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Abstract
Cancer progression and treatment can be informed by reconstructing its evolutionary history from
tumor cells [5]. Although many methods exist to estimate evolutionary trees (called phylogenies)
from molecular sequences, traditional approaches assume the input data are error-free and the output
tree is fully resolved. These assumptions are challenged in tumor phylogenetics because single-cell
sequencing produces sparse, error-ridden data and because tumors evolve clonally [3, 12]. Here, we
study the theoretical utility of methods based on quartets (four-leaf, unrooted phylogenetic trees)
and triplets (three-leaf, rooted phylogenetic trees), in light of these barriers.

Quartets and triplets have long been used as the building blocks for reconstructing the evolutionary
history of species [14]. The reason triplet-based methods (e.g., MP-EST [6]) and quartet-based
methods (e.g., ASTRAL [7]) have garnered such success in species phylogenetics is their good
statistical properties under the Multi-Species Coalescent (MSC) model [9, 10] (see [1] and [2] for
identifiability results under the MSC model for quartets and triplets, respectively).

Inspired by these efforts, we study the utility of quartets and triplets for estimating cell lineage
trees under a popular tumor phylogenetics model [3, 11, 15, 4] with two phases. First, mutations
arise on a (highly unresolved) cell lineage tree according to the infinite sites model, and second, errors
(false positives and false negatives) and missing values are introduced to the resulting mutation data
in an unbiased fashion, mimicking data produced by single-cell sequencing protocols. This infinite
sites plus unbiased error and missingness (IS+UEM) model generates mutations (rather than gene
genealogies like the MSC model). However, a quartet (with leaves bijectively labeled by four cells)
is implied by a mutation being present in two cells and absent from two cells [8, 13]; similarly, a
triplet (on three cells) is implied by a mutation being present in two cells and absent from one cell.

Our main result is that under the IS+UEM, the most probable quartet identifies the unrooted
model cell lineage tree on four cells, with a mild assumption: the probability of false negatives and
the probability of false positives must not sum to one. Somewhat surprisingly, our identifiability
result for quartets does not extend to triplets, with more restrictive assumptions being required for
identifiability. These results motivate seeking an unrooted cell lineage tree such that the number of
quartets shared between it and the input mutations is maximized. We prove an optimal solution to
this problem is a consistent estimator of the unrooted cell lineage tree under the IS+UEM model;
this guarantee includes the case where the model tree is highly unresolved, provided that tree
error is defined as the number of false negative branches. We therefore conclude by outlining how
quartet-based methods might be employed for tumor phylogenetics given other important challenges
like copy number aberrations and doublets.

2012 ACM Subject Classification Applied computing → Molecular evolution

Keywords and phrases Tumor Phylogenetics, Cell Lineage Trees, Quartets, Supertrees, ASTRAL

Digital Object Identifier 10.4230/LIPIcs.WABI.2023.3

Related Version Full Version: https://doi.org/10.1101/2023.04.04.535437

1 Corresponding author

© Yunheng Han and Erin K. Molloy;
licensed under Creative Commons License CC-BY 4.0

23rd International Workshop on Algorithms in Bioinformatics (WABI 2023).
Editors: Djamal Belazzougui and Aïda Ouangraoua; Article No. 3; pp. 3:1–3:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yhhan@umd.edu
https://orcid.org/0000-0003-0200-5924
mailto:ekmolloy@umd.edu
https://orcid.org/0000-0001-5553-3312
https://doi.org/10.4230/LIPIcs.WABI.2023.3
https://doi.org/10.1101/2023.04.04.535437
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Quartets enable consistent estimation of cell lineage trees under UEM model

Funding This work was financially supported by the State of Maryland.

Acknowledgements The authors thank Michael Nute for very helpful feedback on a preliminary
version of this paper, especially our notation.

References
1 Elizabeth S. Allman, James H. Degnan, and John A. Rhodes. Identifying the rooted species

tree from the distribution of unrooted gene trees under the coalescent. Journal of Mathematical
Biology, 62(6):833–862, 2011. doi:10.1007/s00285-010-0355-7.

2 James H. Degnan and Noah A. Rosenberg. Discordance of species trees with their most likely
gene trees. PLOS Genetics, 2(5):1–7, 05 2006. doi:10.1371/journal.pgen.0020068.

3 Katharina Jahn, Jack Kuipers, and Niko Beerenwinkel. Tree inference for single-cell data.
Genome Biology, 17:86, 2016. doi:10.1186/s13059-016-0936-x.

4 Can Kizilkale, Farid Rashidi Mehrabadi, Erfan Sadeqi Azer, Eva Pérez-Guijarro, Kerrie L.
Marie, Maxwell P. Lee, Chi-Ping Day, Glenn Merlino, Funda Ergün, Aydın Buluç, S. Cenk Sah-
inalp, and Salem Malikić. Fast intratumor heterogeneity inference from single-cell sequencing
data. Nature Computational Science, 2:577–583, 2022. doi:10.1038/s43588-022-00298-x.

5 Bora Lim, Yiyun Lin, and Nicholas Navin. Advancing cancer research and medicine with
single-cell genomics. Cancer Cell, 37(4):456–470, 2020. doi:https://doi.org/10.1016/j.
ccell.2020.03.008.

6 Liang Liu, Lili Yu, and Scott V. Edwards. A maximum pseudo-likelihood approach for
estimating species trees under the coalescent model. BMC Evolutionary Biology, 10:302, 2010.
doi:10.1186/1471-2148-10-302.

7 Siavash Mirarab, Rezwana Reaz, Md. Shamsuzzoha Bayzid, Theo Zimmermann, Michelle S.
Swenson, and Tandy Warnow. ASTRAL: genome-scale coalescent-based species tree estimation.
Bioinformatics, 30(17):i541–i548, 2014. doi:10.1093/bioinformatics/btu462.

8 Erin K. Molloy, John Gatesy, and Mark S. Springer. Theoretical and practical considerations
when using retroelement insertions to estimate species trees in the anomaly zone. Systematic
Biology, 71(3):721–740, 2021. doi:10.1093/sysbio/syab086.

9 Pekka Pamilo and Masatoshi Nei. Relationships between gene trees and species trees. Molecular
Biology and Evolution, 5(5):568–583, 1988. doi:10.1093/oxfordjournals.molbev.a040517.

10 Bruce Rannala and Ziheng Yang. Bayes estimation of species divergence times and ancestral
population sizes using DNA sequences from multiple loci. Genetics, 164(4):1645–1656, 2003.
doi:10.1093/genetics/164.4.1645.

11 Edith M. Ross and Florian Markowetz. OncoNEM: inferring tumor evolution from single-cell
sequencing data. Genome Biology, 17(1):69, 2016. doi:10.1186/s13059-016-0929-9.

12 Russell Schwartz and Alejandro A Schäffer. The evolution of tumour phylogenetics: principles
and practice. Nature Reviews Genetics, 18(4):213–229, 2017. doi:10.1038/nrg.2016.170.

13 Mark S. Springer, Erin K. Molloy, Daniel B. Sloan, Mark P. Simmons, and John Gatesy.
ILS-aware analysis of low-homoplasy retroelement insertions: Inference of species trees and
introgression using quartets. Journal of Heredity, 111(2):147–168, 2019. doi:10.1093/jhered/
esz076.

14 Mark Wilkinson, James A. Cotton, Chris Creevey, Oliver Eulenstein, Simon R. Harris,
Francois-Joseph Lapointe, Claudine Levasseur, James O. Mcinerney, Davide Pisani, and
Joseph L. Thorley. The Shape of Supertrees to Come: Tree Shape Related Properties
of Fourteen Supertree Methods. Systematic Biology, 54(3):419–431, 2005. doi:10.1080/
10635150590949832.

15 Yufeng Wu. Accurate and efficient cell lineage tree inference from noisy single cell data: the
maximum likelihood perfect phylogeny approach. Bioinformatics, 36(3):742–750, 08 2019.
doi:10.1093/bioinformatics/btz676.

https://doi.org/10.1007/s00285-010-0355-7
https://doi.org/10.1371/journal.pgen.0020068
https://doi.org/10.1186/s13059-016-0936-x
https://doi.org/10.1038/s43588-022-00298-x
https://doi.org/https://doi.org/10.1016/j.ccell.2020.03.008
https://doi.org/https://doi.org/10.1016/j.ccell.2020.03.008
https://doi.org/10.1186/1471-2148-10-302
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/sysbio/syab086
https://doi.org/10.1093/oxfordjournals.molbev.a040517
https://doi.org/10.1093/genetics/164.4.1645
https://doi.org/10.1186/s13059-016-0929-9
https://doi.org/10.1038/nrg.2016.170
https://doi.org/10.1093/jhered/esz076
https://doi.org/10.1093/jhered/esz076
https://doi.org/10.1080/10635150590949832
https://doi.org/10.1080/10635150590949832
https://doi.org/10.1093/bioinformatics/btz676

