJsk+iW7C/KzIaa92NQ6uMKd7qwVxO/pdrGoz2g4zL1CBI9v1RZISLiZuP7ra5AoaiawFliluvLrulijK0C+rrhHgQUaFhqyj0D1AZCDLBQ7ATyoEBH6i6N0H2zOv9/I88yCQ84lPhu09x4QdZvoPcbdlewR/c+V9wuV3zd2v1s+3q4VHvHuNkiaySTeKTPXJITsgpaRBGOHklb+S99OksOsvOyrfUKfVqFkhfOBtfyDG+Sw==</latexit>D5
<latexit sha1_base64="CclVrsKDUmxLEz+zZVo9XEXzorw=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUoior4Ioi8+qrQq1FA224ku3Wzi7qxag9/gq36aX+EvuEmL2OrAwuHMmdkzM2EquEbP+yw5I6Nj4xOTU+Xpmdm5+crC4pVOjGLQYIlI1E1INQguoYEcBdykCmgcCrgOO6d5/voRlOaJrGM3hSCmd5JHnFG0VGPDtPY3WpWqV/OKcP8Cvw+qpB/nrYXS5W07YSYGiUxQrZu+l2KQUYWcCXgt3xoNKWUdegdNCyWNQQdZ4fbV3bRM240SZZ9Et2B/V2Q01robh1YZU7zXw7mc/C/XNBgdBhmXqUGQrPdRZISLiZuP7ra5AoaiawFliluvLrunijK0CxrohHgUUaFhpyj0j1AZCDLBQ7ATyqEBH6l6MEH2wvcG+R95kEl4wufC94Ci7gdZvoPcbdlewR/e+V9wtVvz92t7F7vV45P+PSbJClkn28QnB+SYnJFz0iCMcPJG3slH6ctZdladtZ7UKfVrlshAOFvfyje+TA==</latexit>D6

<latexit sha1_base64="S7KtX5RzI1a/+Skn1fvwQgFOQsY=">AAACbXicbVHbSsNAEN3Ge71VxSdFglX0QUoior4Ioi8+qrQq1FA224ku3Wzi7qxag9/gq36aX+EvuEmL2OrAwuHMmdkzM2EquEbP+yw5I6Nj4xOTU+Xpmdm5+crC4pVOjGLQYIlI1E1INQguoYEcBdykCmgcCrgOO6d5/voRlOaJrGM3hSCmd5JHnFG0VGPDtA42WpWqV/OKcP8Cvw+qpB/nrYXS5W07YSYGiUxQrZu+l2KQUYWcCXgt3xoNKWUdegdNCyWNQQdZ4fbV3bRM240SZZ9Et2B/V2Q01robh1YZU7zXw7mc/C/XNBgdBhmXqUGQrPdRZISLiZuP7ra5AoaiawFliluvLrunijK0CxrohHgUUaFhpyj0j1AZCDLBQ7ATyqEBH6l6MEH2wvcG+R95kEl4wufC94Ci7gdZvoPcbdlewR/e+V9wtVvz92t7F7vV45P+PSbJClkn28QnB+SYnJFz0iCMcPJG3slH6ctZdladtZ7UKfVrlshAOFvfzD2+TQ==</latexit>D7

<latexit sha1_base64="K8X2GzXRE8mHknLL2TiVbj+r8vk=">AAACbXicbVHbSsNAEN3GW623qvikSLCKPkhJRNSXguiLjypWhRrKZjvRpZtN3J1Va/AbfNVP8yv8BTexiK0OLBzOnJk9MxOmgmv0vI+SMzI6Nj5RnqxMTc/MzlXnFy51YhSDJktEoq5DqkFwCU3kKOA6VUDjUMBV2D3O81cPoDRP5AX2Ughieit5xBlFSzXXTTteb1drXt0rwv0L/D6okX6ctudL5zedhJkYJDJBtW75XopBRhVyJuClcmM0pJR16S20LJQ0Bh1khdsXd8MyHTdKlH0S3YL9XZHRWOteHFplTPFOD+dy8r9cy2B0EGRcpgZBsu+PIiNcTNx8dLfDFTAUPQsoU9x6ddkdVZShXdBAJ8RGRIWG7aLQb6AyEGSCh2AnlEMDPlB1b4Lsme8O8j/yIJPwiE+F7wHFhR9k+Q5ytxV7BX9453/B5U7d36vvnu3UDo/69yiTZbJGtohP9skhOSGnpEkY4eSVvJH30qez5Kw4q99Sp9SvWSQD4Wx+ATmQvoM=</latexit>D<

<latexit sha1_base64="ccFKRjLSyGzwOffhbFF22sxLVhk=">AAACdXicbVFNTxsxEHW2H4T0C+gRVVo1adVDle5GCLggIeDQI60IICUWmnVmwYrXu9izoamV38G1/Vn8Eq71LlHVhI5k6enNG/vNc1IoaSmK7hrBk6fPnq80V1svXr56/WZtfePU5qUR2Be5ys15AhaV1NgnSQrPC4OQJQrPkvFh1T+boLEy1yc0LZBncKllKgWQp3hnmAFdCVDuaNa5WGtH3aiu8DGI56DN5nV8sd74PhzlosxQk1Bg7SCOCuIODEmhcNYalhYLEGO4xIGHGjK03NWuZ+EHz4zCNDf+aApr9t8JB5m10yzxysqkXe5V5P96g5LSXe6kLkpCLR4eSksVUh5WEYQjaVCQmnoAwkjvNRRXYECQD2rhJqK9FJTFz/VgvEemRO6UTNBvqJcWnIC5Lrn7KbcW+b9y7jTe0I/a94LiJOauyqBy2/K/EC9n/hic9rrxdnfrW6+9fzD/jybbZO/ZJxazHbbPvrJj1meCXbNb9ov9btwH74JO8PFBGjTmM2/ZQgVf/gDwmMIE</latexit>D

0

0

1

1

0
0

1

1

<latexit sha1_base64="X0q4ORIdR9W1OZAMFhPqpFBGo6s=">AAACa3icbVHbSsNAEN3GW63X6pv6EKwFH6QkIupLQfTFR2+thTbIZjtpFzebuDup1uAn+Krf5kf4D25iEVsdWDicOTN7ZsaPBdfoOB8Fa2p6ZnauOF9aWFxaXlktrzV1lCgGDRaJSLV8qkFwCQ3kKKAVK6ChL+DWvz/L8rcDUJpH8gaHMXgh7UkecEbRUNc7pzt3qxWn5uRh/wXuCFTIKC7uyoWrTjdiSQgSmaBat10nRi+lCjkT8FLqJBpiyu5pD9oGShqC9tLc64tdNUzXDiJlnkQ7Z39XpDTUehj6RhlS7OvJXEb+l2snGBx7KZdxgiDZ90dBImyM7Gxwu8sVMBRDAyhT3Hi1WZ8qytCsZ6wTYj2gQsNeXujWUSXgpYL7YCaUEwMOqHpIvPSZH4zzP3IvlfCIT7nvMcWN66XZDjK3JXMFd3Lnf0Fzv+Ye1g4u9ysnp6N7FMkm2Sa7xCVH5ISckwvSIIz0yCt5I++FT2vd2rC2vqVWYVSzTsbCqn4B6QS9cA==</latexit>

⌫

:

<latexit sha1_base64="Qp2aY0gQt/qltItb6ySjS5yOJbo=">AAACdXicbVFNTxsxEHW2H4T0C+gRVVo1adVDle5GCLggIbhw6IFWBJASC806s2DF613s2dDUyu/g2v4sfgnXepeoakJHsvT05o395jkplLQURXeN4MnTZ89XmqutFy9fvX6ztr5xavPSCOyLXOXmPAGLSmrskySF54VByBKFZ8n4sOqfTdBYmesTmhbIM7jUMpUCyFO8M8yArgQo93XWuVhrR92orvAxiOegzeZ1fLHe+D4c5aLMUJNQYO0gjgriDgxJoXDWGpYWCxBjuMSBhxoytNzVrmfhB8+MwjQ3/mgKa/bfCQeZtdMs8crKpF3uVeT/eoOS0l3upC5KQi0eHkpLFVIeVhGEI2lQkJp6AMJI7zUUV2BAkA9q4SaivRSUxc/1YLxHpkTulEzQb6iXFpyAuS65+ym3Fvm/cu403tCP2veC4iTmrsqgctvyvxAvZ/4YnPa68XZ361uvvX8w/48m22Tv2ScWsx22z47YMeszwa7ZLfvFfjfug3dBJ/j4IA0a85m3bKGCL38AAN/CDA==</latexit>L
<latexit sha1_base64="1B4stMMtv4Upbr3C2EG6jL28sIo=">AAACbXicbVHbSsNAEN3Ge71W8UmRYBV9kJKUor4Ioi8+qlhbqKFstpN2cbOJu5NqDX6Dr/ppfoW/4CYWsdWBhcOZM7NnZvxYcI2O81GwJianpmdm54rzC4tLyyul1VsdJYpBnUUiUk2fahBcQh05CmjGCmjoC2j49+dZvtEHpXkkb3AQgxfSruQBZxQNVd85b7s77ZWyU3HysP8CdwjKZBiX7VLh+q4TsSQEiUxQrVuuE6OXUoWcCXgp3iUaYsruaRdaBkoagvbS3O2LvWuYjh1EyjyJds7+rkhpqPUg9I0ypNjT47mM/C/XSjA49lIu4wRBsu+PgkTYGNnZ6HaHK2AoBgZQprjxarMeVZShWdBIJ8STgAoNB3mhe4IqAS8V3AczoRwbsE/VQ+Klz7w2yv/IvVTCIz7lvkcUN66XZjvI3BbNFdzxnf8Ft9WKe1ipXVXLp2fDe8ySDbJN9olLjsgpuSCXpE4Y4eSVvJH3wqe1bm1aW99SqzCsWSMjYe19AVqJvhU=</latexit>

⇠1
<latexit sha1_base64="nV5NGpcnMwt0+L7Ow/45vZnAiKM=">AAACbXicbVHbSsNAEN3GW613xSdFglX0QUpSivpSEPviYxWrQg1ls53Uxc0m7k6qNfgNvuqn+RX+gptYxFYHFg5nzsyemfFjwTU6zkfBmpicmp4pzpbm5hcWl5ZXVq90lCgGLRaJSN34VIPgElrIUcBNrICGvoBr/76R5a/7oDSP5CUOYvBC2pM84IyioVo7jU51p7NcdipOHvZf4A5BmQyj2VkpXNx2I5aEIJEJqnXbdWL0UqqQMwEvpdtEQ0zZPe1B20BJQ9Bemrt9sXcN07WDSJkn0c7Z3xUpDbUehL5RhhTv9HguI//LtRMMjr2UyzhBkOz7oyARNkZ2Nrrd5QoYioEBlCluvNrsjirK0CxopBNiPaBCw0Fe6NZRJeClgvtgJpRjA/apeki89JnXRvkfuZdKeMSn3PeI4tL10mwHmduSuYI7vvO/4KpacQ8rtfNq+eR0eI8i2SDbZJ+45IickDPSJC3CCCev5I28Fz6tdWvT2vqWWoVhzRoZCWvvC1yPvhY=</latexit>

⇠2
<latexit sha1_base64="l0NtWflgvs12vxBr4U2y0HHZoPg=">AAACbXicbVHbSsNAEN3GW63XKj4pEqyiD1ISLeqLIPriYxWrQg1ls53Uxc0m7k6qNfgNvuqn+RX+gpu0iK0OLBzOnJk9M+PHgmt0nM+CNTY+MTlVnC7NzM7NLyyWl651lCgGDRaJSN36VIPgEhrIUcBtrICGvoAb/+Esy990QWkeySvsxeCFtCN5wBlFQzU2z1r7m63FilN18rD/AncAKmQQ9Va5cHnXjlgSgkQmqNZN14nRS6lCzgS8lu4SDTFlD7QDTQMlDUF7ae721d4yTNsOImWeRDtnf1ekNNS6F/pGGVK816O5jPwv10wwOPJSLuMEQbL+R0EibIzsbHS7zRUwFD0DKFPceLXZPVWUoVnQUCfE44AKDbt5oXuMKgEvFdwHM6EcGbBL1WPipS+8Nsz/yL1UwhM+576HFFeul2Y7yNyWzBXc0Z3/Bdd7VfegWrvYq5ycDu5RJKtkg+wQlxySE3JO6qRBGOHkjbyTj8KXtWKtWet9qVUY1CyTobC2vwFelb4X</latexit>

⇠3

:
<latexit sha1_base64="F/+fB8eIZaNKEoEjmQMP0nz6rpo=">AAACbXicbVHbSsNAEN3GW63XKj4pEqyiD1ISKeqLIPrii1DFqlBD2WwndXGzibuTag1+g6/6aX6Fv+AmLWKrAwuHM2dmz8z4seAaHeezYI2NT0xOFadLM7Nz8wuL5aVrHSWKQYNFIlK3PtUguIQGchRwGyugoS/gxn84zfI3XVCaR/IKezF4Ie1IHnBG0VCNzdPW+WZrseJUnTzsv8AdgAoZRL1VLlzetSOWhCCRCap103Vi9FKqkDMBr6W7RENM2QPtQNNASUPQXpq7fbW3DNO2g0iZJ9HO2d8VKQ217oW+UYYU7/VoLiP/yzUTDA69lMs4QZCs/1GQCBsjOxvdbnMFDEXPAMoUN15tdk8VZWgWNNQJ8SigQsNuXugeoUrASwX3wUwoRwbsUvWYeOkLrw3zP3IvlfCEz7nvIcWV66XZDjK3JXMFd3Tnf8H1XtXdr9Yu9irHJ4N7FMkq2SA7xCUH5JickTppEEY4eSPv5KPwZa1Ya9Z6X2oVBjXLZCis7W+TMb4x</latexit>

⇠"

<latexit sha1_base64="6hDiHWihPXLY12sAAFQXyPJQJ50=">AAACa3icbVHbSsNAEN3Ee71W39SHYC34ICURUV8Koi8+eqsKNZTNdtIubjZxd1Jbg5/gq36bH+E/uIlFbHVg4XDmzOyZmSARXKPrflj2xOTU9MzsXGl+YXFpeaW8eqPjVDFosFjE6i6gGgSX0ECOAu4SBTQKBNwGD6d5/rYHSvNYXuMgAT+iHclDziga6mq7v91aqbg1twjnL/CGoEKGcd4qW5f37ZilEUhkgmrd9NwE/Ywq5EzAS+k+1ZBQ9kA70DRQ0gi0nxVeX5yqYdpOGCvzJDoF+7sio5HWgygwyohiV4/ncvK/XDPF8MjPuExSBMm+PwpT4WDs5IM7ba6AoRgYQJnixqvDulRRhmY9I50Q6yEVGnaLQq+OKgU/EzwAM6EcG7BH1WPqZ898f5T/kfuZhCfsF75HFNeen+U7yN2WzBW88Z3/BTd7Ne+gtn+xVzk+Gd5jlmyQLbJDPHJIjskZOScNwkiHvJI38m592mv2ur35LbWtYc0aGQm7+gVWV72m</latexit>G
<latexit sha1_base64="1K2saIHmD5wb0mwDUtC8g8vYmF0=">AAACfXicbVFNS8NAEN3G7/pV9eglWAUPUhIR9SIU9aA3FatCG8pmO6mLm03cnVTr0t/iVX+Sv0Y3sYitDiw83ryZnXkTpoJr9LyPkjMxOTU9MztXnl9YXFqurKze6CRTDBosEYm6C6kGwSU0kKOAu1QBjUMBt+HDSZ6/7YHSPJHX2E8hiGlX8ogzipZqV9Y2WwjPqCPTkBx59/x0sNmuVL2aV4T7F/hDUCXDuGivlK5anYRlMUhkgmrd9L0UA0MVciZgUG5lGlLKHmgXmhZKGoMOTDH9wN2yTMeNEmWfRLdgf1cYGmvdj0OrjCne6/FcTv6Xa2YYHQaGyzRDkOz7oygTLiZuboXb4QoYir4FlCm7PXPZPVWUoTVspBPiUUSFhp2i0D9ClUFgBA/BbijHFuxR9ZgF5oXvjfI/8sBIeMLnYu4RxbUfmNyDfNqyvYI/7vlfcLNb8/dre5e71frx8B6zZJ1skG3ikwNSJ2fkgjQII33ySt7Ie+nT2XJ2nNq31CkNa9bISDgHX4aOxO4=</latexit>

UnitigID

<latexit sha1_base64="icWyecDEbRzEUCo/CbcqNbwUdnI=">AAACfHicbVHRSiMxFE1HXbW6a6uPvgy2gqBbZkSqL4KoD/qmi1WhHUomvaPBTGZM7mhr6K/4qr/kz4iZsci2eiFwOPfc5NyTMBVco+e9lZyp6Zlfs3Pz5YXF33+WKtXlS51kikGLJSJR1yHVILiEFnIUcJ0qoHEo4Cq8O8r7Vw+gNE/kBQ5SCGJ6I3nEGUVLdSvL9Q5CH3VkCu3p8bDerdS8hleU+x34I1AjozrrVkv/Or2EZTFIZIJq3fa9FANDFXImYFjuZBpSyu7oDbQtlDQGHZjC/NBdt0zPjRJlj0S3YP+fMDTWehCHVhlTvNWTvZz8qdfOMNoLDJdphiDZ50NRJlxM3DwJt8cVMBQDCyhT3Hp12S1VlKHNa+wmxP2ICg1bxaC/jyqDwAgegt1QTiz4QNV9FpgnvjPOf8kDI+ER+4XvMcWFH5g8g9xt2f6CP5n5d3C53fCbjZ3z7drB4eg/5sgqWSMbxCe75ICckDPSIoz0yTN5Ia+ld6fubDp/P6VOaTSzQsbKaX4AdPrEcw==</latexit>

ColorID

Figure 1 A schematic picture of the index described in Section 3, highlighting the interplay
between the k-mer dictionary D, the bit-vector B, and the inverted index L. The red arrows show
how the index is queried for a k-mer x, assuming that x occurs in unitig u6 and has color C3. The
k-mer x is first mapped by D to its unitig u6 via the query UnitigID(x) = 6. Then we compute
ColorID(u6) = Rank1(6, B) + 1 = 2 + 1 = 3 and lastly retrieve C3 from L.

3 Index description

In this section we describe a modular index that implements a colored compacted de Bruijn
graph (ccdBG) and fully exploits its properties described in Section 2.3. We adopt the
modular indexing framework from Section 2.2 — comprising a k-mer dictionary D and an
inverted index L — to work seamlessly over the unitigs of the ccdBG. We extend the ideas
from Fan et al. [11] for the modular indexing of k-mer positions to k-mer colors.

Our strategy is to first map k-mers to unitigs using a dictionary D, and then map unitigs
to their colors C = {C1, . . . , CM }. By composing these mappings, we obtain an efficient
map directly from k-mers to their associated colors. The colors themselves in C are stored
in compressed form in a inverted index L. Figure 1 offers a pictorial overview of how we
orchestrate these different components in the index. The goal of this section is to describe
how these mapping steps can be performed efficiently and in small space.

3.1 The k-mer dictionary: mapping k-mers to unitigs with SSHash
For a k-mer dictionary, we use the SSHash data structure [30, 29], which fulfills the requirement
described in Section 2.2, in that it implements the query Lookup(x) for any k-mer x efficiently
and in compact space. This is achieved by storing the unitigs explicitly (i.e., as contiguous,
2-bit encoded strings) in some prescribed order so that a k-mer x occurring in some unitig
ui can be quickly located using a minimal perfect hash function [32] built for the set of the
minimizers [38] of the k-mers. Laying out unitigs in this principled manner also enables very
efficient streaming query. That is, when querying consecutive k-mers from input reads, the
query for a given k-mer can often be answered very efficiently given the query result from its
predecessor, since it often shares the same minimizer and frequently even occupies the very
next position on the same unitig as its predecessor. We refer the interested reader to [30, 29]

Fan et al. 5

for a complete overview of SSHash.
Even more importantly for our purposes, a query into the SSHash dictionary returns,

among other quantities, UnitigID(x) = i, the ID of the unitig containing the k-mer x, as
a byproduct of Lookup(x). For any k-mer occurring in R, UnitigID(x) = i is an integer in
[1..m]. This map from k-mers to unitigs will be exploited in the subsequent sections.

3.2 Mapping unitigs to colors
Now that we have an efficient map from k-mers to unitigs, i.e., the operation UnitigID(x),
we must subsequently map unitigs to distinct colors. That is, we have to describe how to
implement the operation ColorID(ui) for each unitig ui. Since each ColorID(ui) is an integer in
[1..M], we could implement ColorID(ui) just by storing ColorID(u1), . . . , ColorID(um) explicitly
in an array of ⌈log2(M)⌉-bit integers. We show how to do this in just 1 + o(1) bits per unitig
rather than ⌈log2(M)⌉ bits per unitig.

We do so by exploiting another key property of SSHash: the unitigs it stores internally
can be permuted in any desired order without impacting the correctness or efficiency of the
dictionary. This was already noted and exploited in [29] to compress k-mer abundances.
Similarly, here we sort the unitigs by ColorID(ui), so that all the unitigs having the same
color are stored consecutively in SSHash. To compute ColorID(ui), all that is now required is
a Rank1 query over a bit-vector B[1..m] where:

B[i] = 1 if ColorID(ui) ̸= ColorID(ui+1) and B[i] = 0 otherwise, for 1 ≤ i < m;
B[m] = 1.

It follows that B has exactly M bits set. The operation Rank1(i, B) returns the number of
ones in B[1, i) and can be implemented in O(1) time, requiring only o(m) additional bits as
overhead on top of the bit-vector [41, 31]. This means that ColorID(ui) can be computed in
O(1) as Rank1(i, B) + 1.

We illustrate this unitig to color ID mapping in Figure 1. In this toy example, ColorID(u6) =
3 can be computed with Rank1(6, B) + 1 = 2 + 1 because there are two bits set in B[1, 6) —
each marking where previous groups of unitigs with the same color end. Therefore, according
to B, unitigs {u1, u2, u3} all have the same color as also {u5, u6, u7}; u4’s color is not shared
by any other unitig instead.

3.3 Compressing the colors
The inverted index L is a collection of sorted integer sequences {C1, . . . , CM }, whose integers
are drawn from a universe of size N (the total number of references in the collection R).
There is a plethora of different methods that may be used to compress integer sequences
(see, e.g., the survey [34]). Testing the many different techniques available on genomic data
is surely an interesting benchmark study to carry out. Here, however, we choose to adopt a
simple strategy based on the widespread observation that effective compression appears to
require using different strategies based on the density of the sequence Ci to be compressed
(ratio between |Ci| and N) [34]. For example, for the colored k-mer indexing problem, Alanko
et al. also observe and report highly skewed distributions of color densities [2].

We therefore implement the following hybrid compression scheme:
1. For a sparse color set Ci where |Ci|/N < 0.25, we adopt a delta-gap encoding: the

differences between consecutive integers are computed and represented via the universal
Elias’ δ code [10].

2. For a dense color set Ci where |Ci|/N > 0.75, we first take the complementary set of Ci,
that is, the set Ci = {j ∈ [1..N]|j /∈ Ci}, and then compress Ci as explained in 1. above.

6 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

3. Finally, for a color set Ci, that does not fall into either above density categories, we store
a characteristic bit-vector encoding of Ci — a bit-vector b[1..N] such that b[j] = 1 if
j ∈ Ci and b[j] = 0 otherwise.

The compressed representations of all sequences are then concatenated into a single bit-vector,
say sequences. An additional sorted sequence, offsets[1..M], is used to record where each
sequence begins in the bit-vector sequences, so that the compressed representation of the i-th
sequence begins at the bit-position offsets[i] in sequences, 1 ≤ i ≤ M . The offsets sequence
is compressed using the Elias-Fano encoding [9, 12] and takes only a (very) small part of the
whole space of L unless the sequences are very short.

This hybrid encoding scheme is similar in spirit to the one also used in Themisto which,
in turn, draws inspiration from Roaring bitmaps [7]. However, our choice of switching to
the complementary set when |Ci| approaches N turns out to be a very effective strategy,
especially for pan-genome data, where a striking fraction of integers in L are indeed covered
by these extremely dense sets (see also Table 4 from Section 5).

3.4 Construction
Fulgor is constructed by directly processing the output of GGCAT [8], an efficient algorithm to
build ccdBGs using external memory and multiple threads. Importantly, GGCAT provides the
ability to iterate over unitigs grouped by color. Therefore, Fulgor construction just requires a
single scan of the unitigs in the order given by GGCAT. SSHash is built on the set of unitigs,
each distinct color is compressed as described in Section 3.3, and the bit-vector B is also
built during the scan.

4 Pseudoalignment algorithms

The term pseudoalignment, originally coined by Bray et al. [6] and developed in the context of
RNA-seq quantification, has been used to describe many different algorithms and approaches,
several of which do not actually comport with the original definition. Specifically, Bray et
al. [6] define a “pseudoalignment of a read to a set of transcripts, T” as “a subset, S ⊆ T ,
without specific coordinates mapping each base in the read to specific positions in each of the
transcripts in S”. The goal of such an approach then becomes to determine, for a given read,
the set of indexed reference sequences with which the read is compatible, where, in the most
basic scenario, the compatibility relation can be determined entirely by the presence/absence
of k-mers in the read in specific references.

Given any index of k-mer colors, a variety of different pseudoalignment algorithms can
be implemented that rapidly map given reads to compatible reference sequences according to
a set of heuristics. Below, we review four pseudoalignment algorithms and describe their
properties. Various existing tools implement a subset of these pseudoalignment strategies
and Fulgor implements all four. These algorithms fall into two categories: (1) exhaustive
methods that retrieves the color of every k-mer on a given read (as described in [2]), and (2)
skipping heuristics that skip or jump over k-mers during pseudoalignment that are likely to
be uninformative (i.e., to have the same color as the k-mer that was just queried).

4.1 Exhaustive methods
For a given query sequence Q, exhaustive approaches return colors with respect to a set of
k-mers of Q, K(Q), that map to a non-empty color (i.e., each k-mer x ∈ K(Q) if found in
the dictionary D).

Fan et al. 7

Full-intersection. The first of the two exhaustive approaches, the full-intersection method,
simply returns the intersection between all the colors of the k-mers in K(Q). Algorithm 1
in the Appendix (page 20) shows how this query mode is implemented in Fulgor. In the
current implementation, Fulgor has a generic intersection algorithm that can work over any
compressed color sets, provided that an iterator over each color supports two primitives —
Next and NextGEQ(x), respectively returning the integer immediately after the one currently
pointed to by the iterator and the smallest integer which larger-than or equal-to x. (We
point the reader to [26] and [34] for details.)

Threshold-union. The second algorithm, which we term the threshold-union approach,
relaxes the full-intersection method to trade off precision for increased recall. Instead of
requiring a reference to be compatible with all mapped k-mers, the threshold-union method
requires a reference to be compatible with a user defined proportion of k-mers. Given a
parameter τ ∈ (0, 1], this method returns the set of references that occur in at least s · τ

returned (i.e., non-empty) k-mer colors, where s can be either chosen to be s = |K(Q)|
(the number of positive k-mers only) or s = |Q| − k + 1 (the total number of k-mers in Q).
Themisto [2] implements the variant with s = |K(Q)| (called the “hybrid” method), whereas
both Bifrost [15] and Metagraph [17] use s = |Q| − k + 1. In fact, the latter approach of
simply looking up all of the k-mers in a query, and requiring a specified fraction of them
to match, is a long-standing strategy that predates the notion of pseudoalignment [44, 43].
In the following, we assume s = |K(Q)| is used by the threshold-union algorithm, unless
otherwise specified. The pseudocode for this query mode is given in Algorithm 3 in the
Appendix (page 21).
In practice, both the aforementioned exhaustive methods are efficient to compute for two
reasons. First, intersections, thresholding, and unions are easy to compute because colors are
encoded as monotonically increasing lists of reference IDs. Second, for Fulgor in particular,
querying every k-mer for its color can be performed in a highly-optimized way via streaming
queries to SSHash. In the streaming setting, SSHash may skip comparatively slow hashing
and minimizer lookup operations because it stores unitig sequences contiguously in memory.
When sequentially querying adjacent k-mers on a read that are also likely adjacent on indexed
unitigs, it can rapidly lookup and check k-mers that are cached and adjacent in memory (we
refer the reader to [30] for more details).

4.2 Skipping heuristics
For even faster read mapping, pseudoalignment algorithms can implement heuristic skipping
approaches that avoid exhaustively querying all k-mers on a given read. These skipping
heuristics make the assumption that whenever a k-mer on a read is found to belong to a
unitig, subsequent k-mers will likely map to the same unitig and can therefore be skipped,
since they will be uninformative with respect to the final color assigned to the query (i.e.,
the intersection of the colors of the mapped k-mers).

Bray et al. [6] first described such an approach, where a successful search that returns
a unitig u triggers a skip that moves the search position forward to either the end of the
query or the implied distance to the end of u (whichever is less). Subsequent searches follow
the same approach as new unitigs are discovered and traversed in the query. Later, other
tools extended or modified the proposed skipping heuristics, and introduced “structural
constraints”, which take into account the co-linearity and spacing between matched seeds on
the query and on the references to which they map [13]. In contrast to Themisto, Fulgor has
rapid access to the topology of the ccdBG because its k-mer dictionary, SSHash, explicitly

8 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

C. Jump and find k-mer from unexpected unitig

Next queried k-mer

Jump with expectation

Queried k-mer

Input read

B. Jump and find k-mer not in indexed references

𝑥! 𝑥"

Find next
bookending k-mer‘Back-off’ Query next k-meror or

𝑥! 𝑥"

‘Back-off’ Query next k-meror

A. Jump and find k-mer from expected unitig

𝑥! 𝑥"

Query next k-mer

Skip k-mers

Find k-mers bookending unitig sequence

Figure 2 Some relevant design choices for pseudoalignment with skipping heuristics that jump
and skip k-mers on a given read. After k-mer x1 is queried and found to map to a “black” unitig,
an algorithm can jump to query the k-mer x2 on input read, where the number of k-mers skipped
is given by the length of the black unitig. (A) In the ideal scenario, x2 maps to the black unitig
sequence and k-mers x1 and x2 are found to bookend this unitig sequence as it appears on the read.
(B) If x2 misses the index, an algorithm can back-off to an earlier k-mer on the read to find a k-mer
bookending a shorter subsequence of the black unitig; or it may just query the next k-mer. (C) If
x2 maps to a different “red” unitig, an algorithm has an alternative, aggressive, heuristic option to
jump and find the next k-mer bookending the red unitig sequence.

maps k-mers to unitig sequences that are stored contiguously in memory. Fulgor thus permits
efficient implementation of pseudoalignment algorithms with skipping heuristics since, due
to the underlying capabilities provided by SSHash, it can rapidly find k-mers bookending
unitig substrings because SSHash can explicitly map k-mers to their offsets (positions) in
indexed unitig sequences.

In general, pseudoalignment methods that implement skipping heuristics must specify
what steps the algorithm will take in all scenarios, not just what should happen when
search proceeds as expected. In practice, implementations for resolution strategies are
complicated and difficult to describe succinctly in prose, and prior work has only discussed
these important details in passing. Here, using the depicted scenarios in Figure 2, we provide
a more structured (though certainly not exhaustive) discussion of possible design choices
that can be made. These design choices impact the performance of the pseudoalignment
algorithm, both in terms of how many k-mers it queries (and, hence, its speed), and in how
many distinct color sets it collects (and, hence, the actual compatibility assignment it makes).

Jump and find k-mer in expected unitig. Before the first matching k-mer of a read is
found, there is relatively little difference between exhaustive and heuristic pseudoalignment
approaches; subsequent k-mers are queried until the read is exhausted or some k-mer is
found in the index. At this point, however, heuristic skipping methods diverge from the
exhaustive approaches. At a high level, when a k-mer on a read is found to map to a unitig,
skipping heuristics make an assumption that said unitig appears wholly on the read. A
pseudoalignment algorithm then jumps, on the read, to what would be the last k-mer on

Fan et al. 9

the unitig sequence occurring on the given read (i.e., a bookending k-mer). Scenario A in
Figure 2 depicts when this assumption is correctly made. Moving left-to-right on a given
read, if a k-mer on the left is found to occur on the unitig depicted in black color in the figure
(referred to as the “black” unitig henceforth), an algorithm can then skip a distance given by
the length of the black unitig and jump to a k-mer to the right that also maps to the black
unitig and bookends it. Doing so, an algorithm can assume that all k-mers bookended by
these two queried k-mers map to the black unitig, avoid querying k-mers in-between, and
instead continue to query the next k-mer on the read (indicated in dashed lines in blue).

Jump and miss k-mer. In practice however, the implemented skipping heuristics are not
so simple. This is because, when skipping k-mers according to unitig lengths, the resulting
k-mer that an algorithm jumps to may not necessarily map to the unitig it expects. In
scenario B, an algorithm jumps to a k-mer on a read, expecting it to map to a black unitig,
but finds that it does not correspond to any indexed k-mer. Here, an algorithm can make
several choices, and in fact, current skipping heuristics make two distinct choices in this
scenario. It can ignore this missed k-mer and simply query the next k-mer after the position
that was jumped to (in blue). Or, it can take a more conservative approach and implement
a back-off scheme to look for another k-mer that maps to the black unitig. An algorithm
can back-off and jump a lesser distance, and such a back-off approach can happen once or
can be recursive or iterative until some termination condition is satisfied.

Jump and find k-mer in un-expected unitig. In scenario C, an algorithm that jumps to
a k-mer but finds that it maps to a different (red) unitig than expected. Here, we suggest
three choices an algorithm can make. Like in scenario B, an algorithm can back-off to find
another k-mer mapping to the black unitig or it can query the next k-mer after the jumped
position. Alternatively, it can take a new more aggressive approach and jump to a k-mer on
the read where it expects to find the end of an occurrence of the red unitig.
In this work, we have retrofit the pseudoalignment with skipping algorithms from Kallisto [6]1
and Alevin-fry [13]2 to make use of Fulgor, rather than the distinct indexes atop which
they were implemented in their original work. Using Fulgor, we compare their resulting
pseudoalignments, along with those from the full-intersection and threshold-union approaches,
in a simple simulated scenario in Section 5.4.

5 Results

In this section, we report experimental results to assess Fulgor’s construction time/space,
index size, and query speed. Throughout the section, we compare Fulgor to Themisto [2],
which has been shown to outperform other methods that build similarly capable indexes
(namely Bifrost [15] and Metagraph [17]) in terms of speed and space. We build Themisto
indexes using the fastest configuration, i.e., without sampling of k-mer colors in the SBWT
(build option -d1), as done by the authors in [2]. Not sampling k-mer colors yields slightly
larger indexes but makes Themisto faster to query. For our largest benchmarked reference
collection (150,000 genomes), potential space savings from sampling is not significant anyway
because the space required to store distinct colors dominate the overall space. We also use
Themisto’s default color set representation (i.e., without Roaring bitmaps). For both Fulgor
and Themisto, we set the k-mer size to k = 31.

1 https://github.com/jermp/fulgor/blob/main/kallisto_psa/psa.cpp
2 https://github.com/jermp/fulgor/blob/main/piscem_psa/hit_searcher.cpp

https://github.com/jermp/fulgor/blob/main/kallisto_psa/psa.cpp
https://github.com/jermp/fulgor/blob/main/piscem_psa/hit_searcher.cpp

10 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

Table 1 Summary statistics for the tested collections. The row “Integers in colors” reports the
total number of reference IDs that are required to encode all colors — i.e., the sum set sizes for all
colors,

∑
i
|Ci|.

Salmonella Gut Bacteria

Genomes 5,000 10,000 50,000 100,000 150,000 30,691

Distinct colors (×106) 2.69 4.24 13.92 19.36 23.61 227.80
Integers in colors (×109) 5.77 15.68 133.49 303.53 490.04 10.04
k-mers in dBG (×106) 104.69 239.88 806.23 1,018.69 1,194.44 13,936.86
Unitigs in dBG (×106) 4.95 8.24 30.64 41.16 49.60 566.39

Datasets. We follow the experimental methodology of [2] and build Fulgor over subsets
of Salmonella enterica genomes (up to 150,000 genomes) from [5], to demonstrate Fulgor’s
effectiveness when indexing collections of similar reference sequences. We also consider a
heterogeneous collection of 30,691 genomes of bacterial species representative of the human
gut [14] (as also benchmarked in our previous work [11]). We report some summary statistics
for the indexed ccdBGs in Table 1.

Hardware and software. All experiments were run on a machine equipped with Intel Xeon
Platinum 8276L CPUs (clocked at 2.20GHz), 500 GB of RAM running Ubuntu 18.04.6 LTS
(GNU/Linux 4.15.0). Fulgor is available at https://github.com/jermp/fulgor. For the
experiments reported here we use v1.0.0 of the software, compiled with gcc 11.1.0. For
Themisto, we use the shipped compiled binaries (v3.1.1).

5.1 Construction time and space
Construction time and peak RAM usage is reported in Table 2 for the different datasets
evaluated. Both tools use GGCAT to build the ccdBG. However, Fulgor is 2 − 6× faster,
and typically consumes much less memory during construction. This is because Themisto
spends most of its time and memory building the color mapping. However, the analogous
component of Fulgor is just a bit vector, demarcating groups of unitigs with the same color,
that is built via a linear scan of the unitigs produced by GGCAT.

Figure 3 shows, instead, Fulgor’s construction time breakdown for some illustrative
datasets. We distinguish between three phases in the construction: (1) running GGCAT, (2)
compressing the colors and, (3) building SSHash. While GGCAT and color compression take
most of the construction time on the Salmonella pangenomes, building SSHash is the most
expensive step on the Gut Bacteria collection. This is consistent with the statistics reported
in Table 1. Here, there are far more integers to compress in the Salmonella collections whereas
the Gut Bacteria collection contains one order of magnitude more k-mers. This suggests that
one could achieve even faster construction for Fulgor if the colors are compressed in parallel
with the SSHash construction (currently, these two phases are sequential).

5.2 Index size
When indexing collections of Salmonella genomes, Fulgor is consistently ≈ 2× smaller than
Themisto as apparent from Table 3. For example, on the largest collection comprising 150,000
genomes, Fulgor takes 70.66GB whereas Themisto takes 133.63GB. This remarkable space
improvement is primarily due to the more effective color compression scheme adopted by

https://github.com/jermp/fulgor

Fan et al. 11

Table 2 Total index construction time and GB of memory (max. RSS), as reported by /usr/
bin/time with option -v. The reported time includes the time taken by GGCAT to build the ccdBG
(using 48 processing threads) and the time to serialize the index on disk.

Genomes Fulgor Themisto

hh:mm GB hh:mm GB

Salmonella

5,000 00:04 12.91 00:11 12.97
10,000 00:09 23.60 00:25 23.58
50,000 01:13 43.76 02:32 96.00
100,000 02:56 73.54 06:25 202.42
150,000 04:36 136.94 10:00 323.10

Gut Bacteria 30,691 02:27 115.05 15:35 327.72

Figure 3 Construction time breakdown for Fulgor.

Fulgor. This leads to, for example, 48% less space to encode colors for the 150,000 collection
of Salmonella genomes. Looking at Table 4, we highlight that for all indexed Salmonella
reference collections, approximately 50% of all encoded integers in the distinct colors belong
to colors that are at least 90% dense. For such extremely dense colors, the complementary
encoding strategy described in Section 3.3 is very effective: only ≈ 0.2 bits/int (bpi) are
required to encode them in all benchmarked indexes. In fact, even for our largest collection
of 150,000 Salmonella genomes, encoding all integers in all colors requires only 1.120 bpi.

Unsurprisingly, Fulgor also uses less space than Themisto to support the ColorID operation.
We recall from Section 3.2 that Fulgor requires only 1 + o(1) bits per unitig by design. This
amounts to a negligible space usage compared to the overall index size. For example, while
Themisto requires 7.26GB to map k-mers to color IDs for 150,000 Salmonella genomes, our
strategy just takes 7.75 MB.

When indexing a heterogeneous collection, e.g., the 30,691 bacterial genomes [14], with
many more unique k-mers, the space advantage Fulgor has over Themisto is even more
apparent. First, the overall size of Fulgor is 3.8× smaller (36.77GB versus 139.41GB). Second,
Fulgor’s near optimal approach of mapping unitigs to colors instead of k-mers to colors is
dramatically more efficient, requiring only 88MB compared to Themisto’s 91GB. Themisto,
by using the SBWT, organizes k-mers based on their colexicographical order and requires
⌈log2(M)⌉ bits per sampled k-mer to record the color IDs. Here, the SBWT must record

/usr/bin/time
/usr/bin/time
-v

12 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

Table 3 Index space in GB, broken down by space required for indexing the k-mers in a dBG
(SSHash for Fulgor, and the SBWT for Themisto); and data structures required to encode colors and
map k-mers to colors.

Genomes Fulgor Themisto

dBG Colors Total dBG Colors Total

Salmonella

5,000 0.16 0.59 0.75 0.14 1.82 1.96
10,000 0.35 1.66 2.01 0.32 4.78 5.09
50,000 1.26 17.03 18.30 1.07 36.89 37.96
100,000 1.72 40.70 42.44 1.35 81.82 83.17
150,000 2.03 68.60 70.66 1.58 132.05 133.63

Gut Bacteria 30,691 21.23 15.45 36.77 18.33 121.08 139.41

colors for each of the 13.9 billion distinct k-mers and their reverse complement. In contrast,
Fulgor uses SSHash that maintains k-mers in unitig order and requires only 1 + o(1) bits per
unitig to map all k-mers from the same unitig to a single color. Although not the default
behavior, Themisto can optionally sample k-mer colors to avoid storing one color ID per each
k-mer. Clearly, the sampling scheme reduces space usage at the expense of some overhead at
query time by requiring an implicit walk in the dBG. While this sampling strategy can be
quite effective when the underlying k-mer set induce long unitigs, allowing the sampling of
the terminal k-mers of a non-branching path [2], it is unlikely to be similarly effective in a
highly-branching and fragmented graph like the one underlying this heterogeneous dataset
where unitigs are short. On the contrary, our index does not have this issue by design and
can thus scale to more heterogenous collections using small space.

5.3 Query speed
To compare query speed, we benchmark Fulgor and Themisto using both low- and high-hit
rate read-sets, i.e., read-sets for which we have a low and high number of positive k-mers
respectively. Precisely, we use the files containing the first read of the following paired-
end libraries: SRR8966633 with 5.7 × 106 reads, SRR8012684 with 6.6 × 106 reads, and
ERR3214825 with 6.8 × 106 reads.

In Table 5 we report the result of the comparison using the full-intersection method
(Algorithm 1). We repeated the same experiment using the threshold-union method (Al-
gorithm 3) with parameter τ = 0.8 as this is the preferred query mode in Themisto. However,
we did not observe any appreciable difference compared to the full-intersection method in
terms of query speed.

In a low-hit rate workload where a small proportion of reads map to the indexed references,
Fulgor is much faster than Themisto. In this scenario, we expect many queried k-mers to not
occur in the indexed references. When k-mers are absent from the index, no color needs to
be retrieved and only the k-mer dictionary is queried. Here, Fulgor is faster than Themisto
because its reliance on the fast streaming query capabilities of SSHash. It is worth noting here
that in any streaming setting where consecutive k-mers are queried, Fulgor can fully exploit

3 https://www.ebi.ac.uk/ena/browser/view/SRR896663
4 https://www.ebi.ac.uk/ena/browser/view/SRR801268
5 https://www.ebi.ac.uk/ena/browser/view/ERR321482

https://www.ebi.ac.uk/ena/browser/view/SRR896663
https://www.ebi.ac.uk/ena/browser/view/SRR801268
https://www.ebi.ac.uk/ena/browser/view/ERR321482

Fan et al. 13

Table 4 Average bits/int (bpi) spent for representing colors whose density is (i × 10)% of N , for
i = 1, . . . , 10. The first two columns for each collection, “lists” and “ints”, report the percentage
of lists (i.e., colors) and integers (stored reference identifiers) that belong to all colors within a
given density. The last row, “Total bpi”, is comprehensive of the space spent for the integer lists
themselves and the space spent for the offsets delimiting the lists’ boundaries.

Density
Salmonella Gut Bacteria

N = 5,000 N = 10,000 N = 50,000 N = 100,000 N = 150,000 N = 30,691

lists ints bpi lists ints bpi lists ints bpi lists ints bpi lists ints bpi lists ints bpi

0–10% 38.88 2.00 4.66 46.15 1.81 4.64 70.96 2.62 6.00 76.52 3.14 6.16 79.23 3.27 6.32 99.99 99.99 12.05
10–20% 6.04 2.11 2.66 4.83 1.93 2.66 3.74 2.84 3.05 2.82 2.61 3.77 2.54 2.68 3.92 0.00 0.00 0.00
20–30% 4.70 2.69 2.86 4.44 2.93 2.81 2.69 3.50 3.24 2.32 3.66 3.41 2.09 3.76 3.46 0.00 0.00 0.00
30–40% 3.13 2.55 2.88 4.27 4.02 2.87 1.90 3.43 2.89 1.57 3.49 2.88 1.40 3.51 2.88 0.00 0.00 0.00
40–50% 4.05 4.25 2.23 3.32 4.04 2.22 1.81 4.25 2.22 1.44 4.14 2.23 1.29 4.19 2.23 0.00 0.00 0.00
50–60% 4.13 5.30 1.83 3.54 5.29 1.81 1.82 5.24 1.82 1.42 4.99 1.82 1.24 4.94 1.82 0.00 0.00 0.00
60–70% 3.98 6.07 1.54 4.24 7.44 1.54 2.04 6.94 1.53 1.59 6.61 1.54 1.40 6.59 1.54 0.00 0.00 0.00
70–80% 5.53 9.72 0.94 4.86 9.91 0.93 2.33 9.13 1.08 1.87 8.96 1.14 1.64 8.91 1.15 0.00 0.00 0.00
80–90% 5.80 11.52 0.47 3.71 8.57 0.47 3.03 13.43 0.56 2.49 13.65 0.63 2.09 12.95 0.66 0.00 0.00 0.00
90–100% 23.77 53.80 0.15 20.65 54.07 0.14 9.67 48.63 0.19 7.94 48.76 0.21 7.07 49.21 0.21 0.00 0.00 0.00

Total bpi 0.817 0.848 1.020 1.072 1.120 12.32

the monochromatic property of unitigs in ways which Themisto cannot. Queries to SSHash
have very good locality compared to the SBWT because adjacent k-mers in unitigs are stored
contiguously in memory. Further, streaming queries to SSHash can be very efficiently cached
and optimized. When looking up consecutive k-mers, SSHash can entirely avoid computing
its minimal perfect hash (a slow operation) and instead perform fast comparisons of k-mers
stored in cached positions pointing to adjacent addresses in memory.

In a high-hit rate workload, Fulgor also outperforms Themisto, but by a smaller margin,
since most of the time is now spent in performing the intersection between colors. It is
interesting to note that the workloads can be processed significantly faster (by both tools)
on the Gut Bacteria collection: this is a direct consequence of the fact that the lists being
intersected are much shorter on average for the Gut Bacteria compared to the Salmonella
collections. This is evident from Table 4: essentially all lists are just 10% dense, i.e., have
length at most ⌈30, 691/10⌉ < 3,070.

We also note that part of the slowdown seen for Themisto is due to the time spent in
loading the index from disk to RAM, which takes at least twice as Fulgor’s because of its
larger index size.

5.4 Comparison of pseudoalignment algorithms on simulated data
To analyze the accuracy of the underlying pseudoalignment algorithms, we perform additional
testing with read sets simulated using the Mason [16] simulator. To analyze how mapping
and hit rates affect query speed, we simulate a varying proportion of “positive” reads from
indexed reference sequences and generate “negative” reads from the human chromosome 19
from the CHM13 v2.0 human genome assembly [25]. We use Fulgor to compare the four
mapping algorithms described in Section 4.

From Table 6, we see that at various proportions of ground truth positive reads (simulated
reads deriving from indexed references), all mapping methods have a true positive rate (TPR),
i.e., total reads correctly mapped over the total ground truth positives, greater than 95%.

14 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

Table 5 Total query time as elapsed time reported by /usr/bin/time, using 16 processing threads
for both indexes. The read-mapping output is written to /dev/null for this experiment. We also
report the mapping rate in percentage (fraction of mapped read over the total number of queried
reads). Results are relative to the full-intersection query mode. All reported timings are relative
to a second run of the experiment, when the index is loaded faster from the disk cache. For each
workload, we indicate the run accession number.

(a) low-hit, Salmonella, SRR896663

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

5,000 1.27 00:09 00:32
10,000 13.86 00:10 00:36
50,000 32.61 00:25 01:05
100,000 34.09 00:45 01:39
150,000 34.01 01:06 05:02

(b) high-hit, Salmonella, SRR801268

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

5,000 89.53 01:16 03:50
10,000 89.76 02:26 07:35
50,000 91.31 19:15 41:25
100,000 91.52 35:50 82:14
150,000 91.61 42:30 120:08

(c) low-hit, Gut Bacteria, SRR896663

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

30,691 11.90 0:57 2:58

(d) high-hit, Gut Bacteria, ERR321482

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

30,691 92.98 01:16 02:45

This high sensitivity for all four methods is to be expected since all methods simply check
for k-mer’s membership to references of origin and do not consider k-mer positions in
references. One main drawback of eliding positions, heuristically avoiding “locate” queries,
and entirely ignoring k-mers that are not present in the index, is also clear. All methods
incur approximately a 30% false positive rate (FPR), i.e., total reads spuriously mapped
over the total ground truth negatives. As is expected, the threshold-union method incurs a
slightly higher FPR compared to other methods (30% compared to 27% for other methods)
because of its less strict criteria only requiring references to be compatible with τ fraction of
mapped k-mers instead of all k-mers.

In these benchmarks, we find very little difference in terms of TPR and FPR between
the exhaustive methods and skipping heuristics. These results also gesture at one desirable
and one undesirable quality of these methods. First, skipping heuristics correctly assume
and successfully skip k-mers that likely occur on the same unitig and have the same color.
Likewise, they have the potential to be even more sensitive than the full-intersection method,
as they do not, in general, search for every k-mer in a query, and can thus avoid scenarios
where variation or sequencing errors in a query cause spurious matches to the index, shrinking
or eliminating the set of references appearing in the final color assigned to the query. In fact,
in a small-scale test, Alanko et al. [2] report that Kallisto’s skipping heuristic results in a
small but persistent increase of approximately 0.03% in the mapping rate. However, all four
of the pseudoalignment methods evaluated here suffer from a high FPR and low precision.
Better algorithms to lower FPR and improve precision without lowering sensitivity too much
should be investigated in future work. Such improvements may be possible by adding back
information about the reference positions where k-mers from the query match, incorporating
structural constraints [13] or other such restrictions atop the color intersection rule. Yet,
those approaches are more computationally involved, require the index to support locate

/usr/bin/time
/dev/null

Fan et al. 15

Table 6 Quality of pseudoalignment algorithms querying 100,000 simulated reads against 50,000
Salmonella genomes indexed with Fulgor. We vary the percentage of positive reads simulated from
indexed Salmonella genomes by diluting queried read sets with negative reads simulated from
a reference human transcriptome. We consider a mapped positive read (deriving from indexed
references) to be a true positive if the reference of origin is in the returned set of compatible references;
and a mapped negative read (deriving from human chromosome 19) to be a false positive. We denote
true and false positive rates (%) to be TPR and FPR, respectively. For the threshold-union method,
we use τ = 0.8.

% Positive Full-intersection Threshold-union Kallisto Alevin-fry

TPR FPR TPR FPR TPR FPR TPR FPR

90% 95.0 27.0 97.7 30.0 95.0 27.0 95.1 27.0
70% 95.1 27.0 97.7 30.0 95.1 27.0 95.1 27.0
25% 95.1 27.0 97.7 30.0 95.2 27.0 95.2 27.0
10% 95.5 27.0 97.8 30.0 95.5 27.0 95.5 27.0

queries, and also substantially diverge from “pseudoalignment” as traditionally understood.
Regardless, we highlight here that Fulgor more easily enables implementing skipping and
unitig-based heuristics compared to other methods that do not explicitly store unitig sequences
and keep k-mers in unitig order. In fact, Fulgor implicitly maintains additional information
regarding the local structural consistency of k-mers. For example, with Fulgor, one can easily
check if consecutive k-mers are valid on an indexed unitig or check if consecutive unitigs on
a read have valid overlaps, in an attempt to reduce the FPR.

6 Conclusions and future work

We introduce Fulgor, a fast and compact index for the k-mers of a colored compacted de
Bruijn graph (ccdBG). Using, SSHash, an order-preserving k-mer dictionary, Fulgor fully
exploits the monochromatic property of unitigs in ccdBGs. Fulgor implements a very succinct
map from unitigs to colors, taking only 1 + o(1) bits per unitig. Further, Fulgor applies
an effective hybrid compression scheme to represent the set of distinct colors. Across all
benchmarked scenarios, Fulgor outperforms Themisto, the prior state-of-the-art in terms of
space and speed. There is still room for improvement in future work. We discuss some
promising directions below.

In terms of speed, we remark that when processing a high-hit workload, the overall
runtime is dominated by the time required to intersect the colors. As explained in Section 4.1,
Fulgor currently implements a generic intersection algorithm that only requires two primitive
operations, namely Next and NextGEQ (see also Appendix A). But this is not the only
paradigm available for efficient intersection. We could, for example, try approaches that
exploit different indexing paradigms, such as Roaring [7] and Slicing [28], that are explicitly
designed for fast intersections. These alternative approaches may be significantly faster
especially on the high-hit workloads.

Another possible optimization is to implement a caching scheme for frequently occurring
and/or recently intersected colors. Caching the uncompressed or intersection-optimized
versions of frequently occurring color sets, or previously computed intersections, could speed
up query processing substantially when many reads map to the same set of colors.

In terms of space, one property that Fulgor does not yet exploit is the fact that many
unitigs in the ccdBG share similar colors — i.e., co-occur in many reference sequences. This

16 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

is so because unitigs arising from conserved genomic sequences will share similar occurrence
patterns. In a related line of research, [3] developed a method that efficiently compresses
distinct, but highly-correlated colors, through a variant of referential encoding. Specifically,
they compute a minimum spanning tree (MST) on a subgraph of the color graph induced by
the ccdBG, and encode a color by recording its differences with respect to its parent in the
MST. This vastly reduces the space required to encode the color set when many similar colors
exist, as we would expect in a pangenome, and fast query speed can be retained through
color caching. Another related approach would be to resort to clustering similar colors and
encoding all colors within a cluster with respect to a cluster representative color [33]. Likewise,
although not specifically designed to compress colors, Metagraph and its variants can exploit
similarity between colors using a general compression scheme that records differences in
stored metadata (in this case, the colors) between adjacent k-mers [17]. We note that, since
the colored k-mer indexing problem is modular (Section 2.2), novel relational compression
techniques for the set of distinct colors can be developed and optimized independently of the
other components of the index.

Finally, in our experiments with simulated data analyzing the quality of pseudoalignment
algorithms from Section 5.4, we find higher than desirable false positive rates. This suggests
that, at least for the metagenomic and pangenomic reference collections where many references
share similar k-mer content, better read-mapping heuristics and algorithms that improve
specificity (i.e., reduce the spurious mapping of reads not arising from indexed references)
without trading-off too much recall are still sorely needed. Here, it will be desirable to search
for methods that can improve specificity without the need to retain reference positions or
issue locate queries for all k-mers. We suggest that there may be several promising directions.
For example, one may consider enforcing local structural consistency among matched k-mers
to potentially reduce spurious mapping. Likewise, one may consider filtering repetitive and
low-complexity k-mers from contributing to the final pseudoalignment result. Finally, by
analogy to BLAST [4], one may consider evaluating the likelihood that a pseudoalignment
result is spurious by comparing the matching rate against against some null or background
expectation to account for the fact that, in very large reference databases, a very small
number of (potentially correlated) k-mers may be insufficient evidence to consider a query as
compatible with a subset of references.

References

1 Jarno N. Alanko, Simon J. Puglisi, and Jaakko Vuohtoniemi. Small searchable k-spectra
via subset rank queries on the spectral burrows-wheeler transform. In SIAM Conference on
Applied and Computational Discrete Algorithms (ACDA23), pages 225–236, 2023.

2 Jarno N Alanko, Jaakko Vuohtoniemi, Tommi Mäklin, and Simon J Puglisi. Themisto: a
scalable colored k-mer index for sensitive pseudoalignment against hundreds of thousands of
bacterial genomes. In Proceedings of the 31st Conference on Intelligent Systems for Molecular
Biology (ISMB), 2023.

3 Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and Rob Patro. An
Efficient, Scalable, and Exact Representation of High-Dimensional Color Information Enabled
Using de Bruijn Graph Search. Journal of Computational Biology, 27(4):485–499, 2020. PMID:
32176522.

4 Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

5 Grace A. Blackwell, Martin Hunt, Kerri M. Malone, Leandro Lima, Gal Horesh, Blaise T. F.
Alako, Nicholas R. Thomson, and Zamin Iqbal. Exploring bacterial diversity via a curated

Fan et al. 17

and searchable snapshot of archived DNA sequences. PLOS Biology, 19(11):1–16, 11 2021.
URL: https://doi.org/10.1371/journal.pbio.3001421.

6 Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic
rna-seq quantification. Nature biotechnology, 34(5):525–527, 2016.

7 Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. Better bitmap performance
with roaring bitmaps. Software: Practice and Experience, 46(5):709–719, 2016.

8 Andrea Cracco and Alexandru I Tomescu. Extremely-fast Construction and Querying of
Compacted and Colored de Bruijn Graphs with GGCAT. In Proceedings of the 27th Annual
International Conference on Research in Computational Molecular Biology, pages 208–210.
Springer, 2023.

9 Peter Elias. Efficient storage and retrieval by content and address of static files. Journal of
the ACM, 21(2):246–260, 1974.

10 Peter Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203, 1975.

11 Jason Fan, Jamshed Khan, Giulio Ermanno Pibiri, and Rob Patro. Spectrum preserving
tilings enable sparse and modular reference indexing. In Research in Computational Molecular
Biology, pages 21–40, 2023.

12 Robert Mario Fano. On the number of bits required to implement an associative memory.
Memorandum 61, Computer Structures Group, MIT, 1971.

13 Dongze He, Mohsen Zakeri, Hirak Sarkar, Charlotte Soneson, Avi Srivastava, and Rob Patro.
Alevin-fry unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq
data. Nature Methods, 19(3):316–322, 2022.

14 Pranvera Hiseni, Knut Rudi, Robert C Wilson, Finn Terje Hegge, and Lars Snipen. HumGut:
a comprehensive human gut prokaryotic genomes collection filtered by metagenome data.
Microbiome, 9(1):1–12, 2021.

15 Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome biology, 21(1):1–20, 2020.

16 M. Holtgrewe. Mason – a read simulator for second generation sequencing data. Technical
Report FU Berlin, October 2010.

17 Mikhail Karasikov, Harun Mustafa, Amir Joudaki, Sara Javadzadeh-No, Gunnar Rätsch, and
André Kahles. Sparse Binary Relation Representations for Genome Graph Annotation. J
Comput Biol, 27(4):626–639, December 2019.

18 Jamshed Khan, Marek Kokot, Sebastian Deorowicz, and Rob Patro. Scalable, ultra-fast, and
low-memory construction of compacted de Bruijn graphs with Cuttlefish 2. Genome Biology,
23(1):190, 2022.

19 Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel and low-memory compaction of de
Bruijn graphs from large-scale genome collections. Bioinformatics, 37(Supplement_1):i177–
i186, 2021.

20 Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, and Serghei Mangul.
Metalign: efficient alignment-based metagenomic profiling via containment min hash. Genome
Biology, 21(1):242, Sep 2020.

21 Tommi Mäklin, Teemu Kallonen, Sophia David, Christine J Boinett, Ben Pascoe, Guillaume
Méric, David M Aanensen, Edward J Feil, Stephen Baker, Julian Parkhill, et al. High-resolution
sweep metagenomics using fast probabilistic inference [version 1; peer review: 1 approved, 1
approved with reservations]. Wellcome open research, 5(14), 2021.

22 Camille Marchet, Christina Boucher, Simon J Puglisi, Paul Medvedev, Mikaël Salson, and
Rayan Chikhi. Data structures based on k-mers for querying large collections of sequencing
data sets. Genome Research, 31(1):1–12, 2021.

23 Alexa B. R. McIntyre, Rachid Ounit, Ebrahim Afshinnekoo, Robert J. Prill, Elizabeth Hénaff,
Noah Alexander, Samuel S. Minot, David Danko, Jonathan Foox, Sofia Ahsanuddin, Scott
Tighe, Nur A. Hasan, Poorani Subramanian, Kelly Moffat, Shawn Levy, Stefano Lonardi,
Nick Greenfield, Rita R. Colwell, Gail L. Rosen, and Christopher E. Mason. Comprehensive

https://doi.org/10.1371/journal.pbio.3001421

18 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 18(1):182,
Sep 2017.

24 Ilia Minkin, Son Pham, and Paul Medvedev. TwoPaCo: an efficient algorithm to build the
compacted de Bruijn graph from many complete genomes. Bioinformatics, 33(24):4024–4032,
2017.

25 Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla
Mikheenko, et al. The complete sequence of a human genome. Science, 376(6588):44–53, 2022.

26 Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano indexes. In Proceedings
of the 37th international ACM SIGIR conference on Research & development in information
retrieval, pages 273–282, 2014.

27 Rachid Ounit, Steve Wanamaker, Timothy J Close, and Stefano Lonardi. Clark: fast and
accurate classification of metagenomic and genomic sequences using discriminative k-mers.
BMC Genomics, 16(1):1–13, 2015.

28 Giulio Ermanno Pibiri. Fast and compact set intersection through recursive universe parti-
tioning. In 2021 Data Compression Conference (DCC), pages 293–302. IEEE, 2021.

29 Giulio Ermanno Pibiri. On weighted k-mer dictionaries. In International Workshop on
Algorithms in Bioinformatics (WABI), pages 9:1–9:20, 2022.

30 Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers. Bioinformatics,
38(Supplement_1):i185–i194, 06 2022.

31 Giulio Ermanno Pibiri and Shunsuke Kanda. Rank/select queries over mutable bitmaps.
Information Systems, 99(101756), 2021.

32 Giulio Ermanno Pibiri and Roberto Trani. PTHash: Revisiting FCH minimal perfect hashing.
In Proceedings of the 44th international ACM SIGIR conference on Research & development
in information retrieval, pages 1339–1348, 2021.

33 Giulio Ermanno Pibiri and Rossano Venturini. Clustered elias-fano indexes. ACM Transactions
on Information Systems, 36(1):1–33, 2017.

34 Giulio Ermanno Pibiri and Rossano Venturini. Techniques for inverted index compression.
ACM Comput. Surv., 53(6):125:1–125:36, 2021.

35 N Tessa Pierce, Luiz Irber, Taylor Reiter, Phillip Brooks, and C Titus Brown. Large-scale
sequence comparisons with sourmash. F1000Research, 8, 2019.

36 NT Pierce, L Irber, T Reiter, P Brooks, and CT Brown. Large-scale sequence comparisons
with sourmash [version 1; peer review: 2 approved]. F1000Research, 8(1006), 2019. doi:
10.12688/f1000research.19675.1.

37 Mark Reppell and John Novembre. Using pseudoalignment and base quality to accurately
quantify microbial community composition. PLOS Computational Biology, 14(4):1–23, 04
2018.

38 Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.
Reducing storage requirements for biological sequence comparison. Bioinformatics, 20(18):3363–
3369, 2004.

39 L Schaeffer, H Pimentel, N Bray, P Melsted, and L Pachter. Pseudoalignment for metagenomic
read assignment. Bioinformatics, 33(14):2082–2088, 02 2017.

40 Wei Shen, Hongyan Xiang, Tianquan Huang, Hui Tang, Mingli Peng, Dachuan Cai, Peng
Hu, and Hong Ren. KMCP: accurate metagenomic profiling of both prokaryotic and viral
populations by pseudo-mapping. Bioinformatics, 39(1), 12 2022. btac845.

41 Sebastiano Vigna. Broadword implementation of rank/select queries. In International Workshop
on Experimental and Efficient Algorithms, pages 154–168, 2008.

42 Derrick E. Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis with
Kraken 2. Genome Biology, 20(1):257, Nov 2019.

43 Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome biology, 15(3):1–12, 2014.

https://doi.org/10.12688/f1000research.19675.1
https://doi.org/10.12688/f1000research.19675.1

Fan et al. 19

44 Ilya Y Zhbannikov, Samuel S Hunter, Matthew L Settles, and James A Foster. SlopMap: a
software application tool for quick and flexible identification of similar sequences using exact
k-mer matching. Journal of data mining in genomics & proteomics, 4(3), 2013.

45 Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Computing
Surveys (CSUR), 38(2):6–es, 2006.

20 Fulgor: A fast and compact k-mer index for large-scale matching and color queries

Appendix

A Pseudocode for the algorithms from Section 4.1

Algorithm 1 The Full-Intersection algorithm for a query sequence Q. The algorithm uses the
three index components: D (the dictionary, mapping k-mers to unitigs), B (the bit-vector mapping
from unitigs to colors), and L (the inverted index storing the compressed colors). As discussed in
Section 3.1, the dictionary D can stream through the query sequence Q and collect unitig ids. The
inverted index L, instead, returns an iterator over a color set given the color id c as Iterator(c).

1: function Full-Intersection(Q)
2: if |Q| < k then return ∅
3: U = D.Stream-Through(Q) ▷ U is the set of unitig ids.
4: Deduplicate(U)
5: C = ∅ ▷ C is the set of color ids.
6: for u ∈ U do
7: c = B.Color-ID(u)
8: C.Add(c)
9: Deduplicate(C)

10: I = ∅ ▷ I is the set of iterators over colors.
11: for c ∈ C do
12: i = L.Iterator(c)
13: I.Add(i)
14: R = Intersect(I) ▷ R is the result set of reference ids.
15: return R

Algorithm 2 The Intersect algorithm for a set of iterators I = {i1, . . . , ip}. An iterator object
supports three primitive operations: Value(), returning the value currently pointed to by the
iterator; Next(), returning the value immediately after the one currently pointed to by the iterator;
Next-GEQ(x), returning the smallest value that is larger-than or equal-to x. We assume that if i

is an iterator over color Cj then calling i.Next() for more than |Cj | times will return the (invalid)
reference id N + 1.

1: function Intersect(I)
2: if I = ∅ then return ∅
3: R = ∅
4: candidate = i1.Value()
5: j = 2
6: while candidate ≤ N do
7: for ; j ≤ p; j = j + 1 do
8: ij .NextGEQ(candidate)
9: v = ij .Value()

10: if v ̸= candidate then
11: candidate = v
12: j = 1
13: break
14: if j = p + 1 then
15: R.Add(candidate)
16: i1.Next()
17: candidate = i1.Value()
18: j = 2
19: return R

Fan et al. 21

Algorithm 3 The Threshold-Union algorithm for a query sequence Q. Differently from the
Full-Intersection method (Algorithm 1), here U , C, and I, are sets of pairs. The first component
of a pair is a unitig id, a color id, or an iterator, respectively if the pair is in U , C, or U . The second
component, read by calling the method Score() in the pseudocode, is the number of positive k-mers
that have a given unitig id or have a given color. The score of iterator i is the score of the color id c

if i = L.Iterator(c). Clearly, when deduplicating the sets U and C, the scores of equal unitig or
color ids must be summed.

1: function Threshold-Union(Q, τ)
2: if |Q| < k then return ∅
3: U = D.Stream-Through(Q) ▷ U is the set of unitig ids.
4: |K(Q)| =

∑
u∈U

u.Score() ▷ |K(Q)| is the number of positive hits.
5: Deduplicate-And-Sum-Scores(U)
6: C = ∅ ▷ C is the set of color class ids.
7: for u ∈ U do
8: c = B.Color-ID(u)
9: C.Add(c)

10: Deduplicate-And-Sum-Scores(C)
11: I = ∅ ▷ I is the set of iterators over color sets.
12: for c ∈ C do
13: i = L.Iterator(c)
14: I.Add(i)
15: t = |K(Q)| × τ ▷ A reference is returned iff it contains at least t k-mers.
16: R = Union(I, t) ▷ R is the result set of reference ids.
17: return R

Algorithm 4 The Union algorithm for a set of iterators I = {i1, . . . , ip} and minimum score t.
1: function Union(I, t)
2: if I = ∅ then return ∅
3: R = ∅
4: candidate = min{i1.Value(), . . . , ip.Value()}
5: while candidate ≤ N do
6: min = N + 1
7: score = 0
8: for j = 1; j ≤ p; j = j + 1 do
9: if ij .Value() = candidate then

10: score = score + ij .Score()
11: ij .Next()
12: if ij .Value() < min then min = ij .Value()
13: if score ≥ t then R.Add(candidate)
14: candidate = min
15: return R

	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Problem definition
	2.2 Modular indexing layout
	2.3 The colored compacted de Bruijn graph and its properties

	3 Index description
	3.1 The k-mer dictionary: mapping k-mers to unitigs with SSHash
	3.2 Mapping unitigs to colors
	3.3 Compressing the colors
	3.4 Construction

	4 Pseudoalignment algorithms
	4.1 Exhaustive methods
	4.2 Skipping heuristics

	5 Results
	5.1 Construction time and space
	5.2 Index size
	5.3 Query speed
	5.4 Comparison of pseudoalignment algorithms on simulated data

	6 Conclusions and future work
	A Pseudocode for the algorithms from Section 4.1

